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Abstract

Background

Individuals with hemiparesis following stroke often experience a decline in the paretic limb’s

anteriorly directed ground reaction force during walking (i.e., limb propulsive force). Gait

speed and walking capacity have been independently associated with paretic limb propul-

sion, quality of life, and participation in people with stroke. However, it is unclear as to the

extent that underlying limb mechanics (i.e., propulsion) play in influencing perceptions of

quality of life and participation. We therefore sought to determine the role of limb propulsion

during gait on the perception of quality of life and participation in people following stroke.

Methods

This study is a secondary analysis of individuals involved in a gait retraining randomized

control trial. Gait speed, walking capacity, limb propulsion, Stroke Impact Scale, and aver-

age daily step counts were assessed prior to and following 6 weeks of training. The pre-

training data from 40 individuals were analyzed cross-sectionally using Pearson and Spear-

man correlations, to evaluate the potential relationship between limb propulsion (ratio of

paretic limb propulsion to total propulsion) with gait speed, gait capacity, perceived quality of

life domains, and average daily step counts. Partial correlations were used to control for gait

speed. Thirty-one individuals were assessed longitudinally for the same relationships.

Results

We observed a training effect for gait speed, walking capacity, and some quality of life mea-

sures. However, after controlling for gait speed, we observed no significant (p�0.05) corre-

lations in the cross-sectional and longitudinal analyses.

Significance

After controlling for the influence of gait speed, paretic limb propulsion is not directly

related to perceived quality of life or participation. Although limb propulsion may not have a

direct effect on participant’s perceived quality of life, it appears to be an important factor to
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enhance gait performance, and therefore may be important to target in rehabilitation, when

feasible.

Introduction

Following stroke, individuals often experience persistent unilateral motor deficits (i.e., hemi-

paresis) [1, 2] into the chronic phase (> six months), resulting in reductions in walking capac-

ity and speed [3, 4] and increases in mechanical work and metabolic cost of walking [5].

Walking capacity and gait speed measures are used to document a person’s current and transi-

tory functional recovery status, community mobility and participation level, and quality of life

[3, 6, 7]. Given the relationship between gait performance and quality of life [8], it is important

to identify the biomechanical mechanisms underlying disordered gait that might contribute to

this relationship to ensure that rehabilitation is appropriately targeted.

The presence of motor deficits in the paretic limb following stroke can contribute to

deficits throughout the gait cycle (e.g., stance phase stability, limb propulsion, and swing limb

advancement). Particularly relevant to the production of forward progression during gait is a

reduction in the anteriorly directed ground reaction force (i.e., limb propulsion) [9]. In indi-

viduals post-stroke, paretic limb propulsion is positively associated with both gait speed [10]

and long-distance walking performance [11]. Additionally, paretic limb propulsion appears to

influence a person’s community mobility, measured with metrics such as daily step count [12].

Thus, limb propulsion may provide insight into the functional contribution of the affected

limb to gait, and may help elucidate whether paretic limb mechanics have recovered versus

required compensations [13–15].

Despite deficits in paretic limb propulsion during typical walking, people with stroke

exhibit a robust paretic propulsive reserve, suggesting that limb propulsion is modifiable [14].

In fact, the provision of feedback related to gait mechanics can significantly increase limb pro-

pulsion [16, 17], suggesting that it may serve as a therapeutic target for patient outcomes. How-

ever, a change in limb propulsion with no concomitant change in gait speed/capacity may not

be meaningful to people post-stroke. How hard a person pushes off the ground may not lead

to a change in mobility if there are no benefits to walking speed/capacity. Paretic limb propul-

sion is one of many impairments in people with stroke. In this study, we aimed to determine

its relative importance beyond the improvements in gait performance.

Given that limb propulsion is related to gait speed and walking capacity [10, 11] and these

outcomes are both related to quality of life and participation [3, 4, 6, 7], we sought to investi-

gate the role of limb propulsion as a potential mechanism influencing quality of life measures

for people with chronic stroke directly. We assessed the potential influence of limb propulsion

on quality-of-life measures following stroke both 1) cross-sectionally, and 2) longitudinally.

