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Tin and tin compounds are perceived as promising next-generation lithium (sodium)-ion

batteries anodes because of their high theoretical capacity, low cost and proper working

potentials. However, their practical applications are severely hampered by huge volume

changes during Li+ (Na+) insertion and extraction processes, which could lead to

a vast irreversible capacity loss and short cycle life. The significance of morphology

design and synergic effects-through combining compatible compounds and/or metals

together-on electrochemical properties are analyzed to circumvent these problems.

In this review, recent progress and understanding of tin and tin compounds used

in lithium (sodium)-ion batteries have been summarized and related approaches to

optimize electrochemical performance are also pointed out. Superiorities and intrinsic

flaws of the above-mentioned materials that can affect electrochemical performance are

discussed, aiming to provide a comprehensive understanding of tin and tin compounds

in lithium(sodium)-ion batteries.

Keywords: tin, tin compound, anode, lithium-ion batteries, sodium-ion batteries

INTRODUCTION

Since the commercialization of lithium-ion batteries (LIBs) by the Sony Corporation in 1991, LIBs
are widely used in portable devices, electric vehicles and energy storage equipment for their benefits
of having no memory effect, long cycle life and high energy density (Tarascon and Armand, 2010;
Kim et al., 2012; Wang et al., 2019). With largely depleting lithium resources, the existing limited
and unevenly distributed lithium reserves cannot meet the increasing demands of LIBs (there is
an estimated 17 ppm in the earth’s crust; Grosjean et al., 2012). Due to abundant sodium reserves
(there is an estimated 23,000 ppm in the earth’s crust), sodium-based batteries can be an attractive
alternative. Traditional Na-S batteries require operating temperatures between 300 and 350◦C to
allow sufficient Na+ conductivity of NaAl11O17, but safety issues and energy loss frommaintaining
the operating temperature are inevitable (Wen et al., 2008; Xin et al., 2014; Kou et al., 2019).
Motived by the similar chemical properties of sodium and lithium, researchers have shifted their
attention to ambient temperature sodium-ion batteries (SIBs), but lots of problems need to be
addressed for the practical application of SIBs (Yabuuchi et al., 2014; Li et al., 2018; Wu L. et al.,
2018; Liu Y. et al., 2019). The main issue is the larger radius size of Na+ (1.09 Å) compared with
Li+ (0.74 Å), which brings about sluggish reaction kinetics with low capacity, poor rate capability,
and short cycling life (Chevrier and Ceder, 2011; Xu et al., 2013; Li et al., 2018). Extensive studies
have been carried out to understand the requirements of commercial SIBs, which are great choices
for low cost and large-scale energy storage equipment required for intermittent renewable energy
and smart grids (Palomares et al., 2012; Pan et al., 2013). Comparitively, the energy density of
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LIBs cannot fully satisfy an increasingly growing need for
electronic energy storage devices (Xiao et al., 2018; Fang et al.,
2020). The present conventional anode in LIBs is graphite, which
follows a intercalation/de-intercalation reaction pathway with a
low theoretical capacity (378 mAh/g) and is electrochemically
unfavorable for SIBs owing to the larger size of Na+ (Qian et al.,
2014). Therefore, not all successful experiences from LIBs are
viable to be applied in SIBs. Usually, graphene and non-graphitic
carbon (like hard carbon and carbon black) are conventional
anodes in SIBs. Additionally, TiO2, Na2Ti3O7, Sn, SnO2, SnS2,
Sb, and P, etc. are potential anode materials for Na+ storage in
SIB systems (Slater et al., 2013; Li et al., 2018; Guan et al., 2020).
Thanks to a similar charging-discharging mechanism, tin-based
anodes’ alloying/dealloying reactions have attracted considerable
attention because they are applicable to both LIBs and SIBs with
a high theoretical capacity (Stevens and Dahn, 2000; Zhu et al.,
2013). Environmental benignity, low costs, and lower operating
potentials than graphite are also attractive features for tin and
tin compounds, but they contain the following intrinsic defects
(Fu et al., 2016). Tin and tin compounds as anodes in LIBs (SIBs)
sustain colossal volume changes during Li+ (Na+) insertion and
extraction processes, which leads to pulverization of the active
materials as well as losing electrical contact with the collector
(Zhang, 2011; Liu D. et al., 2019). Moreover, a continuously
regenerated solid electrolyte interphase (SEI) layer between the
electrode and electrolyte interface will consume extra lithium
(sodium) ions, causing large irreversible capacity loss and poor
cycle stability (Beaulieu et al., 2001). Last but not least, the
electronic conductivity of SnO2 (0.1 S/m) and SnS2 (1 S/m) is
much inferior to Sn (9.1× 106 S/m) (Thangaraju and Kaliannan,
2000; Saadeddin et al., 2006; Nie et al., 2020). To cope with
these problems,manymeasures have been taken and summarized
as follows.

