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The prognosis of hepatocellular carcinoma (HCC) is affected by tumoral factors and liver functions; therefore it is often difficult to
select the appropriate therapeutic methods for HCC. Recently, two global phase III trials showed that sorafenib, which is a tyrosine
kinase inhibitor, improved the prognosis of patients with advanced HCC. As a new therapeutic strategy for HCC, sorafenib is
expected to expand the indication for HCC in the future. However, it alone is insufficient for the molecular-targeted treatment of
HCC because the signaling pathway exists not only in cancer cells but also in normal cells. Recently, cancer stem cells (CSCs) have
attracted attention as a novel therapeutic target for HCC. There is now much evidence that stem cell properties such as self-renewal,
unlimited proliferation, and differentiation are highly relevant to cancer recurrence and the drug resistance of HCC. In this review,
we describe the molecular pathogenesis and the current state and future development of molecular- and CSC-therapeutic targeted
agents for HCC, citing various reports.

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common
malignant disease worldwide and the third greatest cause
of cancer-related death [1]. The etiology of HCC has been
reported to be related to a variety of diseases such as
viral hepatitis [2, 3], alcoholic hepatitis [4], nonalcoholic
fatty liver disease (NAFLD) [5, 6], and metabolic syndrome
including diabetes mellitus [7, 8]. The sequences from
chronic hepatitis and liver cirrhosis cause de novo HCC [9]
(Figure 1). HCC is considered to have increased invasiveness
with malignant transformation and metastatic potential [10,
11]. Therefore, it is difficult to select the proper management
of the disease.

The clinical therapy for HCC includes various modalities
such as liver resection [12], liver transplantation [13],
transarterial chemoembolization (TACE) [14], percutaneous
ethanol injection therapy (PEIT) [15], radiofrequency abla-
tion (RFA) [16], and chemotherapy including molecular-
targeted therapy [17]. However, the high recurrence rate is
a major concern after any treatment [18]. The reason for
the high recurrence rate of HCC could be proliferation of

epithelial cells and increased arterial vascularity [19, 20].
Furthermore, HCC cells themselves express various growth
factors such as vascular endothelial growth factor (VEGF)
[19], platelet-derived growth factor (PDGF) [20], epidermal
growth factor (EGF) [21], fibroblast growth factor (FGF)
[22], and insulin-like growth factor (IGF) [23], which induce
cell proliferation in an autocrine fashion [24]. The receptors
of these growth factors activate intracellular signals such as
the RAF/MEK/ERK pathway [25] and the PI3K/AKT/mTOR
pathway [26], which induce proliferation of both cancer and
endothelial cells (Figure 2). These growth factors, including
their intracellular molecules, are considered to be a specific
target for HCC treatment.

In clinical trials, sorafenib, which is an inhibitor of the
VEGF receptor (VEGFR) and PDGF receptor (PDGFR), has
been proven to have a survival benefit for nonresectable
HCC compared a placebo in the best supportive care (BSC)
setting [27, 28]. Phase III trials are ongoing to determine the
survival benefit in patients who receive surgery or ablation
[29]. On the other hand, the survival benefit of sorafenib
has been limited to a few of months and other pathways
need to be blocked to achieve longer survival. Side effects of
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Figure 1: The etiology of HCC has been reported to be related to a variety of diseases such as viral hepatitis, alcoholic hepatitis, nonalcoholic
fatty liver disease (NAFLD), and metabolic syndrome including diabetes mellitus. Regeneration of damaged hepatocytes reveals the activation
of stem cells. The abilities of self renewal and infinite proliferation are closely related to the development of hepatocellular carcinoma (HCC).
Stem cells in the liver are divided into several types, including oval cells, small hepatocytes, and progenitor cells. HCC cells and liver cancer
stem cells could derive from mutation of these stem cells. The origin of the stem cells could be from either mature hepatocytes or bone
marrow cells.

sorafinib therapy are obstacles to continuation of the therapy
because normal cells also express VEGFR and PDGFR, and
sorafenib severely damages both normal and cancer cells. The
development of anticancer drugs must focus on a specific
target that is restricted to the cancer cells.