We hypothesized that paretic limb propulsion is associated with quality of life and participa-

tion after controlling for walking speed. Likewise, we hypothesized that an improvement in

limb propulsion following gait training is associated with quality of life and participation after

controlling for changes in walking speed. Knowledge of the relative importance of paretic limb

propulsion on quality-of-life and participation measures would inform the relative therapeutic

efficacy of targeting limb propulsion in the rehabilitation process. The presence of such a rela-

tionship would give merit to targeting gait speed and walking capacity through enhanced

paretic limb propulsion rather than targeting other impairments or allowing compensatory

strategies to develop.
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Materials and methods

Participants

Participants in this study were part of a motor learning randomized control trial described

elsewhere [18]. Participants were included if they experienced an ischemic or hemorrhagic

stroke more than six months prior with resulting asymmetric gait (step length asymmetry

index of> 0.537 or stance time asymmetry index of> 0.524) [14]. All included subjects had a

comfortable overground gait speed of less than 1.0 m/s, with or without an assistive device and

bracing. Participants were excluded if they were concurrently in physical therapy during the

study, obtained botulinum toxin to the lower limb within the 6 months leading up to or during

the study, had uncontrolled cardiac, respiratory, or metabolic disorders, had neurologic disor-

ders other than stroke, or had a cerebellar lesion. Participants provided informed consent as

approved by the Institutional Review Board (IRB) at University of North Carolina at Chapel

Hill (IRB # 11–1240). The trial was listed on ClinicalTrials.gov (NCT01598675).

We used the participant’s pre-test data to perform a cross-sectional analysis (Cohort 1).

Because the hypotheses did not consider the impact of a particular intervention and the pri-

mary study did not find significant differences among groups, we chose not to separate partici-

pants based on treatment groups. Rather, all participants with data who completed the first

training session are included in one group in the cross-sectional analysis (Cohort 1) and all

participants that completed the full training are included as one group in the longitudinal anal-

ysis (Cohort 2).

Data collection

We collected outcome measures related to gait speed/walking capacity and quality of life one

week prior to training (pre-test), and again one week following the final training session (post-

test). We assessed participation from the average daily step count, which is a measure of com-

munity engagement and daily activity [3, 19]. We determined the step count from a StepWatch

Activity Monitor (Modus Health, Edmonds, WA) that was worn for 4–6 days between the pre-

training assessment and the start of training, and from the end of training and the post-train-

ing assessment. Comfortable gait speed was measured as participants made three passes across

a 14-foot GaitRite pressure mat (CIR Systems, Havertown, PA). Participants were instructed

to walk at their preferred, comfortable gait speed, as if they were walking outside of the labora-

tory setting and not being monitored. We measured walking capacity using the six-minute

walk test (6MWT) in which participants were instructed to cover as much distance as possible

in six minutes. Participants walked between two tape marks placed 100 feet apart in a hallway

as the investigator measured the distance traveled with a measuring wheel. We used the Stroke

Impact Scale (SIS) as a quality-of-life measure.

Ground reaction force data from treadmill walking (Bertec Corp, Columbus, OH) were col-

lected at the first training session and during the final (18th) training session. Although these

gait training sessions lasted up to 20 minutes, only data from the first two minutes of walking

were used. This decision was made because, for two of the three groups, the treadmill belts

moved at different speeds from each other starting in minute three. Using data from only the

first two minutes ensured that participants always had a belt speed difference (between belts)

of zero. Because participants generally improved their walking speed over the 18 sessions of

training, all but two subjects in the longitudinal analysis were walking at a faster speed during

the final session compared to the initial session.

Gait cycle events (i.e., heel strike and toe off) from the first two minutes of treadmill walking

were determined using Visual3D (ver 6, C-Motion, Germantown, MD) and then exported for
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further analysis using custom Labview code (National Instruments, Austin, TX). Anterior-pos-

terior ground reaction forces were first standardized by percent bodyweight. Then, ground

reaction forces were time normalized to the percent of gait cycle to create an ensemble average

[20]. We extracted the propulsive impulse (using ‘raw’ timeframes) from both the paretic and

non-paretic limbs’ ensemble averages. Propulsive impulse was calculated as the integral of the

anteriorly directed (positive) component of the ensemble averaged time-series. Paretic propul-

sion impulse ratio was then calculated as a ratio of paretic propulsive impulse divided by the

sum of paretic and nonparetic propulsive impulses [9].