Firstly, according to comprehensive investigations nano-scale
tin and tin compounds can alleviate the inter stress brought on
by volume changes, to some extent, and can shorten the transfer
paths of lithium (sodium) ions and electrons. Additionally, more
reactive sites on the interface between electrodes and electrolytes
are generated (Uchiyama et al., 2008; Park and Park, 2015;
Park et al., 2018). The second method is to incorporate tin
and tin compounds with one or more stress-accommodating
phases that have can assure electronic conductivity, such as
carbonaceous materials, metals and some transitional metal
compounds (Kepler et al., 1999; Takamura et al., 1999). In 2005,
Sony commercialized the first tin-based amorphous anode with
the trademark “Nexelion” and this anode is composed of Sn, Co
and C, where Co and C are identified as conductive and stress-
releasing phases. According to Sony, Nexelion has a capacity
of 900 mAh, which is 28 % higher than conventional graphite
(700 mAh) at 0.2◦C. Extensive investigations have been made
to find a feasible and low-cost way to synthesize tin- and tin
compound-based anodes with satisfactory physicochemical and
electrochemical properties for both LIBs and SIBs at the same
time. In this review, we focus on the recent progress of Sn, SnO2,
and SnS2 as anodes in LIBs and SIBs. This comprehensive review
provides an in-depth account of the similarities and differences
between Sn, SnO2, and SnS2 as used in LIBs (SIBs) as well as clear

directions for the structure design and fabrication procedures
regarding anode material syntheses in LIBs and SIBs.

TIN AND TIN COMPOUNDS IN LIBs

Sn-Based Composites
Sn has a high theoretical specific capacity of 993.4 mAh/g,
according to the reversible reaction Sn+xLi++xe−↔LixSn
(0≤x≤4.4) (Lee et al., 2003). However, huge volume changes
and aggregation of Sn particles during the alloying/dealloying
process are themain obstacles for practical applications (Beaulieu
et al., 2001). Generally, carbonaceous materials and Sn-based
intermetallics are believed to address these issues efficiently and
largely improve the battery performance of Sn-based anode
materials (Zhao et al., 2015; Ying and Han, 2017). Carbon
materials, either acting as the support or coating, can effectively
ease volume changes and aggregation of Sn particles and increase
the overall conductivity, especially with graphene (Wen et al.,
2016). Zhou et al. have reported a high-performance anode
where tin nanoparticles are impregnated into nitrogen-doped
graphene (Zhou et al., 2013a). The graphene coating can facilitate
electron transport and prevent aggregation of tin particles.
Add void spaces between graphene and tin nanoparticles avail
the accommodation of volume changes. As a result, the final
composite delivers a reversible capacity of 481mAh/g at a current
density of 100 mA/g.

Some Sn-based intermetallics have also been considered as a
promising choice, such as Sn-Cu, Sn-Co, Sn-Sb, Sn-Bi, Sn-Se, Sn-
Fe and Sn-Ni etc (Yang et al., 1999; Yoon et al., 2009; Xue et al.,
2010; Dang et al., 2015; Qin et al., 2017). Among all these types
of intermetallics, Sony’s Nexelion-consisting of Sn, Co, and C-is
the first commercialized tin-based anode, but the composition is
not fully revealed. Hence, it is important to further investigate the
role and mechanism of cobalt in the Sn-Co intermetallic system.
In principle, cobalt is considered an inactive component used to
buffer the volume changes. However, according to the systematic
study of Sn1−xCox (0<x<0.6) and [Sn0.55Co0.45]1−yCy (0<y<0.5)
conducted by Dahn et al., the Sn1−xCox system is amorphous
when 0.28<x<0.43 and an amorphous structure can hold part
of the capacity in place of alloying anodes in LIBs. In addition,
cobalt does not form intermetallic Co-carbides which avoids the
exclusion of crystalline tin, improving the cycle stability of the
composite (Tamura et al., 2004; Dahn et al., 2006; Todd et al.,
2007; Li et al., 2011).

Sn-Cu alloy is another extensively explored anode in LIBs,
especially in the stable Cu6Sn5 intermetallic phase. According to
the detailed in-situ X-ray study of Cu6Sn5 by Larcher and his
coworker, the two reverse phase transitions of Cu6Sn5 reacting
with Li+ are listed as follows (Larcher et al., 2000):

Cu6Sn5↔Li2CuSn (1)

Li2CuSn↔Li4.4Sn+ Cu (2)

As the Cu content in the Cu-Sn alloy increases, the final obtained
product will significantly improve in cyclability, because Cu
is used as an inactive buffering matrix to relieve the volume
expansion. However it also results in a relatively lower discharge
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capacity, for example, the theoretical discharge specific capacity
of Cu6Sn5 in LIBs is 584 mAh/g (Trahey et al., 2009). Core/shell
Cu6Sn5@SnO2-C anode materials are prepared by boiling Sn
and Cu powders in a sucrose solution with air, as reported by
Hu’s group, in which Cu6Sn5 as an inert foundation replaces the
electrochemically inactive Cu, SiC and Ni (Hu et al., 2015). As
a consequence, the composite exhibits a high discharge specific
capacity of 619 mAh/g at 1.0◦C after 500 cycles, and SEM images
before and after the first cycle show that the maximum volume
change ratio decreases to 12.7%.

On the other hand, some Sn-based intermetallics with
electrochemically active metals, like Sb, Bi, and Ge, have shown
higher initial capacities and better electrochemical properties
than the individual active materials, which is due to the different
potentials vs. Li+/Li of these active metals. The temporarily
separated charge-discharge process of these active materials
guarantees that Sn and the electrochemically active metals can
operate as volume-releasing phases for each other alternately
(Trifonova et al., 2002; Zhang, 2011). He and his co-workers have
reported a colloidal synthesis of monodisperse SnSb nanocrystals
that deliver high specific capacities of 700 and 600 mAh/g at 0.5
and 4.0◦C after 100 cycles, respectively (He et al., 2015).

