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SUMMARY

Female mice lacking ATRX in the pancreas have increased
sensitivity to pancreatic cancer, whereas male mice without
ATRX are protected. This study identifies such susceptibility
in pancreatic cancer and highlights the need for sex-specific
approaches in cancer treatment.

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is
the third leading cause of cancer death in North America,
accounting for >30,000 deaths annually. Although somatic
activating mutations in KRAS appear in 97% of PDAC patients,
additional factors are required to initiate PDAC. Because
mutations in genes encoding chromatin remodelling proteins
have been implicated in KRAS-mediated PDAC, we investi-
gated whether loss of chromatin remodeler ɑ-thalassemia,
mental-retardation, X-linked (ATRX) affects oncogenic KRAS’s
ability to promote PDAC. ATRX affects DNA replication, repair,
and gene expression and is implicated in other cancers
including glioblastomas and pancreatic neuroendocrine
tumors. The hypothesis was that deletion of Atrx in pancreatic
acinar cells will increase susceptibility to injury and oncogenic
KRAS.
METHODS: Mice allowing conditional loss of Atrx within pancre-
atic acinar cells were examined after induction of recurrent
cerulein-induced pancreatitis or oncogenic KRAS (KRASG12D). His-
tologic, biochemical, and molecular analysis examined pancreatic
pathologies up to 2 months after induction of Atrx deletion.

RESULTS: Mice lacking Atrx showed more progressive damage,
inflammation, and acinar-to-duct cell metaplasia in response to
injury relative to wild-type mice. In combination with KRASG12D,
Atrx-deficient acinar cells showed increasedfibrosis, inflammation,
progression to acinar-to-duct cell metaplasia, and pre-cancerous
lesions relative to mice expressing only KRASG12D. This sensi-
tivity appears only in female mice, mimicking a significant preva-
lence of ATRXmutations in human female PDAC patients.

CONCLUSIONS: Our results indicate the absence of ATRX
increases sensitivity to injury and oncogenic KRAS only in
female mice. This is an instance of a sex-specific mutation that
enhances oncogenic KRAS’s ability to promote pancreatic
intraepithelial lesion formation. (Cell Mol Gastroenterol Hepatol
2019;7:93–113; https://doi.org/10.1016/j.jcmgh.2018.09.004)
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See editorial on page 233.
ancreatic ductal adenocarcinoma (PDAC) is the third
Abbreviations used in this paper: ADM, acinar-to-duct cell metaplasia;
ANOVA, analysis of variance; ATRX, ɑ-thalassemia, mental-
retardation, X-linked; CIP, cerulein induced pancreatitis; CPA,
carboxypeptidase; DAXX, death associated protein 6; ds, double
stranded; EZH2, Enhancer of Zeste Homologue 2, MKA, Mist1creERT/
DKrasLSL-G12D/DAtrxflD18; PanIN, pancreatic intraepithelial lesion;
PDAC, pancreatic ductal adenocarcinoma; WT, wild-type.
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Pleading cause of cancer-related death in North
America, with a 5-year survival rate of w9% (Pancreatic
Cancer Facts, PANCAN). PDAC is characterized by increased
genomic instability,1 a poor response to chemotherapeutic
intervention, and often diagnosed at later stages because of
a lack of clinical symptoms and poor diagnostic markers
even for susceptible populations. During the last 10 years,
elegant lineage tracing studies identified acinar cells as the
cell of origin in many PDAC cases.2–4 In these cases, the
initiating events include acinar-to-duct cell metaplasia
(ADM), in which mature acinar cells transiently revert to a
pancreatic progenitor-like state, increasing the potential
for progression to neoplastic lesions termed pancreatic
intraepithelial lesions (PanINs) and PDAC.2,5

Mutations in KRAS that lead to a constitutively active
form of the protein are a hallmark of PDAC, present in 97%
of cases.3 However, the constitutive activation of KRAS alone
appears to be insufficient to drive PDAC progression, and
additional acquired mutations and/or pancreatic injury are
required.1,6,7 Recent molecular characterization of PDAC
tumors has identified 4 subtypes for PDAC and mutations
that define 10 pathways commonly affected in these tumors.
In addition to identifying RAS and NOTCH signaling as key
oncogenic pathways, somatic mutations in genes involved in
chromatin remodeling and SWI/SNF function were identi-
fied.8 Studies using genetically modified mouse strains
harboring null alleles for the chromatin remodeling proteins
brahma-related gene 19 or B-cell specific Moloney virus
insertion site 110 increased and decreased, respectively,
the ability for oncogenic KRAS to promote PDAC progres-
sion. These studies confirm the importance of maintaining
chromosome organization/integrity in preventing KRAS-
mediated oncogenic progression. Our goal was to explore
the idea that other components that contribute to SWI/SNF
function and genome integrity may be functionally linked to
oncogenic KRAS activity in promoting PDAC.

ATRX (ɑ-thalassemia, mental-retardation, X-linked) is a
member of the SWI/SNF family of proteins and interacts
with death associated protein 6 (DAXX) to maintain or
remodel appropriate nucleosome organization within the
genome.11,12 In addition to its role in chromatin remodeling,
studies have identified roles for ATRX in maintaining
genomic stability,13 maintaining proper DNA replication and
repair,14 and affecting gene expression.15 It has been pro-
posed that ATRX-dependent deposition of histone variant
H3.3 prevents the formation of alternative DNA structures
during replication, allowing for proper facilitation of the
replicative process.15,16 Complete loss of ATRX function
during development is lethal,17 but hypomorphic ATRX
mutations are the underlying cause for ATRX syndrome, a
developmental disorder in males involving significant
cognitive impairment, facial abnormalities, and development
of ɑ-thalassemia.18 More recently, somatic mutations in ATRX
have been identified in a number of cancers including glio-
blastomas and pancreatic neuroendocrine tumors.19–22
To date, the role of ATRX in the adult pancreas or PDAC has
not been examined. Therefore, we investigated the effect of
ATRX deletion on pancreatic injury and oncogenic KRAS-
mediated PDAC progression. We generated mouse lines in
which exon 18 of the mouse ATRX gene could be conditionally
deleted in pancreatic acinar cells on its own or in combination
with activation of oncogenic KRAS. Our results showed
that loss of ATRX alters the response to recurrent pancreatic
injury, suggesting a role for ATRX in the repair and regenera-
tion of acinar tissue after pancreatic insult. Furthermore,
combination of Atrx deletion with oncogenic KRAS activation
significantly enhanced pancreatic damage within 2 months
relative to oncogenic KRAS alone. Surprisingly, this ability to
sensitize the pancreatic acinar cells to the oncogenic action of
mutated KRASwas observed exclusively in femalemice. These
results indicate that ATRX loss cooperateswith activatedKRAS
to promote pancreatic disease in a sex-specific manner.
Results
To determine whether ATRX deletion affected the

phenotype of mature acinar cells, AtrxflD18 mice23 were
mated to mice expressing creERT from the Mist1 locus
(Mist1creERT; Figure 1A), allowing for acinar-specific deletion
in the pancreas.24,25 Deletion of exon 18 results in complete
loss of ATRX, likely because of mRNA instability.23 A shorter
isoform of ATRX may still be expressed, but this truncated
form lacks the SWI/SNF domain.26 Tamoxifen was admin-
istered to 2- to 4-month-old mice, and ATRX accumulation
was assessed 7, 35, or 60 days after dosing (Figure 1B and C).
Immunofluorescence analysis confirmed 98% of acinar
cells were ATRX-negative at all time points, demonstrating
efficient Atrx deletion and indicating mature acinar cells
do not require ATRX for maintained viability (Figure 1C).
Co-immunofluorescence for ATRX and insulin and identifi-
cation of duct nuclei based on morphology confirmed Atrx
deletion specifically in acinar cells (Figure 1D).