Data analysis

We performed cross-sectional and longitudinal analyses with SPSS (ver 27, IBM, Armonk,

NY). Given the known confounding influence of gait speed in limb propulsion, we performed

partial correlations, controlling for overground gait speed. For the cross-sectional analysis, we

used only the pre-training data from Cohort 1 to perform partial correlations between paretic

propulsion impulse ratio and SIS domains most reflective of gait (Activity, Mobility, Participa-

tion, Recovery) [21]. We then used pre-training data from Cohort 1 to perform partial correla-

tion between paretic propulsion impulse ratio and average daily step count.

For the longitudinal analysis, we assessed the change in each outcome measure (i.e., limb

propulsion, gait speed and 6MWT, SIS domains, average daily step counts) from pre-training

to post-training from Cohort 2 with a paired samples t-test. We then used partial correlational

analyses (controlled for change in gait speed) to assess for potential relationships between

changes in limb propulsion and changes in SIS domains and changes in average daily step

counts.

To better visualize the relationship between limb propulsion and participation, we com-

pleted a partial regression between paretic impulse ratio and average daily step count in the

pre-training data, after the model accounted for gait speed. Additionally, we assessed for a sim-

ilar relationship with the change variables (i.e., longitudinal analysis) in a similar manner.

Results

Participants

Although we had enrolled 48 subjects in the initial study, eight were excluded here from

Cohort 1 for incomplete or unusable gait data. Thirty-seven subjects completed training, but

six subjects were excluded from Cohort 2 for incomplete or unusable gait data either in the

pre-training or post-training data. Two subjects had unusable daily step count data, and were

further excluded from Cohort 1 and 2 for those analyses only. The subject’s demographics for

both Cohort 1 and 2 are found in Table 1.

Cross sectional analysis

From the pre-training (Cohort 1) data, we observed no significant relationships between

paretic impulse ratio and quality of life or participation measures when controlling for gait

speed (all p> .05, Table 2). This can be further visualized in the partial regression plot between

paretic impulse ratio residuals and average daily step count residuals, where there appears to

be no significant relationship (Fig 1).

Longitudinal analysis

Following gait training, the participants in Cohort 2 made improvements in all propulsion

measures (all p� .03, Table 3). Training also yielded a significant improvement in quality-of-
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life measures, as noted by increases in the SIS Mobility (p< .01) and Recovery (p = .02)

domains. No improvement occurred in SIS Activity (p = .06) or Participation (p = .48)

domains. Additionally, no improvement occurred in average daily step count (p = 0.51).

In the longitudinal analysis (Cohort 2), we also observed no significant relationships

between change in paretic impulse ratio and change in quality of life or participation measures,

when controlling for gait speed (all p> .05, Table 4). This is also visualized in the partial regres-

sion plot between change in paretic impulse ratio residuals and change in average daily step

count residuals, where we do not observe the presence of any significant relationship (Fig 2).

Discussion

We sought the presence of a potential relationship between limb propulsion with both quality

of life and participation measures in people following stroke, to identify a meaningful bio-

mechanical gait target during rehabilitation. Specifically, we had hypothesized that 1) paretic

limb propulsion would be associated with participation and perceived quality of life measures,

and 2) a change in paretic limb propulsion with gait training would be correlated to a change

in participation and quality of life measures. Although paretic limb propulsion is important

for walking performance (e.g., gait speed, walking capacity) [19, 22, 23], after we control for

walking performance, we failed to observe any significant relationship between limb propul-

sion and either quality of life or participation. This finding suggests that limb propulsion does

not influence perceptions of quality of life and participation beyond that arising from walking

performance. This finding was consistent in both a cross-sectional sample, and longitudinally

after a 6-week gait training intervention.