Graphene with its excellent electrical conductivity, flexibility,
and high specific surface area can be an ideal buffering matrix
for tin-based anodes (Li and Kaner, 2008). In 2015, Luo
et al. synthesized a novel anode where tin nanoparticles were
encapsulated into graphene backboned carbon foam (Luo B.

et al., 2016). Graphene and the outermost carbon coating serve
as a physical boundary to prevent the aggregation of well-
distributed tin nanoparticles and alleviate the huge volume
changes of tin particles. The unique structure is prepared by
uniformly growing SnO2 on the surface of graphene oxide and
coating with porous carbon through a hydrothermal processes,
finally calcinating in a reducing atmosphere. The resulting
composite shows excellent cycle stability and exceptional rate
performance in LIBs as well as in SIBs. A reversible specific
capacity of 506 mAh g−1 can be achieved at a current
density of 400 mAh/g and retained at 270 mAh/g, and
even at 3,200 mA/g after 500 cycles (Figure 1). A summary
of anode materials, synthetic methods, and electrochemical
performance in tin-based anode composites is shown in Table 1

for comparison.

SnO2-Based Composites
Tin oxide materials were first discovered and applied in LIBs
with a high specific capacity by Idato et al. from Fuji Photo Film
in 1997 (Idota et al., 1997). From then on, SnO2-based anodes
in LIBs have drawn considerable attention because of their
high theoretical capacity, resource availability, environmental
benignity, and low operating potentials (0.3 and 0.5V vs. Li+/Li
in charge and discharge processes; Li R. et al., 2019). The chemical
reactions of SnO2 with lithium electrodes involve the following
two steps (Courtney and Dahn, 1997; Chen and Lou, 2013;

FIGURE 1 | Schematic illustration (A) and SEM image (B) of tin nanoplates encapsulated in foam like graphene backboned carbonaceous carbon matrix (F-G/Sn@C),

cycling performance (C) of F-G/Sn@C at 400 mA/g from 0.01 to 2.00 V. Reproduced from Luo B. et al. (2016) with permission from Copyright (2016) Elsevier.
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TABLE 1 | Anode materials, synthetic methods and electrochemical performance of a Sn-based anode.

Anode materials Synthetic method ICE (%) Cyclability (mAh/g) Rate performance (mAh/g) References

Graphene/Sn@carbonaceous

foam

Hydrothermal method and

thermal reduction

About 60 777 (100 cycles at 100 mA/g) 506 (500 cycles at 400 mA/g)

270 (500 cycles at 3200 mA/g)

Luo B. et al., 2016

Sn@N-doped carbon In situ polymerization and

carbon thermal reduction

78.5 788 (300 cycles at 100 mA/g) 522 (1,000 cycles at 500 mA/g) Chang et al., 2017

CoSn2/a-TiC/C Ball milling 83.5 479 (180 cycles at 100 mA/g) 380 (500 mA/g) Park et al., 2018

Core/shell Cu6Sn5@SnO2-C Ball milling and heat treatment 65 619 (500 cycles at 200 mA/g) 390 (2 A/g) Hu et al., 2015

Sn@hollow carbon cube Combination of in situ chemical

synthesis in aqueous solution,

chemical vapor deposition

(CVD) and acid etching

About 55 624 (200 cycles at 600 mA/g) 537 (1,000 cycles at 3 A/g) Huang et al., 2015

C/Sn/C hollow spheres In situ chemical synthesis in

organic solution

62 1,100 (130 cycles at 100 mA/g) 430 (at 5 A/g) Sun et al., 2019

Si@Sn-MoF In situ chemical synthesis in

organic solution

60.6 1,360 (250 cycles at 200 mA/g) 618 (800 cycles at 2 A/g) Zhou et al., 2019

Sn@3D graphene networks Freeze drying and chemical

vapor deposition (CVD)

69 1,089 (100 at 200 mA/g) 459 (at 5 A/g) 270 (at 10 A/g) Qin et al., 2014

Ni3Sn2 microcages Solvothermal reduction and

crystallization

58.9 696 (400 cycles at 0.2C)

530 (1,000 cycles at 1C)

404 (at 10C)

404 (at 10C)

Liu J. et al., 2014

SnSb@N-doped carbon

fiber

Electrospinning 72.2 892.6 (100 cycles at 100 mA/g) 487 (at 2 A/g) Yuan et al., 2018

ICE, Initial coulombic efficiency.

Zhou et al., 2013b):

SnO2 + 4Li+ + 4e− → Sn+ 2Li2O (3)

Sn+ xLi+ + xe− → LixSn(0≤x≤4.4) (4)

The theoretical specific capacity for bulk SnO2 electrodes is
780 mAh/g, which includes conversion reactions and further
alloying/dealloying reactions. It is worth noting that the
conversion reactions of bulk SnO2 to Sn are irreversible but
can be partly reversible for nanosized SnO2 and the theoretical
specific capacity can be up to 1,484 mAh/g (Kim et al., 2005;
Zhang et al., 2009). Like Sn, the as-formed Sn from SnO2

suffers from huge volume changes (250%) in alloying/dealloying
processes and what’s worse, the inner stress originating from
volume changes causes pulverization of the SnO2 electrodes.
The conversion reaction and pulverization of the SnO2 electrode
brings about a severe capacity decrease in the SnO2. Another
issue that needs to be mentioned is that the Sn particles from
conversion reactions tend to agglomerate into Sn clusters that
will weaken the electrochemical activity (Park et al., 2007; Deng
et al., 2016). These flaws are the main limitations for the
commercialization of SnO2-based anodes in LIBs.

