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Abstract

Background: Fatty acid synthase (FASN) is crucial to de novo long-chain fatty acid synthesis, needed to meet cancer
cells" increased demands for membrane, energy, and protein production.

Methods: We investigated FASN overexpression as a therapeutic and chemosensitization target in ovarian cancer tissue,

cell lines, and primary cell cultures. FASN expression at mRNA and protein levels was determined by quantitative real-time
polymerase chain reaction and immunoblotting and immunohistochemistry, respectively. FASN inhibition’s impact on cell
viability, apoptosis, and fatty acid metabolism was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide

measurement, respectively.

might help guide therapy.

may reverse cisplatin resistance.
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Results: Relative to that in healthy fallopian tube tissue, tumor tissues had 1.8-fold average FASN protein overexpression;
cell lines and primary cultures had 11-fold—100-fold mRNA and protein overexpression. In most samples, the FASN
inhibitor cerulenin markedly decreased FASN expression and cell viability and induced apoptosis. Unlike concomitant
administration, sequential cerulenin/cisplatin treatment reduced cisplatin’s half maximal inhibitory concentration
profoundly (up to 54%) in a cisplatin-resistant cell line, suggesting platinum (re)sensitization. Cisplatin-resistant cells
displayed lower '® F-fluoro-methylcholine uptake than did cisplatin-sensitive cells, suggesting that metabolic imaging

Conclusions: FASN inhibition induced apoptosis in chemosensitive and platinum-resistant ovarian cancer cells and
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Background

State-of-the-art ovarian carcinoma treatment involves
cytoreductive surgery followed by first-line platinum-
based and taxane-based chemotherapy [1,2]. In half of
cases, however, relapse occurs within 2 years and resist-
ance against platinum-based agents rapidly develops,
resulting in a 5-year survival rate of only 30% in patients
diagnosed with advanced disease, i.e., 70% of all patients
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with the neoplasm [2,3]. Thus a strong need exists to
identify novel therapeutic strategies.

Overexpression of the multi-enzyme protein fatty acid
synthase (FASN) potentially could serve as the target of
one such strategy. FASN is one of the key enzymes in de
novo long-chain fatty acid synthesis. Cancer cells rely
upon this process to meet their markedly increased de-
mands for membrane and energy production and protein
synthesis [4,5].

Three main factors provide rationale for investigating
FASN overexpression in ovarian carcinoma. First,
there is evidence of this phenomenon in this tumor. In
one study [6], immunohistochemical analysis showed
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elevated synthesis of the protein in >75% of ovarian
carcinoma samples. Additionally, in a correlation ana-
lysis of differentially-expressed seeding genes identi-
fied by a >12,500-gene oligonucleotide microarray [7],
we found FASN to be overexpressed in serous papil-
lary ovarian cancer samples versus normal ovarian
surface epithelium. FASN overexpression was espe-
cially prominent in G2 and G3, i.e., high-grade, serous
tumors, which have particularly poor outcomes [7-9].
Indeed, elevated FASN expression has been linked to
negative prognosis and reduced disease-free survival
in many other neoplasms [10,11].

Second, FASN overexpression has been described in
tumor cell lines in which chemotherapy resistance was
induced by culture in drug-containing media. Two-fold
to three-fold increased FASN promoter activity was dem-
onstrated in breast cancer cells incubated in etoposide-
containing media compared to those cultured in drug-free
media, although no such effect was observed following
cisplatin incubation [12]. Elsewhere, stronger FASN ex-
pression was described in a paclitaxel-resistant hepa-
tocellular carcinoma cell line, Hep3B, than in its
paclitaxel-sensitive parental clone [13].

Third, single-agent administration of a FASN inhibitor,
C93, blocked growth of carboplatin-resistant, and, espe-
cially, paclitaxel-resistant ovarian cancer cell lines [14].
However, effects on tumor cell growth of combining a
FASN inhibitor and a chemotherapeutic drug were not
investigated.

We thus hypothesized that specific FASN inhibition
could exert therapeutic effects in highly FASN-expressing
ovarian cancer cells, including re-inducing chemosensitivity
in platinum-resistant cells. Therefore, we conducted the
present study to confirm FASN overexpression and to in-
vestigate the effects of two specific FASN inhibitors in
ovarian cancer cells, including platinum-resistant cells.

Methods

Overview

We performed three sets of experiments. In the first set,
we sought to confirm earlier findings of FASN overex-
pression. We therefore immunohistochemically analyzed
an ovarian cancer tissue microarray (TMA). Addition-
ally, we used quantitative real-time polymerase chain re-
action (qQRT-PCR) and Western Blot (WB), respectively,
to analyze FASN overexpression at mRNA and protein
levels in 3 established ovarian cancer cell lines and 1
additional cell line in which we induced cisplatin resist-
ance. Further, since ex vivo cultures much more closely
approximate tumor behaviour than do cell lines, we per-
formed the qRT-PCR and WB studies in primary cell
cultures derived from fresh ovarian cancer material from
3 patients. In these experiments, healthy fallopian tube
tissue was used as a control [15].