Histologic analysis showed no obvious phenotypes
regarding disorganization of acinar cells or injury/
inflammation (Figure 2A), although intralobular adipocytes
were observed at a higher frequency in Mist1creERT/þ

AtrxflD18 mice. Because loss of ATRX showed limited effects
on overall pancreatic morphology, we focused specifically on
the 60-day time point to determine whether any phenotypes
occurred in response to loss of ATRX. Immunofluorescence
analysis for proliferative markers Ki67 (Figure 2B) and pH3
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(data not shown) or TUNEL analysis (Figure 2C) revealed
increased numbers of proliferating and apoptotic cells after
ATRX deletion. Because ATRX is involved in double stranded
(ds) DNA repair,14,27 we examined gH2AX accumulation, a
marker for unresolved dsDNA breaks. Mist1creERT/þAtrxflD18

pancreatic tissue showed an increase in the number of cells
accumulating gH2AX (Figure 2D), suggesting loss of ATRX
leads to an inability to resolve dsDNA breaks. These results
suggest that short-term loss of ATRX in pancreatic acini has
no overt consequences on pancreatic morphology but may
increase susceptibility to events that require intact DNA
repair pathways, such as pancreatic injury.
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To examine this possibility,Mist1creERT/þ andMist1creERT/þ

AtrxflD18 mice were subjected to recurrent pancreatic injury
for 11 days and allowed to recover for 3 days. We chose a
mild dosing regimen so damage in control mice would be
limited. No significant differences were observed between
Mist1creERT/þ and Mist1creERT/þAtrxflD18 mice based on body
weight, behavior, or gross tissue morphology 3 days after
cessation of cerulein (data not shown). However, histologic
analysis showed marked differences between the 2 geno-
types in response to cerulein treatment. As expected,
cerulein-treated Mist1creERT/þ mice show intra-acinar edema
but no evidence of inflammation or fibrosis (Figure 3A),
likely because of the mild nature of the cerulein treatment.
Conversely, cerulein-treated Mist1creERT/þAtrxflD18 mice
showed increased damage (Figure 3A) and fibrosis in female
Mist1creERT/þAtrxflD18 mice relative to controls (Figure 3B
and C), as indicated by H&E and trichrome histology,
respectively. This enhanced cellular damage was further
confirmed by the strong immunofluorescence signal for F4/
80 antigen that was indicative of extensive macrophage
infiltration in Mist1creERT/þAtrxflD18 mice relative to controls
(Figure 3D). Quantification of the tissue damage confirmed
increased sensitivity to recurrent cerulein induced pancre-
atitis (CIP) and indicated that female Mist1creERT/þAtrxflD18

mice are clearly more sensitive than male mice to these
effects (Figure 3C, Table 2). Whereas analysis of acinar cell
death by cleaved caspase-3 showed no difference between
genotypes (Figure 4A), notably enhanced cell turnover
based on cleaved caspase-3 (Figure 4B) or proliferative
capacity by Ki67 staining (Figure 5E) was observed in
Mist1creERT/þAtrxflD18 pancreata in areas showing classic
features of ADM after CIP. No such areas of ADM were
observed in Mist1creERT/þ mice (Table 2).

Tissue histology also revealed a notable increase in ADM
in Mist1creERT/þAtrxflD18 tissue based on the appearance of
tubular complexes (Figure 3B). Western blot analysis
(Figure 5A) for mature acinar cell markers amylase and
pro-carboxypeptidase (CPA) confirmed a different response
to recurrent CIP in Mist1creERT/þAtrxflD18 mice. Cerulein-
treated Mist1creERT/þ mice exhibited increased accumula-
tion of amylase and CPA compared with saline-treated
controls, which was indicative of a regenerative response
to injury. However, Mist1creERT/þAtrxflD18 mice did not show
this recovery from injury (Figure 5A). This difference in
enzyme accumulation was not due to increased release of
enzymes in response to injury because circulating levels of
amylase were not significantly different between genotypes
(Figure 5B). Immunohistochemical analysis confirmed
Figure 1. (See previous page). Loss of ATRX in the pancreas
model. AtrxflD18 mice carrying loxP sites that flank exon 18. C
administration to Mist1creERT/þAtrxflD18 mice, cre recombinase
exon 18 of the Atrx gene. This leads to degradation of full-lengt
tissue from Mist1creERT/þ (WT) mice 7, 35, or 60 days after tam
arrows indicate residual ATRX expression. Magnification bars
percentage of acinar cells lacking ATRX (n ¼ 3 for all grou
co-immunofluorescence (IF) demonstrates acinar-specific knock
after tamoxifen treatment. White arrows indicate ATRX expressio
DAPI to reveal nuclei. Magnification bar ¼ 50 mm.
decreased CPA accumulation in both putative ADM as well
as surrounding acinar cells (Figure 5C). Surprisingly, this
decrease in CPA accumulation appeared to be more dra-
matic in cerulein-treated female Mist1creERT/þAtrxflD18 mice.
Acini (delineated by a dotted line) show limited CPA accu-
mulation in tissue sections from female mice (Figure 5C).
We next examined expression of the progenitor/duct cell
marker SOX9, a transcription factor that increases during
regeneration and is required for ADM.4 In adult pancreatic
tissue, SOX9 is expressed only in a subset of duct and
centroacinar cells,4,28 which we confirmed by immunofluo-
rescence on sections from saline-treated and cerulein-
treated Mist1creERT/þ mice (Figure 5D and E). Conversely,
increased SOX9 nuclear accumulation was observed in
female and male Mist1creERT/þAtrxflD18 pancreatic tissue
specifically after CIP treatment (Figure 5D), accumulating in
ADM and some acinar cells (Figure 5D and E). Taken
together, these data suggest loss of ATRX increased the
sensitivity of acinar cells to recurrent cerulein exposure.

These findings suggest that Mist1creERT/þAtrxflD18 mice
will have increased susceptibility to oncogenic properties of
mutated KRAS, because maintenance of the acinar phenotype
constrains KRAS-induced transformation.5,9,29 Therefore, we
next introduced an inducible form of oncogenic KRAS
(KrasLSL-G12D/þ) into the Mist1creERT/þAtrxflD18 genotype
(Mist1creERT/þKrasLSL-G12D/þAtrxflD18 hereafter referred to as
MKA; Figure 6A). Cre-mediated induction of KRASG12D þ/-
deletion of Atrx was initiated in 2- to 4-month-old congenic
Mist1creERT/þ,Mist1creERT/þAtrxflD18,Mist1creERT/þKrasLSL-G12D/þ,
and MKA mice (Figure 6B), and acinar cell–specific loss of
ATRX was confirmed by immunohistochemistry (Figure 6C).
No significant differences were observed in body weight
between groups during the course of the experiment
(Figure 6D), and assessment of serum amylase levels at the
time of death revealed no differences between genotypes
(Figure 6E). Because of the presence of oral squamous pap-
illoma tumors in KRASG12D-expressing mice, the experiment
was terminated at 60 days after tamoxifen administration
(data not shown). Gross morphologic examination revealed
enlarged spleens in female Mist1creERT/þKrasLSL-G12D/þ and
MKA mice (Figure 7).