To deal with the defects of SnO2-based electrodes, the
adopted strategies are summarized as follows. The first strategy
is to convert bulk SnO2 particles into nanosized particles and
simultaneously design nanostructures such as nanospheres,
nanotubes, and nanofilms (Liu et al., 2016). The nanostructures
can accommodate volume changes and shorten the diffusion
length for electrons and lithium ions, but the accompanying
negative effect for nanostructure materials is that the high
surface energy will lead to the agglomeration of nanoparticles,
which is electrochemically unfavorable (Chen and Lou, 2013).

Additionally, structure design alone cannot compensate
for the whole volume change whilst producing the desired
electrochemical performance. Hence, another strategy is
proposed, which is to combine the designed architecture with
carbonaceous materials including carbon nanotubes, amorphous
carbon, hard carbon, and graphene (Read et al., 2001; Yang
et al., 2013; Zhou et al., 2016). Carbonaceous materials not only
prevent nano SnO2 and as-formed Sn grains from agglomeration
by creating a physical barrier, but they also improve the overall
electronic conductivity of the SnO2-based composite.

When it comes to size control of SnO2 in LIBs, it is not
found that as the SnO2 particles get smaller, the better the
electrochemical performance becomes. As the size of SnO2

particles decreases, the SEI layer becomes larger, which hinders
SnO2 from reacting with lithium ions (Kim et al., 2013).
According to Ahn et al., the optimum size of colloidal synthesis
of SnO2 particles is ∼11 nm during Li+ insertion/extraction
processes (Ahn et al., 2004). A series of sizes of SnO2

hollow spheres as investigated by Kim et al. demonstrated that
SnO2 hollow spheres with a size of 25 nm showed the best
electrochemical performance (750 mAh/g after 50 cycles at a
current density of 100 mA/g; Kim et al., 2013). Moreover,
SnO2 nanoparticles synthesized via the hydrothermal method
with a size of 3 nm deliver the best reversible capacity (740
mAh/g after 60 cycles at 1,800 mA/g) compared to the
ones at 4 and 8 nm (Kim et al., 2005). As a consequence,
the optimum size for SnO2 nanoparticles varies for different
fabrication processes.

Recently, Jiang et al. have shown that well-designed cob-like
SnO2 nanoparticles coated with polydopamine and prepared by
a hydrothermal processes exhibit an excellent rate capability and
a long cycle life at around 1,400 mAh/g at a current density
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of 160 mA/g after 300 cycles (Jiang B. et al., 2017). Bush-
like hydroxypropyl cellulose-graft-poly(acrylic acid) (HPC-g-
PAA) and Na2SnO3·3H2O were used as the template and SnO2

precursor, respectively. SnO2 particles with an average size
of 5 nm were uniformly grown on the graft of HPC-g-PAA
template, and gaps of 3–5 nm among SnO2 particles could be
observed, which allowed it to accommodate for volume changes
of SnO2 particles in the electrode. Moreover, the final carbonized
polydopamine coating was shown to help form stable SEI layers,
which is helpful to enhance the cycle stability (Figure 2).

Beyond the use of carbon, transition metal compounds are
also regarded as an effective component to be introduced into
SnO2 electrodes with syngeneic effects of combined materials.
TiO2, for example, is a very stable LIB anode material because of
its outstanding electrochemical stability with only a slight volume
change (3–4%) even in a high current density (Wang et al.,
2012). However, TiO2 is restricted by a low theoretical capacity
(178 mAh/g), so TiO2 is often used as a supporting backbone
or a protective layer for unstable active materials like SnO2

(Liu H. et al., 2015). Tian et al. have proposed a well-designed
nanostructure where SnO2 particles are encapsulated in TiO2

hollow nanowires (Tian et al., 2014). The composite employs
SnO2 embedded carbon nanowires as a template after being
coated with TiO2 and calcinated in air. Void spaces between
SnO2 particles and TiO2 shells have been demonstrated through
TEM analysis. The voids offer space to accommodate volume
changes of SnO2 nanoparticles during the charge/discharge
process. With this unique yolk-shell structure and the role of
TiO2 in the composite, the final SnO2@TiO2 composite exhibits
a great cycle stability (445 mAh/g at a current density of 800
mA/g after 500 cycles). A summary of anode materials, synthetic
methods, and electrochemical performances upon some SnO2-
based anodes are pointed out in Table 2.

SnS2-Based Composites
Momma et al. and Brousse et al. have revealed that tin
sulfides could also be used as novel anode materials in

LIBs (Brousse et al., 1998; Momma et al., 2001). SnS2 materials
possess superior physicochemical properties with a theoretical
specific capacity of 645 mAh/g and a unique layered hexagonal
CdI2-type crystal structure that is composed of tin cations
sandwiched between two layers of close-packed sulfur anions
in octahedral coordination, in which adjacent sulfur layers are
linked with weak Van der Waals interactions and the interlayer
intervals are about 0.59 nm (Morales et al., 1992; Lefebvre et al.,
1997; Song et al., 2013; Deng et al., 2014; Li R. et al., 2019).
Layer voids in this unique configuration are beneficial for the
Li+ insertion process and can partially accommodate the volume
change (Chen et al., 2017). However, integral volume changes and
poor electronic conductivity of SnS2 are inevitable, which needs
to be improved and one set of adopted electrochemical reactions
have been put forward, which are the following (Momma et al.,
2001; Kim et al., 2007):