Cancer stem cells have been shown to be a target for
cancer-specific therapy recently. The abilities of self-renewal
and infinite proliferation are closely related to the nature
of HCC development [30, 31]. Stem cells in the liver are
divided into several cell types, including oval cells [32], small
hepatocytes [33], and progenitor cells [34] (Figure 1). Liver
cancer stem cells and HCC cells could derive from mutation
of these stem cells. The origin of the stem cells could
be either from mature hepatocytes or from bone marrow
cells [35] (Figure 1). Thus, specific stem cell-based therapy
could be another strategy to overcome the high recurrence
rate of HCC [36]. We describe the molecular pathogenesis,
molecular therapy, and stem cell-targeted therapy for HCC
treatment in this review.

2. Role of Growth Factors and
Angiogenesis in HCC

A specific pathological feature of HCC is high vascularity
of the tumor. It is necessary to increase vascularity for
cancer cell proliferation. VEGF, PDGF, EGF, FGF, and IGF,
growth factors that facilitate high vascularity and cancer cell
proliferation, are expressed not only in cancer cells but also
in other surrounding cells. The high expression of the growth

factors is also associated with tumor invasion and portal
thrombosis [19, 20, 22].

Among the growth factors, high expression of EGF is
related to differentiation and invasion by the cancer cells
[21]. On the other hand, PDGF is related to metastatic
behavior of HCC cells [20]. The proliferation of endothelial
cells is important for metastasis and invasion by cancer
cells. Therefore, growth factors play an important role in
proliferation of cancer cells not only in an autocrine fashion
but also in a paracrine fashion through surrounding cells
[24]. In addition, antivascular factors decrease in the serum
and tissue of HCC patients [37]. These reports indicated that
specific growth factors can be targets for HCC treatment.

Based on the high vascularity of HCC, endothelial cells
could be a target for HCC treatment. This approach could
be promising because endothelial cells have normal cell
physiology with stable genetic regulation, which can be easily
manipulated by molecular target therapy.

3. Role of RAF/MEK/ERK Signaling Pathway in
Developing HCC

Tyrosine kinase type receptors, such as VEGFR, PDGFR,
EGFR, FGFR, and IGFR, activate intracellular RAS in the
RAF/MEK/ERK pathway [19–23]. Subsequently, AP-1 family
members such as c-JUN and c-FOS activate expression of
various genes that induce cell proliferation and vasculoge-
nesis [38] (Figure 2). The activation of the RAF/MEK/ERK
pathway is related to the disease progression of HCC [39] and
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Figure 2: The RAF/MEK/ERK and the PI3K/AKT/mTOR signaling pathways are shown. Proangiogenic and proliferative growth factors
activate the RAF/MEK/ERK pathway. The small GTPase RAS and the serine/threonine kinase RAF are the key molecular signal regulators.
Intermediate signaling is regulated by MEK, which is responsible for phosphorylating and activating the final downstream signaling ERK
molecules. ERK regulates cellular activity, indirect inducers of gene expression, and transcription factors in the AP-1 family such as c-JUN and
c-FOS and cell cycle-related kinases. Binding of these growth factors to their receptors also activates PI3K, which subsequently produces the
lipid second messenger, and in turn activates serine/threonine kinase AKT. Activated AKT also phosphorylates several cytoplasmic proteins,
most notably mTOR. The activation of mTOR increases cellular proliferation, and inactivation of BAD decreases apoptosis and increases
cell survival. This pathway is negatively regulated by the phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which targets
the lipid products of PI3K for dephosphorylation.

HBV-related HCC development [40]. Furthermore, HCV
core protein activates RAF and is considered to play a role
in the development of HCC [41].