Histologic examination revealed normal pancreatic
morphology in Mist1creERT/þ and Mist1creERT/þAtrxflD18 mice
(Figure 8A). Mist1creERT/þKrasLSL-G12D/þ mice also showed
typical pancreatic morphology for the most part, with a few
instances of ADM or PanINs (Figure 8A). This is consistent
with previous reports that activation of oncogenic KRASG12D

in mature acinar cells was insufficient on its own to cause
is specific to acinar cells. (A) Schematic of Atrx deficient
reERT is expressed from the Mist1 promoter. On tamoxifen
becomes localized to the nucleus and produces deletion of
h Atrx mRNA. (B) Immunofluorescence for ATRX in pancreatic
oxifen gavage in Mist1creERT/þAtrxflD18 mice (AtrxflD18). White
¼ 25 mm. (C) Atrx deletion efficiency was quantified as the
ps). (D) Localization of insulin (green) and ATRX (red) by
out of ATRX expression in Mist1creERT/þAtrxflD18 mice 20 days
n in pancreatic duct cells. Sections were counterstained with
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widespread pancreatic damage.3 Conversely, MKA mice
demonstrated a variable phenotype based on sex
(Figure 8A). Male MKA mice (n ¼ 10) appeared phenotyp-
ically normal with negligible PanIN formation and few
pockets of fibrosis relative to Mist1creERT/þKrasLSL-G12D/þ

mice. Conversely, all female MKA mice (n ¼ 6) developed
PanINs and fibrosis, with some mice displaying extensive
inflammation and fibrosis, along with disruptions in acinar
cell organization consistent with a chronic pancreatitis
phenotype (Figure 8A). Trichrome staining confirmed
increased fibrosis only in female MKA pancreatic tissue
relative to Mist1creERT/þKrasLSL-G12D/þ mice (Figure 9A), and
Alcian blue histology confirmed increases in neoplastic
PanIN lesions (Figure 9B). The tissue showed significant
variability in fibrosis between mice in both MKA and
Mist1creERT/þKrasLSL-G12D/þ cohorts (Figure 9C), although
female MKA mice in general had increased damage
(MKA ¼ 15.2% ± 9.2% damaged area vs Mist1creERT/þ

KrasLSL-G12D/þ ¼ 5.0% ± 1.6%), whereas male MKAmice had
decreased damage (MKA ¼ 0.2% ± 0.2% vs Mist1creERT/þ

KrasLSL-G12D/þ ¼ 5.8% ± 3.8%). On the basis of a 2-way
ANOVA, no significant differences were observed between
any group regarding damaged (ie, lesion) area. However,
quantification of lesion type (Figure 9D) indicated signifi-
cantly more pre-cancerous lesions develop in female MKA
mice relative to all groups exceptMist1creERT/þKrasLSL-G12D/þ

male mice. Quantification of overall pancreatic fibrosis,
inflammation, and ADM, as described earlier, confirmed
increased injury in MKA females relative to Mist1creERT/þ

KrasLSL-G12D/þ counterparts (Table 3).
To assess PanIN formation within Mist1creERT/þKrasLSL-

G12D/þ and MKA pancreatic tissue, the percentage of
pancreatic lobules containing at least one instance of each
lesion type (ranging from ADM to PanIN3) was quantified
on H&E stained sections (Figure 8B) and statistically
compared by 2-way ANOVAs (Table 4). MKA female mice
had significantly fewer lobules consisting only of normal
acini relative to all other groups (Table 4, P < .05). Whereas
both Mist1creERT/þKrasLSL-G12D/þ and MKA mice exhibited
ADM, the incidence of PanIN1 in female MKA mice was
2.5-fold higher (16.21% ± 8.3% of lobules; n ¼ 10) relative
to female Mist1creERT/þKrasLSL-G12D/þ mice (6.52% ± 3.5%;
n ¼ 6), and female MKA mice contained significantly more
lobules with PanIN2 lesions than all other genotypes and
sexes (Figure 8B, Table 4; P < .01). Interestingly, histologic
analysis of male MKA mice revealed no PanIN1 or PanIN2
lesions (Figure 8B, Table 4).

To determine whether presumptive ADM and PanINs
were arising from ATRX null acinar cells, we examined the
expression of transcription factors involved in ADM. SOX9
(Figure 10A and B) and PDX1 (data not shown)
Figure 2. (See previous page). Mature acinar cells do not re
levels of pancreatic damage. (A) Representative H&E staini
pancreatic tissue 60 days after last tamoxifen gavage. Intralobul
and quantification for (B) Ki67 immunofluorescence (Mist1creERT/

(Mist1creERT/þ, n ¼ 9; Mist1creERT/þAtrxflD18, n ¼ 10), or (D) gH2A
days after tamoxifen treatment. White arrows indicate positive c
two-tailed t test with Tukey post hoc test. Error bars represent
accumulation was assessed by immunofluorescence and
immunohistochemistry, respectively. As observed earlier,
no SOX9þ acinar cells were observed in Mist1creERT/þ

and Mist1creERT/þAtrxflD18 mice. Similarly, Mist1creERT/þ

KrasLSL-G12D/þ tissue was devoid of SOX9þ acinar cells,
although pockets of putative SOX9þ ADM were observed
(Figure 10A). Whereas male MKA mice showed few SOX9-
expressing cells, SOX9þ cells and ADM were readily
apparent in female MKA mice (Figure 10A and B). This
widespread SOX9 accumulation in both ADM and acinar
cells adjacent to areas of damage suggested SOX9 expres-
sion precedes ADM, which is in support of previous studies
indicating SOX9 expression is required for ADM. Similar
increases for PDX1 were observed in female MKA tissue,
with PDX1þ cells readily observed in ADM and PanINs (data
not shown) compared with all other genotypes. In many
cases, cells within ADMs and PanIN lesions also stained for
Ki67 (Figure 10B), indicating an increase in proliferation in
these areas. Quantification of Ki67þ acinar cells showed no
significant difference between genotypes, suggesting that
proliferation likely occurs after ADM (Figure 10C).

This expression pattern of SOX9 suggests normal pro-
gression through ADM in MKA mice but does not indicate
whether ADM arises from ATRX-positive cells. Therefore,
ATRX accumulation was examined to confirm an acinar cell
origin for ADM and PanINs. All presumptive ADM observed
in male Mist1creERT/þKrasLSL-G12D/þ mice tissue was ATRX
positive. Similarly, all ADM and PanINs in female
Mist1creERT/þKrasLSL-G12D/þ tissue contained exclusively
ATRX-positive cells. In Mist1creERT/þKrasLSL-G12D/þAtrxflD18/x

female mice, which harbor one transcriptionally active copy
of the Atrx gene, ADM and PanINs contained mixed pop-
ulations of ATRXþ and ATRX– cells. Fifty-nine percent ±
17% of lesions contained at least 1 ATRXþ cell, with the
other 41% ± 17% lesions containing only ATRX-negative
cells (Figure 10D and E). The ATRX– lesions likely arise
from cells in which the non-targeted Atrx gene has been
silenced as part of X chromosome inactivation. Although
some ATRXþ cells were observed in PanINs and ADMs of
MKAmice, the majority of lesions were completely devoid of
ATRX expression in male (82% ± 7%) and female (73% ±
10%) mice. Because ATRX is ubiquitously expressed, the
absence of ATRX in PanINs and ADM suggests the origin of
these lesions in MKA mice as acinar cells.