SnS2 + 4Li+ 4e− → Sn+ 2Li2S (5)

Sn+ xLi+ + xe↔LixSn(0≤x≤4.4) (6)

It can be obviously observed from the above equations that
the reaction mechanism of SnS2 with lithium is very similar to
the lithiation and delithiation of SnO2. In the first discharge
cycle, metallic tin and amorphous Li2S are formed during the
irreversible conversion of SnS2, where active Sn can be coated
with the inactive Li2S, mitigating the volume changes of the
electrode to some extent (Kim et al., 2009). With further charge
and discharge processes, alloying/dealloying reactions of tin with
lithium ions are reversible, but the capacity reduces rapidly
due to the irreversible conversion and severe pulverization
of SnS2 electrodes. Analogously, morphology design and the
introduction of a conductive phase that accommodates volume
changes, like amorphous carbon and graphene, can largely
alleviate the volume changes of SnS2 in charge and discharge
processes (Zhuo et al., 2012).

Since the microstructure of layered SnS2 materials has some
resemblance to 2D graphene, the combination of them is more

FIGURE 2 | TEM image (A) of PDA-coated SnO2 and cycling performance (B) of PDA-coated corn-like SnO2 and uncoated corn-like SnO2 at 160 mA/g.

Reproduced from Jiang B. et al. (2017) with permission from Copyright (2017) WILEY-VCH.
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TABLE 2 | Anode materials, synthetic methods and electrochemical performance of SnO2-based composites in LIBs.

Anode materials Synthetic method ICE (%) Cyclability (mAh/g) Rate performance (mAh/g) References

Corn-like SnO2

nanocrystals/polydopamine

Combination of atom transfer

radical polymerization,

hydrothermal method and

thermal treatment

61.3 1,494 (300 cycles at 160 mA/g) 835 (at 1A/g) 667 (at 2A/g) Jiang B. et al., 2017

SnO2@TiO2 Hydrothermal synthesis and

heat treatment

46.8 445 (500 cycles at 800 mA/g) 222 (at 1.6 A/g) 204 (at 2.0 A/g) Tian et al., 2014

sSnO2@N-doped graphene Hydrothermal treatment and

thermal reduction

61.3 1,346 (500 cycles at 100 mA/g

from)

631 (at 10 A/g) Zhou et al., 2013b

SnO2 quantum

dots@graphene oxide

Hydrothermal synthesis about 53 112 (100 cycles at 100 mA/g) 417 (2,000 cycles at 2 A/g) Zhao et al., 2016

F-doped SnO2@reduced

graphene oxide (rGO)

Hydrothermal synthesis 60.5 1,037 (150 cycles at 100 mA/g) 860 (at 1 A/g) 770 (at 2 A/g) Cui, 2017

Microwave-assisted

SnO2@polypyrrole nanotube

Soft-template polymerization

and microwave-assisted

solvothermal synthesis

58.1 790 (200 cycles at 200 mA/g) 860 (at 1 A/g) 770 (at 2 A/g) Du et al., 2016

SnO2@N-doped carbon

fiber

Electrospinning and heat

treatment

69.2 754 (300 cycles at 1,000 mA/g) 527 (at 1.6 A/g) 405 (at 3.2 A/g) Xia et al., 2016

ICE, Initial coulombic efficiency.

compatible than other dissimilar materials like SnO2, Sn, and
Si (Bin et al., 2019). Few-layer SnS2/graphene hybrid materials
synthesized using L-cysteine as a ligand in the solution-phase
method have been reported by Chang et al. which can deliver
a reversible specific capacity of 920 mAh/g at a current density
of 100 mA/g (Chang et al., 2012). Additionally, graphene can
be functionalized by doping with nitrogen, fluorine, or sulfur
elements, and the doped graphene generates more defects and
active sites which significantly enhances the electrochemical
activity and conductivity (Guo et al., 2011). Zheng et al.
have reported a large-scale and facile synthetic route for SnS2
nanoparticles coated with S-doped graphene (SnS2/S-rGO). The
electrochemical stability of SnS2/S-rGO particles is much better
than that of the undoped SnS2/rGO, in which the SnS2/S-rGO
can possess a discharge specific capacity of 947 mAh/g whereas
the SnS2/rGO is about 700mAh/g after 200 cycles at 1A/g (Zheng
et al., 2017). This result can be mainly ascribed to the stronger
interaction of S-doped graphene with SnS2 particles.

Wu et al. have presented a well-designed stable H-
TiO2@SnS2@PPy composite by growing SnS2 sheets on hydrogen
treated TiO2 (H-TiO2) nanowires and coating with carbonized
polypyrrole (PPy), in which H-TiO2 provides some advantages
over untreated TiO2. The key reason is that H-TiO2 structurally
possesses more defects than the untreated TiO2, which provides
increased conductivity and stronger chemical interactions with
SnS2 (Ti-S) (Wu et al., 2019). Furthermore, the outermost
carbonized PPy layer can accommodate the volume change to
some degree as well as boosting the electronic conductivity.
With the synergistic effects of the mentioned materials, the
final H-TiO2@SnS2@PPy composite can deliver an outstanding
electrochemical stability with a high discharge specific capacity of
508.7 mAh/g at 2.0 A/g after 2,000 cycles (Figure 3). A summary
of anode materials, synthetic methods, and electrochemical
performance of SnS2-based composites in LIBs have been
displayed in Table 3.