Page 2 of 12

In the second set of experiments, we preclinically eval-
uated FASN inhibition as a therapeutic strategy in ovar-
ian carcinoma. Specifically, we assessed the effects on
FASN, AKT, and ERK protein expression, cell viability,
and apoptosis (reflected by mononucleosomes and oligo-
nucleosomes and PARP cleavage) of two FASN inhibi-
tors as single agents, or one of those agents combined
with cisplatin. Experiments were performed in the same
tumor cell lines and in primary cultures of tumor tissue
(n=3: one G2 and two G3) and healthy fallopian tube
tissue (n=1). To prove FASN inhibitor specificity, we
reversed the effect on protein expression of the pro-
proliferative kinases AKT and ERK, cell viability, and
apoptosis by supplementation with palmitic acid (PA),
the final product of FASN reaction.

In the third set of experiments, we assessed metabolic ac-
tivity changes induced by FASN inhibition alone or com-
bined with cisplatin administration in a cisplatin-resistant
cell line versus its parental cisplatin-sensitive cell line. One
analogue of a FASN metabolite, '® F-fluoromethylcholine
(** F-FCH), and '® F-2-fluorodeoxyglucose (**F-FDG), a
glucose analogue providing a marker of tissue metabolism,
were used to evaluate effects on fatty acid metabolism and
glycolysis, respectively.

Experiments were performed, always in triplicate,
either once (cell death detection enzyme-linked im-
munosorbent assay [CDDE]), twice (*8 F-FCH uptake),
or three times (all others). We report the average of all
iterations of each experiment.

Human biospecimens and ethics

TMA

As previously described in depth [16], a TMA was con-
structed using 8% formalin-fixed, paraffin-embedded
tumor. The material was contributed by 104 patients
with pathologist-confirmed low malignant potential
(LMP) (n=6), G1 (n=9), G2 (n=42), or G3 (n=47)
epithelial ovarian cancer of mostly serous papillary hist-
ology treated at the University of Freiburg Department
of Gynecology and Obstetrics, Freiburg, Germany, from
1993-1998. Institutional review board approval was
granted and informed consent obtained before tissue
collection. Material of 12 healthy controls were provided
by the Rheinisch-Westfilische Technische Hochschule
(RWTH) Centralized Biomaterial Bank (cBMB) according
to their regulations, after RWTH Aachen Medical Faculty
Ethics Committee approval (decision EK 206/09).

Ovarian cancer cell lines

Three established ovarian cancer cell lines (provided by
I. M.-H.) possessing three different levels of resistance
(sensitive, intermediate and resistant, respectively) to
cytotoxic agents were utilized: Hey, Igrov-1 and Skov-3.
Additionally, using Hey, the most chemotherapy-sensitive
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of these lines [17] as the parent, we developed a fourth,
cisplatin-resistant line (Hey,;), as previously described in
detail [18]. All cell lines were cultivated in Roswell Park
Memorial Institute (RPMI) 1640 medium containing 10%
fetal bovine serum, 1% penicillin, and 1% streptomycin,
and, in the case of Hey, 6,67 pmol/L cisplatin.

Primary cell culture material

Ovarian tumor and fallopian tube samples (n=3 and 1
patients, respectively) were provided by the Rheinisch-
Westfilische Technische Hochschule (RWTH) Centralized
Biomaterial Bank (cBMB) according to their regulations,
after RWTH Aachen Medical Faculty Ethics Committee
approval (decision EK 206/09). After collection, tissue was
placed on ice and minced using a scalpel in a cell culture
dish with RPMI medium and collagenase. This suspension
was incubated under gentle agitation at 37°C in a
hybridization oven for >2 h, then centrifuged at 1700
rpms for 5 min. The cell pellet was transferred within
medium into culture flasks for incubation. After split-
ting at least once, cells were used for experiments.

FASN inhibitors

We selected cerulenin and C75 for study based on preclin-
ical data showing cytotoxic effects in a number of tumors,
including limited data in ovarian cancer [12,19-21]. Both
drugs also were chosen for their commercially availability,
published chemical structures (unlike the case with e.g.
C93), and suitability for cell culture experiments.

Cerulenin A natural antimycotic isolated from Cepha-
losporium caerulens, cerulenin contains an epoxy group
that reacts with FASN’s ketoacyl synthase domain [22].
Cerulenin was among the first compounds found to in-
hibit FASN, and thereby to induce apoptosis in breast
cancer cell lines and the drug delayed disease progres-
sion in an ovarian cancer xenograft model [23,24].