Paretic limb propulsion has an established relationship with gait speed [19, 22, 23]. Limb

propulsion can accelerate the body forward through manipulations to hip extension power

Table 2. Partial correlation of propulsion with quality-of-life (Spearman’s Rho, N = 40) and participation (Pearson’s R, N = 38) measures, controlling for comfort-

able gait speed.

SIS Activity SIS Mobility SIS Participation SIS Recovery Average Daily Step Count

Paretic Impulse Ratio (%) rho = .19 rho = -.23 rho = -.02 rho = .01 R = .02

p = .25 p = .16 p = .89 p = .96 p = .89

https://doi.org/10.1371/journal.pone.0274511.t002

Table 1. Subject demographics.

Cohort 1 (cross-sectional analysis pre-

training, N = 40)

Cohort 2 (longitudinal analysis,

N = 31)

Sex 16 F, 24 M 11 F, 20 M

Age, y 59±11 58±11

Height, cm 170±9 170±9

Weight, kg 81.3±16.5 81.7±14.2

Time since stroke, y 4.7±5.0 3.7±3.5

Assistive device 15 N, 25 Y 12 N, 19 Y

Ankle foot orthosis 16 N, 24 Y 15 N, 16 Y

Paretic limb 26 L, 14 R 18 L, 13 R

6MWT pre-training (m) 166.1±108.5 187.3±108.1

Comfortable gait speed pre-

training (m/s)

0.41±0.23 0.45±0.23

Abbreviations: N, Number; M, Male; F, Female; y, Years; cm, centimeters; kg, kilograms; N, No; Y, Yes; L, Left; R,

Right; y, Years; m, meters; m/s, meters per second

https://doi.org/10.1371/journal.pone.0274511.t001
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[24], ankle plantarflexion power [14, 25], and/or trailing limb posture [14, 25, 26]. Rehabilita-

tion approaches can either target true recovery or how to compensate for reduced limb forces

[13]. For example, someone who increases gait speed through enhanced limb propulsion can

be considered to have recovered limb function. In particular, people post-stroke may achieve

higher gait speeds via enhanced paretic limb propulsion through increased ankle plantarflexor

Table 3. Paired samples t-tests for outcome measures and propulsion measures (N = 31).

Measure Pre-testing Post-testing t Sig, p (2-tailed)

Gait Speed (m/s) 0.45 ± 0.23 0.57 ± 0.27 5.82 <0 .01

6MWT (m) 187.3 ± 108.1 223.0 ± 115.8 5.54 < 0.01

Paretic propulsive impulse (%BW�s) 1.0 ± 1.1 1.7 ± 1.1 3.68 < 0.01

Nonparetic propulsive impulse (%BW�s) 4.6 ± 2.8 3.3 ± 1.1 -2.24 0.03

Paretic Impulse Ratio (%) 19 ± 17 32 ± 18 4.88 < 0.01

SIS Activity 48.6 ± 14.0 51.7 ± 12.6 1.94 0.06

SIS Mobility 50.9 ± 14.1 60.7 ± 12.3 4.33 < 0.01

SIS Participation 38.4 ± 16.6 40.8 ± 16.6 .71 0.48

SIS Recovery 47.7 ± 17.5 53.3 ± 16.5 2.56 0.02

Average Daily Step Count (N = 30) 1663.0 ± 1230.0 1791.5 ± 1161.0 1.40 0.17

Abbreviations: BW, body weight; s, seconds

https://doi.org/10.1371/journal.pone.0274511.t003

Fig 1. Partial regression residual plot of pre-training average steps per day against paretic impulse ratio, controlling for comfortable gait speed.