RAS and RAF play important roles in which intracellular
signals activate expression of various genes [42] (Figure 2).
RAS activates RAF, which induces activation of MEK [43].
MEK activates ERK and its phosphorylation [43]. ERK regu-
lates more than one hundred intracellular substrates directly
and gene expression indirectly as cell kinase to activate tran-
scription factors and cell cycle regulators [44, 45]. Activation
of ERK is closely related to cancer cell proliferation and, thus,
inhibition of ERK could have an anticancer effect [46].

4. Role of PI3K/AKT/mTOR Signaling Pathway
in Developing HCC

The phosphatidylinositol-3 kinase (PI3K) pathway plays
an important role in the proliferation and survival of
cancer cells in various solid tumors, including HCC [26]
(Figure 2). PI3K activates AKT, which is a lipid second

messenger [42]. Subsequently, AKT phosphorylates various
intracellular proteins, including mTOR [42]. The activation
of mTOR induces cell proliferation and inactivates BAD
[47]. Inactivation of BAD is important for cancer cells to
survive by regulating apoptosis [47]. Inactivation of AKT
has been shown to improve the antitumor effect of sorafenib
in an animal model and thus it could have potential use
for HCC treatment [48]. The PI3K pathway is regulated by
phosphatase and tensin homolog deleted on chromosome 10
(PTEN) negatively and the expression of PTEN is suppressed
in half of HCC cells clinically [49] (Figure 2). In fact, PTEN
expression is suppressed by HBx protein in HBV hepatitis
patients [23], and downregulation of PTEN is associated
with tumor grade progression, tumor stage, and poor overall
prognosis [49].

5. Molecular-Targeting Clinical Therapies and
Trials for HCC

Sorafenib is an inhibitor of RAF that is activated by VEGF
and PDGF [50–52]. It has been tested in phase III clinical
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Table 2: Ongoing clinical trials using molecular-targeted agents for hepatocellular carcinoma.

Acronym Phase Active arm Control arm Design of the clinical trials

STORM III Sorafenib Placebo Adjuvant therapy after resection or ablation

SILIUS III Sorafenib + TACI Sorafenib Combination therapy with hepatic arterial infusion chemotherapy (TACI)

SPACE II Sorafenib + TACE Placebo + TACE Combination therapy with transarterial chemoembolization (TACE)

TACTICS II Sorafenib + TACE TACE alone Combination therapy with transarterial chemoembolization (TACE)

BRISK-PS III Brivanib Placebo Second-line therapy in sorafenib-resistant HCC

BRISK-TA III Brivanib + TACE Placebo + TACE Combination therapy with transarterial chemoembolization (TACE)

BRISK-FL III Brivanib Sorafenib First-line clinical trial for brivanib versus sorafenib

Table 3: Markers for cancer stem cell of HCC in recent reports.

Markers References

CD133 [61]

CD90 [62]

CD44 [62]

EPCAM [63, 64]

ABC transporters [72]

CD13 [79]

trials, such as the SHARP trial [27] and Asia-Pacific trial
[28] (Table 1). It improves overall survival in patients with
advanced HCC compared to patients administered a placebo
in the BSC setting. Other tyrosine kinase inhibitors were also
tested in clinical trials. Sunitinib is an inhibitor of VEGFR
and PDGFR [53] (Table 1). The clinical phase II trial of
sunitinib for HCC treatment showed severe grade 3 to 4
side effects [53]. Therefore, the comparative study between
sorafenib and sunitinive has ceased in April 2010.

Brivanib, erotinib, and TSU-68, which are inhibitors
of growth factor receptors, have been clinically tested for
advanced HCC patients as well. The response rates to single
doses of sorafenib [27, 28], sunitinib [53, 54], brivanib
[55], erlotinib [56], and TSU-68 [57] were 2.3–3.3%, 2.7–
2.9%, 5.0%, 9.0%, and 8.6% respectively (Table 1). Phase II
clinical trials using bevacizumab [58], a VEGFR inhibitor,
and cetuximab [59], an EGFR inhibitor, had 13% and 0%
RRs, respectively (Table 1).