C75 A cerulenin-derived, semi-synthetic FASN inhibitor
lacking cerulenin’s reactive epoxy group [4], C75 is more
chemically stable than is its parent. C75 showed signifi-
cant antitumor effects in human cancer cell lines [25],
and ovarian cancer [26], breast cancer [25], and prostate
cancer [27] xenografts.

To confirm the specificity of FASN inhibitor, we co-
incubated the cells with PA.

Experimental methods

Details on immunohistochemical analysis, cell culture,
RNA isolation, reverse transcription, qRT-PCR, WB, 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide
(MTT) assay, and CDDE assay methodology are provided
in the Supplementary Materials (Additional file 1).
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FASN inhibitor and cisplatin treatment

For FASN RNA isolation and protein expression experi-
ments, 4x10° cells were seeded in 6-well plates. For cell
viability assay experiments, 5x10° cells were seeded in
96-well plates. For FASN protein expression and cell via-
bility assay experiments, the cells were left untreated or
were incubated with 35 pmol/L cerulenin or 35 pmol/L
C75. FASN inhibitor treatment lasted 72 h in ovarian
cancer cell lines and, because of the slower growth of
primary cell culture, was extended to 96 h in that set-
ting. For investigating apoptosis induction by CDDE
assay, 5x10% cells were seeded in 96-well plates and were
left untreated or treated with 25 pmol/L cerulenin for
24 h. For experiments exploring the potential reversal of
cisplatin resistance, cells were treated with cerulenin and
cisplatin simultaneously as well as sequentially. For sim-
ultaneous administration assessments, various cisplatin
doses ranging from 0.31-10 pmol/L (Hey) or 0.31-
40 pmol/L (Hey,;s) were combined with 8.75 pumol/L or
17.5 pmol/L cerulenin, or as a comparator, were applied
as monotherapy; incubation time was 72 h in all cases.
For sequential application assessments, cells were prein-
cubated for 6 h with media containing 8.75 pumol/L or
17.5 umol/L cerulenin, the medium was completely re-
moved and the cells were incubated an additional 72 h
with various cisplatin doses ranging from 0.31-10 pmol/
L (Hey) or 0.31-40 pumol/L (Hey.s). Alternatively, the
cells were given only the cisplatin treatment (compara-
tor). To prove FASN inhibitor effect on protein expres-
sion of AKT, ERK, FASN, and PARP, cells were
preincubated for 6 h with media containing 17.5 pmol/L
cerulenin, the medium was completely removed, and the
cells were incubated an additional 72 h with 1.6 pmol/L
cisplatin (Hey; half maximum inhibitory concentration
(IC50) of cisplatin in Hey cells treated with 17.5 pmol/L
cer) and 6.6 pmol/L cisplatin (Hey; IC50 of cisplatin in
Hey,;s treated with 17.5 pmol/L cer). Alternatively, the
cells were given either cisplatin or cerulenin treatment
or left untreated (comparator). For reversal of the effect
of FASN inhibitor, previous preparation was repeated
and additionally, the samples were preincubated with
50 pmol/L PA.

'8 F-FCH/"® F-FDG uptake

The " F-FCH and ' F-FDG cellular uptake experiments
were performed in Hey or Hey,, the platinum-sensitive
parent/platinum-resistant daughter cell lines available to
us. For '® F-FCH uptake measurements, 4x10° cells were
seeded in 6-well plates. Cerulenin was used alone in
8.75 umol/L or 17.5 pmol/L doses. Cisplatin was applied
as a single agent or in combination with cerulenin in
0.63 pmol/L, 1.25 pmol/L, 2.5 umol/L, or 5 pmol/L
doses (Hey) or 1.25 pmol/L, 2.5 pmol/L, 5 pumol/L, or
10 pmol/L doses (Hey.s). Drug combinations were
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administered with cerulenin given 6 h before cisplatin,
afterwards the medium completely removed and the cells
incubated an additional 72 h. Next, the cells were incubated
with 0.5 MBq tracer/mL per well for 4 h. Thereafter, the
cells were washed with phosphate-buffered saline (PBS)
and the intracellular accumulated radioactivity was quanti-
fied using a gamma counter (Wizard 2480; PerkinElmer
Life and Analytical Sciences, Downers Grove, IL, USA).
The post-incubation measured radioactivity was divided by
the administered radioactivity and normalized to protein
content.

Statistics

Analyses for immunhistochemistry experiments were done
using SAS 9.2 (SAS Institute Inc., Cary, NC, USA). Non-
parametric testing for intergroup differences was performed
using Kruskal-Wallis and Mann—Whitney U tests. All other
experiments were analyzed using Student’s t-test. P <0.05
was considered statistically significant.