Despite the two apparent outliers in the lower right quadrant, their removal does not change the results.

https://doi.org/10.1371/journal.pone.0274511.g001
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torque or trailing limb posture [10, 11, 15, 27]. In contrast, a person who uses alternative strat-

egies to increase walking speed has learned to compensate [19]. Compensations may take the

form of redistributions of mechanical work to either the contralateral limb [28–30] or to more

proximal joints on the paretic limb [31, 32]. Our findings support the idea that people post-

stroke perceive their gait performance to be more strongly related to their quality of life, rather

than the means by which they achieved that gait performance (i.e., recovery versus compensa-

tion of gait speed and walking capacity) [4, 8]. In fact, people with chronic stroke have noted

the importance of walking performance, including how far and how fast they can walk, in nav-

igating their daily lives [33].

These data suggest that, while paretic limb propulsion is important for gait and can be a tar-

get in rehabilitation, it may not be any more important than other biomechanical components

of gait. Instead, the importance to a person’s life and participating in activities appears to be

driven by walking performance, not the targeted impairment (e.g., propulsion). These data

Table 4. Partial correlation of change in propulsion with change in quality-of-life (Spearman’s Rho, N = 31) and participation (Pearson’s R, N = 30) measures, con-

trolling for change in comfortable gait speed.

ΔSIS Activity ΔSIS Mobility ΔSIS Recovery ΔSIS Participation ΔAverage Daily Step Count

ΔParetic Impulse Ratio (%) rho = .27 rho = .22 rho = -.06 rho = .20 R = .16

p = .16 p = .23 p = .78 p = .29 p = .41

https://doi.org/10.1371/journal.pone.0274511.t004

Fig 2. Partial regression residual plot of change in average steps per day against change in paretic impulse ratio, controlling for change in

comfortable gait speed. Despite the two apparent outliers in the left upper and lower quadrants, their removal does not change the results.

https://doi.org/10.1371/journal.pone.0274511.g002
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support the framework that while propulsion may be important for improving walking abili-

ties, on its own it is not important for perceptions of quality of life or participation. Rehabilita-

tion practices should be focused on gait performance through task practice [34], which may

include propulsion training for improved limb propulsion. However, therapy should not

strictly treat observed impairments without considering the overall goal of improved mobility

[34].

Limitations

There are several limitations that need to be acknowledged. First, the gait training intervention

was not designed to target limb propulsion, which may have yielded smaller propulsive

changes than otherwise expected. Therefore, the changes to limb mechanics may not have

been large enough to elicit improvements in quality of life and participation in the longitudinal

analysis. Nevertheless, we elicited similar responses in gait speed as others who have explicitly

targeted limb propulsion through gait training [35]. Additionally, all but two individuals were

walking faster at the end of training in the longitudinal analysis, which may have resulted from

improvement in walking mechanics other than paretic limb propulsion. In fact, we observed

only small improvements in outcome measures such as gait speed and paretic limb propulsion,

suggesting that we may not have elicited large enough changes to gait measures to have an

impact on quality-of-life or participation measures. We observed small but significant

improvements in gait speed, walking capacity, limb propulsion, and quality of life measures

after gait training. Despite improvements within the entire cohort, the observed changes were

often small, as only 12 (out of 31) exceeded minimal detectable changes (MDCs) for gait speed

[36]. Interestingly, there was no increase in daily step count, suggesting that despite an increase

in walking performance, participants did not use this increased function in a meaningful way.

Behavioral changes in daily activity may require additional intervention beyond gait training

and/or physical therapy. Additionally, we did not observe improvements in several SIS

domains (Participation, Activity) after gait training. Although we intentionally chose SIS

domains most closely related to gait function and step count as a metric for community and

activity participation, we acknowledge that many other factors in individuals’ daily lives could

influence these measures. Finally, we only assessed for linear relationships, however, it is possi-

ble that these data could be subjected to non-linear relationships.

Conclusions

Paretic limb propulsion does not appear to be important for quality-of-life or participation

measures in individuals with chronic hemiparesis following stroke beyond its impact on gait

performance. However, this relationship does not reveal that paretic propulsion is not impor-

tant. Rather, it appears that how hard people with stroke push off the ground does not have an

impact on their perceptions or participation in a vacuum. Changes in limb propulsion can

influence gait performance, which is important for quality of life and participation. How we

achieve this improved gait performance (e.g., through limb propulsion or through other bio-

mechanical targets) does not appear to be important.
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