Although the clinical results of single doses of these
molecular-targeted agents were not totally satisfactory, beva-
cizumab and TSU-68 achieved 2-3% complete responses
[57, 58] (Table 1). In addition, a phase II clinical trial of
combination therapy using erlotinib and bevacizumab had a
25% response rate [60] (Table 1). Therefore, combination of
these agents with appropriate management of the side effects
could improve survival of patients with advanced HCC in the
future.

Ongoing clinical trials using molecular-targeted agents
for HCC are shown in Table 2. The STORM trial is a phase
III clinical trial using a single dose of sorafenib alone for
adjuvant therapy after liver resection and ablation [29]. The
SILIUS trial is a phase III clinical trial using combina-
tion therapy with transarterial chemoinfusion (TACI) and
sorafenib for advanced HCC patients. The SPACE trial and
TACTICS trial are a phase II clinical trial using TACE and

sorafenib for advanced HCC patients. The BRISK-PS trial
is designed for second therapy using brivanib for advanced
HCC patients resistant to sorafenib. The BRISK-TA employs
adjuvant therapy using brivanib after TACE, and the BRISK-
FL trial is a comparative clinical trial using sorafenib alone
and brivanib alone. These BRISK trials are a phase III
clinical trial. The clinical results of these molecular-targeted
therapies have not all been published yet and we will need to
interpret the results carefully in the future.

6. Molecular Markers of Cancer
Stem Cells in HCC

Molecular markers of cancer stem cells are shared with either
normal stem cells or progenitor cells. CD133 [61], CD90
[62], CD44 [62], and EPCAM [63, 64] have been shown to
be markers for cancer stem cells in HCC patients (Table 3).
These biomarkers can be useful to estimate the prognosis of
HCC and they could be useful for specific targeted therapy
for cancer cells.

CD133 has been shown to be related to prognosis and
metastasis in HCC patients [65]. Tumor proliferation was
suppressed by anti-CD133 antibodies in a mouse model
[66]. NSC74859 is a specific inhibitor of signal transducer
and activator of transcription 3 (STAT3) activation and it
decreases CD133-positive cells with suppression of cancer
development [67]. In addition, CD133 cells increase in PTEN
deleted mice [68], which indicates that PTEN can play an
important role to regulate CD133-positive cancer stem cells.
These basic studies suggest that CD133 can be a molecular
target for HCC treatment.

The ATP-binding cassette (ABC) transporters are a
family of membrane transporters such as MDR1 [69],
ABCG2 [70], and ABCC2 [71]. ABC transporters protect
cells from cytotoxic agents to reduce the drug sensitivity.
A combination of chemotherapy and inhibitors of ABC
transporters could decrease not only the number of HCC
cells but also that of cancer stem cells [72] (Table 3).

CD90 is expressed in oval cells and progenitor cells and
its expression is related to tumor development [73]. CD44
is a receptor of hyaluronate expressed on the cell surface
and is often coexpressed with CD90 [62, 74]. Anti-CD44
treatment induces apoptosis in CD90-positive cells and thus
CD44 plays an important role in the survival of cancer
cells [75, 76]. EPCAM is another cell marker for progenitor
cells and the direct target of the Wnt/beta catenin pathway
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[63, 77]. The knockdown of the Wnt/beta catenin by small
interfering RNA (siRNA) of Wnt/beta catenin decreases the
number of EPCAM-positive cells with suppression of tumor
development and induces apoptosis [78]. CD13-positive cells
are also potential cancer stem cells [79] (Table 3). These
cells can be found in the peripheral areas of HCC after
TACE treatment, which is considered to be related to tumor
recurrence [80]. Furthermore, inhibitors of CD13 such as
24F can suppress the invasion and angiogenesis of HCC [81].

7. Summary

The molecular pathogenesis of HCC is important to under-
stand the mechanism of tumor development as well as the
high-recurrence behavior of HCC. Furthermore, each step
of the molecular signals could be a target to control tumor
progression. Further clinical studies using single agents
and combination therapies need to be conducted for HCC
treatment. The clinical benefits of cell-targeted therapy for
cancer stem cells are eagerly awaited.
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