TIN AND TIN COMPOUNDS IN SIBs

The revival of sodium-ion batteries (SIBs) owes mainly to the
low cost and abundance of sodium on earth. Although the
intercalation mechanism of sodium and lithium are similar when
used as electrodes in secondary alkali metal batteries, the larger
radius size of Na+ (1.09 Å) compared to Li+ (0.74 Å) makes it
challenging to find a suitable Na+ host with both excellent cycle
stability and a relatively high capacity (Luo W. et al., 2016; Wu
L. et al., 2018). Graphite is the most used anode in commercial
LIBs but cannot insert Na+ effectively, which is due to the
mismatching of graphite’s interlayer interval (0.334 nm) with the
larger radius of Na+ (Chevrier and Ceder, 2011). Moreover, Si is
a very promising anode material for LIBs as it has a theoretical
discharge specific capacity of 3,579 mAh/g, and some Si-based
materials have been commercialized, but it cannot react with
Na+ in the same manner as LIBs. This is because Na-induced
lattice disturbance are remarkable in Si materials as they become
endowed with small interstitial space and high stiffness (Chou
et al., 2015; Fang et al., 2019). Interestingly, Sn, SnO2, and SnS2
can be applied in SIBs with relatively high capacity, low cost,
and proper low charge/discharge potentials vs. Na/Na+, due to
the minor Na-induced lattice disturbance in Sn-based materials
(Guo et al., 2011; Zhu et al., 2013; Li et al., 2015). However, these
active materials still go through huge volume changes, and the
volume change is even severer in SIBs, which leads to serious
pulverization of these brittle active materials ending up with
rapid capacity decay and poor cycle stability (Ellis et al., 2012).
The coping strategies of Sn, SnO2, and SnS2 in SIBs are analogous
to ones in LIBs, which are the nanostructure design of these
active materials and the process of simultaneously introducing
a second phase that buffers the volume change (Nayak et al.,
2018). Major improvements for Sn, SnO2, and SnS2 in SIBs have
been separately detailed in the following sections and the anode
materials, synthetic methods and electrochemical performance of
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FIGURE 3 | SEM images of H-TiO2@SnS2 (A) and H-TiO2@SnS2@PPy (B), cycling performance (C) of SnS2@PPy, H-TiO2@SnS2@PPy, and N-TiO2@SnS2@PPy at

2.0 A/g. Reproduced from Wu et al. (2019) with permission from Copyright (2019) WILEY-VCH.

TABLE 3 | Anode materials, synthetic methods and electrochemical performance of SnS2-based composites in LIBs.

Anode materials Synthetic method ICE (%) Cyclability (mAh/g) Rate performance (mAh/g) References

H-TiO2@SnS2@PPy Combination of hydrolysis,

hydrothermal route, thermal

treatment and polymerization

71.2 508.7 (2,000 cycles at 2 A/g) 356.3 (at 10 A/g) Wu et al., 2019

Few-layer SnS2/graphene Hydrothermal method 42.4 920 (50 cycles at 100 mA/g) 520 (at 1 A/g) Chang et al., 2012

SnS2/Sulfur doped

graphene

Wet chemistry method 72 947 (200 cycles at 1 A/g) 550 (at 5 A/g) Zheng et al., 2017

Porous vanadium nitride

(VN)@SnS2

Hydrothermal method 77 819 (100 cycles at 650 mA/g) 349 (at 13 A/g) Balogun et al., 2015

MoS2/SnS2-graphene oxide

(GO)

One-pot hydrothermal synthesis 84.2 1,244 (190 cycles at 150 mA/g) 456 (at 3.8 A/g) Jiang Y. et al., 2017

SnS2@PANI nanoplates Hydrothermal and

polymerization process

69.4 730.8 (80 cycles at 100 mA/g) 559.2 (at 2 A/g) 356.1 (at 5 A/g) Wang G. et al., 2015

SnS2/graphene/ SnS2 Hydrothermal synthesis 81 1,357 (200 cycles at 100 mA/g) 844 (at 10 A/g) Jiang et al., 2019

ICE, Initial coulombic efficiency.

Sn, SnO2, SnS2-based anode composites in SIBs are summarized
in Table 4.

Sn-Based Composites
The theoretical capacity of Sn as anode materials in SIBs
(Na15Sn4) is about 847 mAh/g, but volume changes of Sn
electrodes during charge-discharge processes are as high as 525
%, which is much higher than Sn in LIBs (Qian et al., 2014). As
reported by Qian et al., the capacity of pure Sn electrodes in SIBs
falls to zero in only five cycles, which can be explained by the
pulverization of active materials during Na+ insertion/extraction
processes (Ellis et al., 2013). Sn-based intermetallic alloy anodes

have been demonstrated to be a reasonable solution to address the
short cycle life of Sn (Li J. et al., 2019). A Sn-Cu alloy is a stable
active/inactive alloy with a relatively high capacity in LIBs where
the addition of Cu significantly increases the stability of the alloy.
As mentioned in the LIBs section, the Cu6Sn5 alloy is more stable
than other Sn-Cu intermetallics, but the application of Cu6Sn5
in SIBs is hampered by the short diffusion depth owing to the
larger size of Na+. Regarding this, Lin et al. have reported using a
Sn0.9Cu0.1 alloy in SIBs (Lin et al., 2013). In spite of a low initial
discharge specific capacity of 250 mAh/g, the capacity gradually
increased to 440 mAh/g in 20 cycles without capacity loss after
100 cycles.
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TABLE 4 | Anode materials, synthetic methods and electrochemical performance of Sn, SnO2, and SnS2-based composite anodes in SIBs.