Finally, to determine whether sex-specific susceptibility
conferred by the absence of ATRX on KRAS mice translates
to humans, we queried the International Cancer Genome
Consortium (dcc.icgc.org) database for ATRX mutations
(Figure 11). The International Cancer Genome Consortium
database includes whole genome sequence analysis for 729
patients from Australian and Canadian tumor sequencing
quire ATRX for maintenance, but ATRX loss induces low
ng of Mist1creERT/þ (WT) and Mist1creERT/þAtrxflD18 (AtrxflD18)
ar adipocytes are indicated by *. (B–D) Representative images
þ [WT; n ¼ 4];Mist1creERT/þAtrxflD18 [ATRX–; n ¼ 5]), (C) TUNEL
X IF (Mist1creERT/þ [n ¼ 7]; Mist1creERT/þAtrxflD18 [n ¼ 11]) 60

ells. Magnification bar ¼ 50 mm. Data were assessed by using
means ± standard error; *P < .005.

http://dcc.icgc.org
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Table 1.Histology Grading Criteria

ADM (based on worst
pancreatic lobule)

Fibrosis (based on
trichrome stain)

0 None present 0 None present

1 >10% of lobule 1 <5% of tissue area

2 10%–30% of lobule 2 5%–10% of tissue area

3 30%–50% of lobule 3 10%–20% of tissue area

4 >50% of lobule 4 >20% of tissue area

Inflammation

0 None present

1 Focal: small, contained areas

2 Mild: small, slightly diffuse areas

3 Moderate: diffuse areas

4 Severe: diffuse areas, significant presence throughout
the tissue

NOTE. Grading of pancreatic lesions: pancreatic lesions
(ranging from ADM to PanIN grade 3) were quantified and
classified into the following categories: ADM, PanIN grade 1,
PanIN grade 2, PanIN grade 3, or PDAC based on morpho-
logic characteristics including cell shape (cuboidal or
columnar), presence of mucin accumulation, nuclear atypia,
pseudostratification, and papillary or cribriform structure.
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studies and consists of 324 female patients (42%) and 405
male patients (53%). Gender was not identified in 5% of the
patients. Therefore, the proportion of PDAC patients re-
ported as female was 0.44. KRAS mutations were identified
in 591 patients, with a similar ratio of male (55%) to female
(45%) patients. Two hundred sixty-eight mutations were
observed within the ATRX gene, encompassing 145 (w19%)
PDAC patients, with 68% of ATRX mutations in female
patients. Therefore, the proportion of PDAC patients
carrying ATRX mutations that were female was 0.68. The
difference in proportions is significant, c2(1, N ¼ 729) ¼
41.633; P < .00001 (Figure 11B), suggesting ATRX muta-
tions are related to the sex of the patient.

Most ATRX mutations in both sexes are found in non-
coding regions, and the impact on expression is unknown.
However, 8 patients harbor ATRX mutations with a pre-
dicted impact on protein function. All but one of these
mutations occur in female patients, suggesting a sex-specific
Figure 3. (See previous page). Loss of ATRX sensitizes a
cessation of pancreatic injury. (A) H&E staining of saline or cer
(AtrxflD18) mice. CIP-treated Mist1creERT/þ mice show vacuolatio
treated Mist1creERT/þAtrxflD18 mice demonstrated increased dam
CIP-treated Mist1creERT/þ mice. Magnification bar ¼ 50 mm. (B
tissue indicating fibrosis. Mist1creERT/þAtrxflD18 mice exhibit incr
Mist1creERT/þAtrxflD18 mice. Magnification bar ¼ 100 mm. (C) Qu
(WT) mice treated with saline (n ¼ 4 female or 3 male) or cerulei
mice treated with saline (n ¼ 5 female or 3 male) or cerulein (n ¼
and female mice as red symbols. Data were assessed using 2
means ± standard error. When not considering sex (upper graph
the mouse is considered (lower graph), female CIP-treated Mist1
(*P < .05 vs all male mouse groups; **P < .01 vs female Mist
Mist1creERT/þ CIP-treated groups). Individual animals are denote
immunofluorescent images of F4/80 accumulation in CIP-tre
(repeated 3 times). Arrows indicate macrophages. Sections we
susceptibility in the human patient population. Pancreatic
neuroendocrine and glioblastoma patient populations show
46% and 42% of the identified ATRX mutations are in
female populations. Conversely, 60% of the ATRX mutations
found in the pediatric brain tumor population occur in
female patients. However, c2 analysis indicates the pro-
portions of ATRX mutations are independent of sex
(Figure 11C and data not shown). Interestingly, mutations
in DAXX, the partner for ATRX in depositing H3.3 variant
histones into chromatin,11,12 are rare in PDAC and show no
sex bias. Other common mutations linked to PDAC, including
P16/CDNK2 (Figure 11A) and SMAD4 (data not shown),
showed no sex bias.

Discussion
Pancreatic ductal adenocarcinoma is currently the third

leading cause of cancer-related deaths in North America
(www.pancan.org). Five-year survival rates have increased
only marginally in the last 30 years because of late stage of
diagnosis and insensitivity to conventional chemothera-
peutics. Therefore, detecting factors that increase sensitivity
of pancreatic tissue to the oncogenic properties of mutated
KRAS is important in identifying alternative therapeutic and
diagnostic options. In this study, we have shown that acinar-
specific loss of ATRX, a chromatin remodelling protein,
affects the tissue’s response to injury and constitutive
mutant KRAS activity. Using a novel mouse line that allows
for acinar-specific ablation of Atrx, we show loss of ATRX
increased the sensitivity for pancreatic injury. In addition,
we showed loss of Atrx dramatically enhanced the ability of
oncogenic KRAS to promote precancerous lesions in the
pancreas. Importantly, these effects were observed in a sex-
specific fashion, with only female mice displaying sensitivity
to loss of ATRX. Our results also suggest that loss of ATRX
may reduce the sensitivity to oncogenic KRAS in male mice.
This is evidence of a sex-specific susceptibility factor and
suggests stratification of PDAC based on their molecular
profile may identify new targets for therapy and diagnosis.

Although we have not defined a role for ATRX in normal
acinar cell physiology, it appears ATRX is dispensable for
maintaining the acinar cell phenotype in the adult. This is
consistent with previous studies that identified roles for
ATRX only in mitotically active tissue, where loss of ATRX
cinar tissue to recurrent pancreatic injury 3 days after
ulein (CIP) treatedMist1creERT/þ (WT) andMist1creERT/þAtrxflD18

n and intra-acinar edema relative to saline-treated mice. CIP-
age (black arrows) and putative ADM (white arrows) relative to
) Trichrome stain of Mist1creERT/þ and Mist1creERT/þAtrxflD18

eased fibrosis (black arrow) and to a greater extent in female
antification of fibrosis in pancreatic tissue from Mist1creERT/þ

n (n ¼ 4 female or 5 male) and Mist1creERT/þAtrxflD18 (AtrxflD18)
5 female and male). Male mice are denoted as black symbols
-way ANOVA with Tukey post hoc test. Error bars represent
), no significant differences exist between groups. When sex of
creERT/þAtrxflD18 mice are significantly different than all groups
1creERT/þ and Mist1creERT/þAtrxflD18 saline-treated and female
d with black (male) or red (female) markers. (D) Representative
ated female Mist1creERT/þ and Mist1creERT/þAtrxflD18 tissue
re counterstained with DAPI. Magnification bar ¼ 70 mm.
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Table 2.Morphometric Analysis of Pancreatic Tissue After Recurrent Pancreatic Damage