Anode materials Synthetic method ICE (%) Cyclability (mAh/g) Rate performance (mAh/g) References

Sn0.9Cu0.1 Surfactant-assistant wet

chemistry

— 420 (100 cycles at 169 mA/g) 126 (at 1.694 A/g) Lin et al., 2013

Yolk-shell Sn4P3@C Hydrothermal treatment and

thermal reduction

43.8 515 (50 cycles at 100 mA/g) 421 (at 3 A/g) Liu J. et al., 2015

SnSb/C composite Mechanical milling 75.1 435 (50 cycles at 100 mA/g) 274 (at 1 A/g) Xiao et al., 2012

Porous Ni3Sn2 microcages Solvothermal reduction and

crystallization

35.5 270 (300 cycles at 1A/g) 351 (at 5 A/g) 276 (at 10 A/g) Liu J. et al., 2014

C@SnS/SnO2@graphene Hydrothermal synthesis and

sulfidation

74.6 713 (70 cycles at 30 mA/g) 550 (at 810 mA/g) 430 (at 2430

mA/g)

Zheng et al., 2016

MoS2@SnO2@C Hydrothermal method and

thermal treatment

67.99 396 (150 cycles at 50 mA/g) 168 (at 2 A/g) Chen et al., 2018

SnO2@graphene Hydrothermal synthesis About 30.9 638 (100 cycles at 20 mA/g) 263 (320 mA/g) 143 (640 mA/g) Su et al., 2013

Porous SnO2/Cu foil Cold rolling method and

anodization

73 326 (200 cycles at 200 mA/g) 232 (at 2 A/g) 150 (at 5 A/g) Bian et al., 2016

Exfoliated SnS2/graphene Sol-gel method and

hydrothermal treatment

69 618.9 (100 cycles at 200 mA/g) 326 (at 4 A/g) Liu Y. et al., 2014

SnS2/C nanospheres Solid-state fabrication about 54.5 600 (100 cycles at 50 mA/g) 360 (at 1 A/g) Wang J. et al., 2015

SnS2/graphene/SnS2 Hydrothermal synthesis 66.8 1133 (100 cycles at 100 mA/g) 765 (at 10 A/g) Jiang et al., 2019

TiO2@SnS2@Nitrogen-

doped

carbon

Combination of chemical

synthesis in organic solution,

hydrothermal synthesis and

ALD

64.2 293 (600 cycles at 1 A/g) 152 (at 10 A/g) Ren et al., 2018

Graphene/Sn@carbonaceous

foam

Hydrothermal method and

thermal reduction

About 55.1 434.2 (100 cycles at 100 mA/g) 166 (at 1.6 A/g) 3.2 (at 3.2 A/g) Luo B. et al., 2016

MoS2/SnS2-graphene oxide

(GO)

One-pot hydrothermal synthesis 76.5 655 (100 cycles at 150 mA/g) 550 (at 1.5 A/g) 340 (at 6.0 A/g) Jiang Y. et al., 2017

ICE, Initial coulombic efficiency.

Sn-P intermetal is an emerging SIB anode material with
balanced properties (Luo W. et al., 2016). Although the
theoretical specific capacity of Sn4P3 (1,132 mAh/g) is
significantly inferior to the pure P (2,560 mAh/g), electronic
conductivity and theoretical volumetric capacity are much better
than pure P in SIBs (Kim et al., 2014; Lan et al., 2017). Liu et al.
have synthesized uniform yolk-shell Sn4P3@C nanoparticles
for SIBs where Sn4P3 nanoparticles are encapsulated in hollow
carbon spheres rendering some void space for the volume change
of Sn4P3 whilst maintaining an intact microstructure (Liu J.
et al., 2015). The carbon shell helps to form a stable SEI layer and
strengthen the overall electronic conductivity of the composite.
An initial discharge specific capacity of 790 mAh/g for yolk-shell
Sn4P3@C nanospheres was determined and retained a high
reversible specific capacity of 515 mAh/g after 50 cycles at 100
mA/g (Figure 4).

SnO2-Based Composites
Sodiation/desodiation reactions of the SnO2 electrode are very
similar to the lithiation/delithiation process, which include
the conversion of SnO2 and reversible alloying/dealloying
reactions contributing to the total theoretical specific capacity
of 1,378 mAh/g (Su et al., 2013). SnO2 is one of the
most extensively investigated anode materials in LIBs and
nowadays, some of the SnO2-based composites have reached
the theoretical capacity of SnO2 with an excellent cycle life.

Herein, successful strategies in LIBs to address volume changes
are advised for employment in SIBs as well (Chen and Lou,
2013).

Huang et al. have reported a facile in situ synthesis of
3D porous carbon encapsulated SnO2 nanoparticles (SnO2-
PC) that exhibits a great cycle stability with a discharge
specific capacity of 208.1 mAh/g at 100 mA/g after 250
cycles and SnO2-PC with a SnO2 weight percentage of
74.47 % demonstrated an extraordinary rate capability
with a discharge specific capacity of 100 mAh/g at
1,600 mA/g after 1,000 cycles (Huang et al., 2016). The
greatly improved electrochemical performance of the as-
prepared SnO2-PC composite owes to the porous carbon
matrix that can alleviate volume changes of SnO2 in the
sodiation/desodiation process and improve the electronic
conductivity of the composite.