Male Female

Mist1creERT/þ (5) Mist1creERT/þAtrxflD18(5) Mist1creERT/þ (4) Mist1creERT/þAtrxflD18 (5)

Fibrosis 0 ± 0 0 ± 0 0 ± 0 1.4 ± 0.51

Inflammation 0.2 ± 0.20 1.4 ± 0.25 0.75 ± 0.25 2.4 ± 0.40

ADM 0 ± 0 0.6 ± 0.25 0 ± 0 1.2 ± 0.37

Total 0.2 ± 0.2 2.0 ± 0.45 0.75 ± 0.25 5.0 ± 1.1a

NOTE. (#) indicates n value; see methodology for scoring. Histopathologic assessment of pancreatic damage, as indicated by
3 factors: fibrosis, inflammation, and presence of ADM. Scores are represented on a grading scale from 0 to 4. Superscript
letter “a” indicates groups that are statistically different (P < .01). Data were assessed using 2-way ANOVA and Tukey post
hoc test.
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maintains genomic stability and regulates cell cycle pro-
cesses including proper chromosome segregation during
mitosis.14,27 We did observe small, yet significant increases
in acinar cell apoptosis, dsDNA damage, and proliferation in
Mist1creERT/þAtrxflD18 mice, suggesting during a longer
period of time (>2 months), the absence of ATRX may lead
to more overt damage. Acinar cell division in the adult
rodent pancreas is <2%,30 which is similar to the observed
rates of apoptosis and dsDNA damage. However, targeted
ablation of other factors, including Xbp131 and Pdx1,32

results in rapid loss of acinar tissue, so acinar cell division
is clearly not a prerequisite for development of overt
pancreatic pathologies. Mild damage in acinar tissue with
ATRX loss suggested acinar cells may be sensitive to other
factors known to promote pancreatic pathologies.

When exposed to recurrent cerulein treatment, only
Mist1creERT/þAtrxflD18 mice showed fibrosis, inflammatory
cell infiltration, and regions of ADM, with the effects more
dramatic in female mice. It is unclear whether loss of ATRX
leads to increased damage or if regeneration is impaired in
Mist1creERT/þAtrxflD18 mice. Unpublished work from our
laboratory using an acute pancreatitis regimen indicated
similar amounts of damage in control and Mist1creERT/þ

AtrxflD18 mice immediately after injury, suggesting loss of
ATRX impairs the regenerative process after injury, and is
consistent with studies in which other chromatin remodel-
ling proteins (EZH233 and BMI110) are required for proper
pancreatic regeneration. It is possible that defects from Atrx
loss become more widespread once injury is induced, and
increased DNA damage and/or replicative defects provide a
barrier to acinar tissue regeneration. However, we found no
differences in apoptosis and proliferation in cerulein-treated
mice, suggesting these are not contributing factors through
which ATRX loss promotes damage.

The combination of Atrx deletion with oncogenic KRAS
activation produced extensive fibrosis and inflammation,
pancreatic damage indicative of chronic pancreatitis, as well
as PanIN lesions up to grade 2. In this instance, damage was
exclusive to female mice. Consistent with previous studies,34

we observed minimal fibrosis and PanIN lesions in KRAS
mice that indicate oncogenic KRAS activation in adult mice
required another stimulus, such as chronic pancreatitis, to
produce invasive PDAC. The pancreatic injury observed in
the female MKA mice suggests that chronic pancreatitis
occurs in these mice, and the inflammation observed may
contribute to increased susceptibility to active KRAS. Loss of
function mutations in ATRX have been identified in other
cancer types, most notably those involving up-regulation
of the alternative lengthening of telomeres pathway.13,35

Mutations in ATRX or binding partner DAXX are often
observed in pancreatic neuroendocrine tumors and glio-
blastomas, but neither cancer shows a gender preference
with or without ATRX mutation. Studies examining PDAC
tumors confirmed an absence of alternative lengthening of
telomeres in every case,36 and PDAC is typically character-
ized by telomere attrition.37 Therefore, we suggest that
ATRX is affecting an alternative pathway in PDAC, possibly
in a DAXX-independent manner. ATRX interacts with
enhancer of zeste homologue 2 (EZH2), a member of poly-
comb repressor complex 2, leading to altered gene expres-
sion,38 and loss of EZH2 also increases sensitivity to
oncogenic KRAS.33

The incidence of human PDAC between sexes is rela-
tively equal, with approximately the same number of cases
occurring in men and women (Canadian Cancer Statistics,
2016). Assessment of International Cancer Genomic Con-
sortium database revealed ATRX single nucleotide poly-
morphisms in almost 20% of PDAC cases (145/729),
although most were in non-coding regions of the gene.
However, whether in the coding or non-coding regions,
ATRX mutations had a higher than expected frequency in
female patients, even when taking into consideration that it
is an X-linked gene. Therefore, it is possible that ATRX loss
defines a unique subtype of PDAC, in which female patients
are more susceptible, or that loss of ATRX function in male
patients does not allow progression through to a PDAC
phenotype. Although we have observed decreased acinar
cell sensitivity to oncogenic KRAS in male mice, female MKA
mice show significantly increased progression to PanIN1
and PanIN2 lesions, and the mechanisms underlying the
extensive pancreatic damage specifically in female MKA
mice are unclear. It is possible that loss of ATRX enhances
KRAS activity and leads to altered hormonal signalling.
Sex hormone receptors, including estrogen receptors, play a
role in the progression of other cancers such as colorectal
cancer.39 However, the Atrx gene is located on the X



Figure 4.Mist1creERT/DAtrxflD18 pancre-
atic tissue shows increased apoptosis
after recurrent CIP treatment. (A) Acinar
cell–specific cleaved caspase-3
comparing Mist1creERT/þ (WT) and Mis-
t1creERT/þAtrxflD18 (AtrxflD18) pancreatic
tissue after saline (SAL) or cerulein (CIP)
treatment. Quantification in pancreatic
tissue from Mist1creERT/þ (WT) mice
treated with saline (n¼ 4 female or 3 male)
or cerulein (n ¼ 4 female or 5 male) and
Mist1creERT/þAtrxflD18 (AtrxflD18) mice
treated with saline (n¼ 5 female or 4 male)
or cerulein (n ¼ 5 female and male). Data
were assessed using 2-way ANOVA with
Tukey post hoc test. Error bars represent
means ± standard error. (B) Immunohis-
tochemistry for cleaved caspase-3 in male
and female Mist1creERT/þ (WT) or Mis-
t1creERT/þAtrxflD18 pancreatic tissue 3 days
after cessation of cerulein treatment. Ar-
rows indicate apoptotic cells. Magnifica-
tion bar ¼ 50 mm.
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Figure 5.Mist1creERT/
DAtrxflD18 pancreatic tis-
sue shows reduced
regeneration after recur-
rent CIP treatment. Tis-
sue was examined 3 days
after cessation of recurrent
CIP treatment. (A) Western
blot analysis for CPA,
amylase, SOX9, and total
ERK1/2 (tERK1/2; loading
control). Increased accu-
mulation of digestive en-
zymes was observed
specifically in Mist1creERT/þ

(WT) mice, whereas Mis-
t1creERT/þAtrxflD18

(AtrxflD18) mice did not
demonstrate similar accu-
mulation. (B) Serum
amylase levels in mice (n ¼
3–4 for each group). Data
were assessed by using 2-
way ANOVA with Tukey
post hoc test. Bars repre-
sent mean ± standard er-
ror. No significant
difference in body weight
or amylase levels was
observed between geno-
types. (C) Immunohisto-
chemistry for CPA in
Mist1creERT/þ or Mis-
t1creERT/þAtrxflD18 mice.
CPA accumulation was
decreased in female Mis-
t1creERT/þAtrxflD18 mice
(acinus is indicated by
dotted line). (D) Represen-
tative immunofluores-
cence for SOX9 (green)
expression was increased
in male Mist1creERT/
þAtrxflD18 and female Mis-
t1creERT/þAtrxflD18 tissue
(white arrows). Magnifica-
tion bars ¼ 50 mm. (E)
Higher magnification im-
ages show SOX9 expres-
sion in duct, putative ADM
(white arrows), and acinar
cell (yellow arrowheads).
Sections were co-stained
for Ki-67 (red arrowheads)
and counterstained with
DAPI.
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chromosome and is a target of X inactivation. Therefore, it
would be expected that female mice heterozygous (AtrxflD18/x)
for the mutant Atrx allele would also show similar effects
because approximately half of the acinar cells lose ATRX
expression. Immunohistochemistry for ATRX confirmed that
at least a portion of acinar cells in heterozygous AtrxflD18/x
mice did lose ATRX expression (data not shown), but these
mice did not demonstrate increased damage or susceptibility
to oncogenic KRAS. These results suggest complete loss of
ATRX is required for enhanced KRAS activity and pancreatic
damage to occur in female mice. However, such a model also
does not account for decreased sensitivity in male MKA mice.



Figure 6. Induction of oncogenic KRAS with Atrx deletion. (A) Schematic of Atrx-deficient mouse model with oncogenic
KRAS activation. (B) Experimental timeline for tamoxifen gavage in congenic Mist1creERT/þ, Mist1creERT/þAtrxflD18, Mist1creERT/
þKrasLSL-G12D/þ, and MKA mice. Names used for each line within the figures are depicted in bold. (C) Immunohistochemistry
for ATRX in acinar (black arrow) and duct (red arrow) cells of Mist1creERT/þ and Mist1creERT/þAtrxflD18 mice, ATRX expression is
limited to islet (open arrow; delineated by dotted line) and duct cells (red arrow). (D) Change in body weight (%) of mice after
Atrx deletion ± oncogenic KRAS activation. Mouse genotypes include Mist1creERT/þ (WT; n ¼ 13), Mist1creERT/þAtrxflD18

(AtrxflD18; n ¼ 12), Mist1creERT/þKrasLSL-G12D/þ (KrasLSL-G12D/þ; n ¼ 17), and MKA (n ¼ 16). Points are represented as mean
weight ± standard error. (E) Serum amylase levels in WT (n ¼ 7 male or 3 female), AtrxflD18 (n ¼ 7 male or 5 female), KrasLSL-
G12D/þ (n ¼ 6 male or 5 female), and MKA (n ¼ 8 male or 6 female) mice 60 days after Atrx deletion ± oncogenic KRAS
activation. Data were assessed using 2-way ANOVA with Tukey post hoc test. Bars represent mean ± standard error.
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Sex-specific mechanisms could also be explained by a
difference in inflammatory response. It is possible that
female AtrxflD18/ flD18 mice are more susceptible to factors
promoting inflammation. During recurrent pancreatic
injury, AtrxflD18/ flD18 mice showed increased inflammation
in comparison with male counterparts, resulting in higher
levels of damage. In combination with oncogenic KRAS,
increased inflammation in AtrxflD18/ flD18 mice may amplify
KRAS activity and activation of downstream pathways,
including MAPK and PI3K-PDK1-Akt signaling, leading to
increased cell survival and proliferation. Accordingly,
increased KRASG12D activity by inflammatory cytokines
(nuclear factor kappa B, interleukin 6) has been demon-
strated previously.40,41 The presence of an inflammatory
response in female AtrxflD18/ flD18 mice, which is not
observed in male AtrxflD18/y mice, could lead to increased
damage.

It is also possible that sex-specific differences exist
regarding the function of SOX9. Previous work suggests
SOX9 is required for initiation of ADM,4 and we show



Figure 7. Gross morphology does not reveal significant differences on dissection. Mist1creERT/þ (WT), Mist1creERT/
þAtrxflD18 (AtrxflD18), Mist1creERT/þKrasLSL-G12D/þ (KrasLSL-G12D/þ), or MKA mice. Although female MKA mice may show some
edema, the only easily identified difference is splenomegaly (*), which consistently appeared inMist1creERT/þKrasLSL-G12D/þ and
MKA mice.
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increased SOX9 accumulation in female MKA acinar cells
surrounding damage. Increased susceptibility in female
MKA mice could include sex-specific hormonal or inflam-
matory pathways that provoke increased SOX9 expression.
As mentioned, female AtrxflD18/ flD18 mice have an ampli-
fied inflammatory response, and inflammatory signaling
pathways can influence SOX9 expression during develop-
ment.42 Alternatively, hormonal factors could play a role in
sex-specific Sox9 regulation. Recently, up-regulation of
estrogen receptor a-receptor activity in breast cancer cells
has been associated with increased SOX9 expression,
although this study occurs in the context of estrogen
deprivation.43

It would be interesting to observe the long-term effects
of ATRX deletion on oncogenic KRAS-mediated PDAC for-
mation. Because of the prevalence of tumors developing in
the oral mucosa, we were forced to kill MKA mice before
overt PDAC development. These tumors likely arise because
of the expression of Mist1creERT in other tissues, and we
are currently generating AtrxflD18/ flD18 mice with a
pancreas-specific inducible cre-recombinase, which will
allow for longer-term analysis. It is possible that having only
a single copy of Mist1 contributes to the Mist1creERT/þ

AtrxflD18 and MKA phenotypes. Although previous studies44

and unpublished work from our laboratory demonstrated
no difference in the phenotype between mice heterozygous
or wild-type (WT) for MIST1 expression, using a different
cre-recombinase (such as Ptf1acreERT) would rule out any
contribution of Mist1 haploinsufficiency to the results
observed in this study.

In summary, we identified that loss of ATRX enhanced
pancreatic injury and susceptibility to KRAS-mediated
pancreatic damage. Potential gender-specific factors within
AtrxflD18/ flD18 mice (including hormonal factors or increased
inflammation) provide an additional driving factor for KRAS
activity and pancreatic damage, leading to a female-specific
phenotype.
Materials and Methods
Animal Generation and Cre Induction

Mouse experiments were approved by the Animal Care
and Use Committee at Western University (Protocol #2017-
001). All mice used in this study were maintained in a C57Bl6
background. Mice expressing creERT from the Mist1 locus
(Mist1creERT/þ)5 were crossed with mice harboring an Atrx
allele with exon 18 flanked by loxP sites,23 producing
male (Mist1creERT/þAtrxflD18/y) and female (Mist1creERT/þ

AtrxflD18/fl D18) mice, collectively referred to as Mist1creERT/þ

AtrxflD18. Mist1creERT/þAtrxflD18 mice were crossed to mice
containing an inducible oncogenic KRAS (loxP-STOP-loxP
(LSL)-KRASG12D)45 to produce Mist1creERT/þKrasLSL-G12D/þ

AtrxflD18 mice (referred to as MKA). Furthermore, female
mice containing one (Mist1creERT/þAtrxflD18/x) or two (Mis-
t1creERT/þAtrxx/x) copies of the Atrx allele showed no obvious
phenotypic differences and were combined as a single
Mist1creERT/þ control group. Female mice expressing
KRASG12D that were heterozygous (Mist1creERT/þKrasLSL-G12D/þ