Heterostructure has the advantage of high-speed
electron transfer because of the interface effect. The
heterojunction of nanocrystals with different band-gaps
has been proven to enhance surface reaction kinetics and
to provide increased charge transport. Zheng et al. have
employed SnS in a C@SnO2@graphene composite in SIBs.
The C@SnS/SnO2@graphene composite exhibits a high
rate capability and long cycle life with a high capacity,
which can be ascribed to the heterostructure of SnS/SnO2

which further improves the electronic conductivity and

Frontiers in Chemistry | www.frontiersin.org 8 March 2020 | Volume 8 | Article 141

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Mou et al. Tin-Based Compound Anodes

FIGURE 4 | SEM (A) and TEM images (B) of yolk-shell Sn4P3@C. Cycling performance (C) of yolk-shell Sn4P3@C at 100 mA/g. Reproduced from Liu J. et al. (2015)

with permission from Copyright (2015) Royal Society of Chemistry.

FIGURE 5 | Schematic illustration (A) of the synthetic procedure of C@SnS/SnO2@graphene. SEM image (B) of C@SnS/SnO2@graphene. Cycling performance (C)

of C@SnS/SnO2@graphene, C@SnS@graphene and C@SnO2@graphene at 30 mA/g. Reproduced from Zheng et al. (2016) with permission from Copyright (2016)

WILEY-VCH.

diffusion of Na+ in the electrode (Zheng et al., 2016).
C@SnS/SnO2@graphene achieves a reversible discharge
specific capacity of 713 mAh/g at 30 mA/g after 70 cycles, which
is higher than C@SnS@graphene (around 600 mAh/g) and

C@SnO2@graphene (around 400 mAh/g). By increasing the
current density to 810 and 2,430 mA/g, the discharge specific
capacity can be retained at 520 and 430 mAh/g, respectively
(Figure 5).
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FIGURE 6 | Molecular model (A) of sandwich like SnS2/graphene/SnS2; TEM image (B) of SnS2/graphene/SnS2; Cycling performance (C) of SnS2/graphene/SnS2 at

100 mA/g. Reproduced from Jiang et al. (2019) with permission from Copyright (2019) American Chemical Society.

SnS2-Based Composites in SIBs
As mentioned, SnS2 has a special layered structure where tin
cations are sandwiched between two layers of sulfur anions.
The spacing between two adjoining two layers (d002 = 5.90
Å) is larger than the radius of Na+ (d002 = 1.09 Å), which
allows the intercalation and diffusion of Na+ throughout the
electrode effectively (Zheng et al., 2016). However, a pure
SnS2 electrode contends with poor conductivity and severe
pulverization. It has been demonstrated from previous studies
that combining SnS2 with conductive materials will notably
strengthen the electrochemical performance (Ren et al., 2017;
Wu Y. et al., 2018). The unique 2D layer structure of SnS2
means it is highly compatible with graphene and can provide
an increase in electronic conductivity. In 2014, Liu et al.
discovered that exfoliated SnS2 restacked on graphene showed
a remarkable electrochemical performance with a discharge
specific capacity of 650 mAh/g at 200 mA/g after 100 cycles (Liu
Y. et al., 2014). The excellent performance can be ascribed to the
ultrasmall exfoliated-SnS2 layers being utilized fully when used as
the electrode.

Jiang et al. have reported a sandwich-like SnS2/graphene/SnS2
composite with expanded interlayers produced by a one-step
hydrothermal synthesis, where both sides of the reduced
graphene oxide sheets is covalently decorated with ultrathin SnS2
nanosheets (Jiang et al., 2019). The enlarged interlayer distance
of SnS2 is about 8.03 Å, which assists the insertion/extraction
of Li+/Na+ with rapid transport kinetics. As a result,
SnS2/graphene/SnS2 composites have excellent electrochemical
properties both in LIBs (see also in the LIBs section) and SIBs. To
be specific for SIBs, the reversible discharge specific capacities of
1,295 mAh/g and 765 mAh/g are delivered at a current density of
0.1 and 10 A/g, respectively (Figure 6). Additionally, according
to the structural characterizations of SnS2/graphene/SnS2
electrodes after 200 cycles, morphology changes and significant
particle agglomeration cannot be clearly detected. Some
reasons for the superiority of the SnS2/graphene/SnS2
composite are that the graphene sheet is sandwiched between

SnS2 layers with enhanced conductivity and it has a strong
structural integrity.

SUMMARY AND OUTLOOK

Sn, SnO2, and SnS2 have been extensively studied as substitutes
for graphite in LIBs and for potential application in SIBs.
Either in LIBs or SIBs, the ultimate problem that needs to
be addressed is the huge volume change of Sn with Li+ or
Na+ during the alloying/dealloying processes. This problem
has been largely addressed by introducing one or more metals
and/or compounds into the system and at least one additive
which can act as an inactive buffering matrix. Also, the use
of reasonable nanostructure design can tactfully mitigate the
volume change and facilitate the diffusion of Li+ (Na+) and
electrons. Due to these efforts, some of these tin-based anode
materials have reached their maximum theoretical capacity. So
far, the real practical uses of tin-based anodes is still very scarce
in both LIBs and SIBs, which is mainly due to the tedious
synthetic procedures, high costs and low yields. Recently, much
work has focused on large-scale synthetic methods. We believe
that a cost-effective and facile fabrication process which takes
morphology into consideration can promote the application of
tin-based anodes in commercial LIBs and large-scale energy
storage equipment in SIBs.
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