AtrxflD18/x) or homozygous for Atrx (Mist1creERT/þKrasLSL-G12D/þ

Atrxx/x) also showed no obvious morphologic differences
and were collectively referred to as Mist1creERT/þ

KrasLSL-G12D/þ mice.
Tamoxifen (Sigma-Aldrich, St Louis, MO; cat. #T5648)

was administered through oral gavage (2 mg/mouse) 3
times over 5 days. This resulted in >95% recombination in
acinar cells and no recombination in duct cells.24 Mice were
monitored for 60 days from first tamoxifen gavage, and
body weight was measured weekly.
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Cerulein Induced Pancreatitis
To induce recurrent pancreatic injury, control

(Mist1creERT/þ) and Mist1creERT/þAtrxflD18 mice were given
intraperitoneal injections of saline or cerulein (75 mg/kg
body weight; Sigma-Aldrich; cat. #C9026) twice daily for
11 days, followed by a 3-day recovery period. Mice were
weighed daily throughout the injury protocol. Mice
were killed and processed for histologic, molecular,
biochemical, and blood serum analysis.46 Serum amylase
was quantified by using Phadebas tablets (Magle Life Sci-
ences, Lund, Sweden; cat. #1302) following manufacturer’s
instructions.
Histology, Immunohistochemistry, and
Immunofluorescent Analysis

The head of the pancreas was used for paraffin sections,
and cryostat sections were obtained from the middle
portion of pancreas. Tissue was washed 2 times in
phosphate-buffered saline and then dehydrated through a
series of alcohol washes for embedding into paraffin.
Paraffin sections (5 mm) were stained by using standard
H&E, Alcian blue (Mucin Stain; Abcam Inc, Cambridge, MA;
cat. #ab150662) or Masson’s trichrome stain (Abcam Inc;
cat. #ab150686) protocols. Sections were imaged by using
the Aperio CS2 Digital Scanner and Aperio ImageScope
software (Leica Biosystems Imaging Inc, San Diego, CA).
Total tissue area was quantified by using the Fiji software,47

and area of damage was quantified as a percentage of total
area. Levels of pancreatic damage were assessed by using a
grading scale based on 3 factors: fibrosis, inflammation, and
presence of acinar to ductal metaplasia. Tissue sections
were scored by multiple individuals blinded to mouse
genotypes on a scale from 0 to 4. Descriptions of each score
can be found in Table 1 along with a description of scoring
PanIN lesions.

For immunohistochemical analysis, paraffin tissue sec-
tions were stained by using the ABC staining system (Santa
Cruz Biotechnology Inc, Dallas, TX) or the VectaStain ABC
HRP kit with ImmPACT DAB Peroxidase (HRP) Substrate
(Vector Laboratories, Brockville, ON, Canada; cat. #SK-4105)
according to kit instructions. Cleaved caspase-3 (rabbit
1:100; Cell Signaling Technology, Danvers, MA; cat.
#966455) staining was completed by using the Ventana
Discovery Ultra XT autostainer (Ventana Medical Systems
Inc, Tucson, AZ). Primary antibodies used are specific to
ATRX (rabbit; diluted 1:100 in 1.5% mouse blocking serum
in phosphate-buffered saline; Santa Cruz Biotechnology Inc;
cat. #sc15408), PDX1 (rabbit; 1:1000; Abcam Inc; cat.
#ab47267), Ki67 (rabbit 1:500; Abcam Inc; cat. #ab15580).
For immunofluorescence, cryostat sections were processed
Figure 8. Loss of ATRX enhances KRASG12D
’s ability to

promote pre-cancerous lesions in female mice. (A) H&E
images of pancreatic tissue from male and female Mis-
t1creERT/þ (WT), Mist1creERT/þAtrxflD18 (AtrxflD18), Mist1creERT/
þKrasLSL-G12D/þ (KrasLSL-G12D/þ), and MKA mice 60 days after
tamoxifen treatment. Arrows indicate focal ADM or PanIN
lesions. Dotted white line delineates significant lesion area
from acinar tissue. Islets are indicated by I. Magnification
bar ¼ 200 mm. (B) Average percentage of lobules containing
at least one instance of ADM, PanIN1, or PanIN2 in KrasLSL-
G12D/þ (n ¼ 7 male or 10 female) and MKA (n ¼ 10 male or 6
female) mice. Data were assessed by using 2-way ANOVA
with Tukey post hoc test. Representative examples of ADM,
PanIN1, and PanIN2 lesions from female MKA mice. Magni-
fication bars ¼ 50 mm.



Figure 9. Histology of pancreatic tissue after Atrx deletion. Representative (A) trichrome or (B) Alcian blue images of
pancreatic tissue from male and female Mist1creERT/þ (WT), Mist1creERT/þAtrxflD18 (AtrxflD18), Mist1creERT/þKrasLSL-G12D/þ

(KrasLSL-G12D/þ), and MKA mice 60 days after tamoxifen treatment. Increased tissue fibrosis was routinely observed in MKA
females (arrows). Magnification bar ¼ 200 mm. Increased fibrosis (open arrow) and duct metaplasia are observed in female
MKA tissue. Quantification of (C) damaged area as percentage of total pancreatic area based on appearance of PanINs or
fibrosis, or (D) number of ADM and PanINs (lesions) observed within Mist1creERT/þ (WT; n ¼ 8 male or 5 female), Mist1creERT/
þAtrxflD18 (AtrxflD18; n ¼ 8 male or 5 female), Mist1creERT/þKrasLSL-G12D/þ (KrasLSL-G12D/þ; n ¼ 7 male or 10 female), and MKA
(n ¼ 10 male or 6 female) mice 60 days after tamoxifen treatment. Number of ADM and PanINs (lesions) was significantly
increased inMKA females compared with all other groups except maleMist1creERT/þKrasLSL-G12D/þ (KrasLSL-G12D/þ) mice. Data
were assessed by using 2-way ANOVA with Tukey post hoc test. Bars represent mean ± standard error; *P < .05.

2019 Female Susceptibility to KRASG12D in ATRX-Null Mice 107



Table 3.Morphometric Analysis of Pancreatic Tissue 60 Days After Activation of KRASG12D and Loss of Atrx

Mist1creERT/þ Mist1creERT/þAtrxflD18 Mist1creERT/þKrasLSL-G12D/þ MKA

Male (8) Female (5) Male (8) Female (5) Male (7) Female (10) Male (10) Female (6)

Fibrosis 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1 ± 0.66 0.7 ± 0.47 0 ± 0 1.83 ± 0.48

Inflammation 0 ± 0 0 ± 0 0.14 ± 0.14 0.33 ± 0.21 1 ± 0.54 1 ± 0.52 0.2 ± 0.13 2.17 ± 0.70

ADM 0 ± 0 0.2 ± 0.2 0 ± 0 0 ± 0 1.57 ± 0.65 1.5 ± 0.45 0.4 ± 0.16 3 ± 0.45

Total 0 ± 0a 0.2 ± 0.2a 0.14 ± 0.14a 0.33 ± 0.21a 3.57 ± 1.8a,b 3.2 ± 1.4a,b 0.6 ± 0.27a 7 ± 1.57b

NOTE. (#) indicates n value; see methodology for scoring. Histopathologic assessment of pancreatic damage, as indicated by
3 factors: fibrosis, inflammation, and presence of ADM. Scores are represented on a grading scale from 0 to 4. Superscript
letters “a” and “b” indicate groups that are statistically different (P < .01). Data were assessed using 2-way ANOVA and Tukey
post hoc test.
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as previously described.46 Primary antibodies used were
specific to ATRX (rabbit; diluted 1:100 in blocking solution;
Santa Cruz Biotechnology Inc), MIST1 (rabbit; 1:500),48

b-catenin (mouse; 1:500; BD Biosciences, Mississauga, ON,
Canada; cat. #610153, lot#5121508), SOX9 (rabbit; 1:500;
MilliporeSigma, Etobicoke, ON, Canada; cat. #AB5535,
lot#3018860), insulin (mouse 1:500; Sigma; cat. #I2018;
lot#092K4841), or gH2AX (rabbit; 1:200; Santa Cruz
Biotechnology Inc; cat. #sc-101696, lot#12613). Secondary
antibodies used include anti-rabbit FITC (cat. #111-545-
003, lot#125266) and anti-mouse FITC (cat. #115-025-003,
lot#125278; 1:250; Jackson ImmunoResearch, West Grove,
PA). Sections were counterstained with 4’,6-diamidino-2-
phenylindole and imaged using a Leica DM5500B micro-
scope with LAS V4.4 software (Leica Microsystems Ltd,
Wetzlar, Germany).
Protein Isolation and Western Blot Analyses
Protein was isolated from the middle portion of the

pancreata and homogenized on ice using a Potter Elvehiem
Homogenizer in extraction buffer (50 mmol/L Tris [pH 7.2],
5 mmol/L MgCl2, 1 mmol/L CaCl2, 1% NP-40, 0.5 mmol/L
DTT, 0.5 mmol/L PMSF, 10 mmol/L NaF, 2 mmol/L NaVO4,
150 nmol/L aprotinin, 10 mmol/L, pepstatin, 50 mmol/L
leupeptin).46 Homogenates were sonicated for 20 seconds
on ice (level 4 Fisher Sonic Dismemberator) and centrifuged
Table 4.Classification of ADM and PanIN Lesions 60 Days Afte

Perc

Genotype Sex Normal

KRASLSL-G12D Male (7) 83.1 ± 7.8

Female (10) 60.1 ± 8.2

MKA Male (10) 81.2 ± 7.8

Female (6) 46.9 ± 11.9a

NOTE. (#) indicates n values. Data were assessed using 2-way
Figure 8B.
aDifference from all other groups (P < .05).
bDifference from male MKA mice (P < .05).
10 minutes at 4�C at 14,000g. Supernatants were taken
and frozen at –80�C until used. Isolated protein was
resolved by sodium dodecylsulfate–gel electrophoresis in
10% acrylamide gels and transferred to a polyvinylidene
difluoride membrane (Bio-Rad; cat. #162-0177) for Western
blot analyses.48 Primary antibodies were specific for total
MAPK (tERK1/2) (rabbit 1:2500 in 5% BSA-0.1%
Tween20; Cell Signaling Technology; cat. #9102, lot
#26), carboxypeptidase (CPA) (rabbit 1:1000 in 5%
NFDM; R&D Systems, Minneapolis, MN; cat. #AF2765, lot
#wo00117071), and amylase (rabbit 1:1000 in 5% NFDM;
Abcam; cat. #ab21156). After overnight incubation, blots
were incubated in secondary antibody (anti-rabbit HRP,
1:10,000; Jackson Labs, Bar Harbor, ME; cat. #111-035-
144) diluted in 5% NFDM for 1 hour at room temperature.
Blots were developed by using Clarity Western blot ECL
kit (Biorad; cat. #1705061) and visualized by using the
VersaDoc system with Quantity One 1-D analysis software
(Bio-Rad).
TUNEL Assay
To assess apoptosis, cryostat sections were processed

using the In Situ Cell Death detection kit (Roche, Laval, QC,
Canada; cat. #11684795910) per manufacturer’s directions.
Sections were counterstained with DAPI. The number of
TUNEL-positive cells was quantified using 7 random fields
r Activation of KRASG12D and Loss of Atrx

ent of lobules determined by highest lesion grade

ADM PanIN1 PanIN2

10.8 ± 4.2 4.9 ± 3.6 1.3 ± 1.3

33.3 ± 6.3 6.5 ± 3.5 0 ± 0

18.8 ± 7.8 0 ± 0 0 ± 0

25.2 ± 5.7 16.2 ± 8.3b 11.7 ± 6.3a

ANOVA and Tukey post hoc test. These data are presented in



Figure 10. PanIN lesions in Mist1creERT/DAtrxflD18 mice are derived from ATRX– acinar cells undergoing ADM. (A)
Immunofluorescent images for SOX9 in male and female Mist1creERT/þ (WT), Mist1creERT/þAtrxflD18 (AtrxflD18), Mist1creERT/
þKrasLSL-G12D/þ (KrasLSL-G12D/þ), andMKAmice 60 days after tamoxifen treatment. Insets show nuclear localization of SOX9 in
putative ADM in MKA mice. (B) Co-immunofluorescence of putative ADM in female MKA pancreatic tissue shows SOX9
nuclear accumulation in proliferating cells based on Ki67 accumulation (red). White arrows indicate cells expressing Ki67 and
SOX9. Sections were counterstained for DAPI. Magnification bars ¼ 50 mm. (C) Quantification of Ki67þ acinar cells in Mis-
t1creERT/þ, Mist1creERT/þAtrxflD18, Mist1creERT/þKrasLSL-G12D/þ, and MKA mice. Bars represent mean ± standard error. N ¼ 3 for
each group. (D) Immunohistochemistry for ATRX in putative ADM and PanINs in male and female Mist1creERT/þKrasLSL-G12D/þ

(KrasLSL-G12D/þ) andMKAmice. ATRXþ lesions are identified inMist1creERT/þKrasLSL-G12D/þ mice (black arrow), whereas female
MKA revealed both ATRXþ (*) and ATRX– (**) cells within the PanINs. ATRXþ cells are found in ducts (D) and islets (I) of MKA
males and in interstitial fibroblasts in MKA females. (E) Quantification of lesions with at least 1 ATRXþ cell (black) or no ATRXþ
cells (gray) in Mist1creERT/þ (WT; n ¼ 3 for male and female), Mist1creERT/þAtrxflD18 (AtrxflD18; n ¼ 3 for male and female),
Mist1creERT/þKrasLSL-G12D/þ (KrasLSL-G12D/þ; n ¼ 3 for male or n ¼ 6 for female), and MKA (n ¼ 4 for male or n ¼ 3 for female)
mice. Bars represent mean % ± standard error.
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Figure 11. Mutation anal-
ysis on PDAC patients
based on data from the
International Cancer
Genome Consortium. (A)
Comparison of gender
breakdown for all PDAC
cases, or for mutations in
ATRX, known driver muta-
tions for PDAC (KRAS,
CDNK2/P16), or for DAXX.
Impact ATRX mutations
refer to those mutations
that occur with the protein
coding region and are
predicted to have a nega-
tive impact on protein
function. (B and C) Chi-
squared analyses deter-
mining if ATRX mutations
and sex are independent
variables in PDAC (B) or
pancreatic neuroendocrine
tumors (PNETs; C).
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of view from each mouse and calculated as percentage of
TUNEL-positive cells compared with DAPI counts.

Statistical Analysis
In all cases, data were analyzed for significance by using

an unpaired, two-tailed t test or 2-way analysis of variance
(ANOVA) with Tukey post hoc test. Values are depicted as
means ± standard error of the mean. Significance is
considered P < .05.
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