Results

FASN expression

TMA

As illustrated in Figure 1, strong FASN overexpression
was detected in the majority of tumor samples compared
to healthy fallopian tube tissue samples. Relative to that
in fallopian tube tissue, FASN protein expression — by
IRS = immunoreactive scoring - was on average elevated
1.6-fold in LMP/G1 tumor samples and 1.8-fold in G2/
G3 tumor samples. The differences with healthy tissue
were statistically highly significant (respectively, P=
0.004 and P<0.001, U test), but FASN expression did
not differ between G2/G3 versus LMP/G1 tumor sam-
ples (P =0.169, U test).

Ovarian cancer cell lines

FASN mRNA expression was 100-fold higher in Hey,
72-fold higher in Igrov-1, 63-fold higher in Skov-3, and
56-fold higher in Hey than in healthy fallopian tube
tissue (Figure 2a). Protein expression analyses confirmed
post-transcriptional FASN overexpression (12-fold to
27-fold) in these cell lines, most markedly in the Hey
cell line, which was proven to be multidrug-sensitive
[18] (Figure 2b).

Primary ovarian cancer cell culture

FASN also was highly overexpressed at both mRNA and
protein levels in primary culture of high-grade ovarian
carcinoma cells, although to a lesser extent than in ovar-
ian cancer cell lines. The single G2 culture and two G3
cultures studied showed a median (min.—max.) 54-fold
(47-fold-62-fold) stronger FASN mRNA expression
(Figure 2c) and a median (min.—max.) 16-fold (11-fold—
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Figure 1 Immunhistochemical analyses of fasn protein expression in
patient material. Immunhistochemical analyses of FASN protein
expression in a TMA comprising formalin-fixed, paraffin-embedded
samples of ovarian cancers of different grades (6 LMP, 9 G1, 42 G2,
and 47 G3 tumors) and histological subtypes (serous papillary,
mucinous, or endometrioid) from 104 patients versus in 12
healthy fallopian tissue samples. (a) Representative TMA slide
immunohistochemically-stained with FASN antibody showed
strong FASN expression in ovarian cancer. (b) Statistical evaluation of
FASN expression applying the immunoreactive score (IRS), which
incorporates protein staining intensity and the percentage of
protein-positive cells. Statistically significant FASN overexpression
was proven for LMP/G1 tumors or G2/G3 tumors vs. normal tissues

(respectively *P < 0.005 and **P < 0.001, U test).

22-fold) stronger FASN protein expression (Figure 2d)
than that in healthy fallopian tube tissue.

FASN inhibition

Cerulenin vs. C75

In ovarian cancer cell lines and primary cultures cerule-
nin, decreased FASN protein expression (Figure 3), de
novo fatty acid synthesis, cell growth, and cell viability
much more effectively than did C75. Incubation with
35 pumol/L of either FASN inhibitor alone for 72 h sub-
stantially inhibited cell viability in all studied ovarian
cancer cell lines. However, the strongest effect on cell
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Figure 2 FASN mRNA and protein expression in cell lines and ex vivo tumor material. FASN mRNA and protein expression in the (cisplatin-resistant®)
ovarian cancer cell lines, Hey, Hey..*, Igrov-1 and Skov-3 and in ex vivo tumor material relative (rel) to that in healthy fallopian tube tissue (control). (a) By
gRT-PCR, all cell lines displayed FASN mRNA overexpression ranging from 56-fold to 100-fold. (b) By WB, FASN protein expression was enhanced in all
cell lines (12-fold-27-fold). Representative immunoblots for FASN and B-actin (control) of each respective cell line are depicted below the graph. (c) By
gRT-PCR, FASN mRNA expression was analyzed in primary cultures derived from moderately-differentiated and poorly-differentiated ovarian cancers (G2,
G3 #1, and G3 #2) and healthy fallopian tube tissue (control). The cancer cells showed a median (min.—max.) 54-fold (47-fold-62-fold) FASN mRNA
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viability with >90% inhibition was achieved by cerulenin
in almost all lines, except the multidrug-resistant Skov-
3, in which cerulenin reduced cell viability by just 12%.
In comparison, C75 caused only up to 50% inhibition
(Figure 4). Cerulenin at a concentration of 8.75 pmol/L
reduced Hey;, cell viability by 30%.

In primary cultures, cerulenin diminished cell viability
by 60%—-90%, whilst C75 decreased cell viability by 40%
in G2 culture but had no apparent effect on G3 cell via-
bility (Figure 4).

A cerulenin concentration as low as 25 umol/L applied
for 24 h showed profound apoptosis induction with the
strongest effect in Igrov-1. CDDE detected from 1.5- to
3.3-fold increased apoptosis induction in ovarian cancer
cell lines and at least from 1.3- to 1.7-fold increased cas-
pase activation in primary ovarian cancer cultures rela-
tive to that in healthy tube tissue cells (Figure 5).

Reversal of cisplatin resistance

Because of the generally greater FASN inhibition and
anti-tumor effects achieved by cerulenin versus C75, ex-
periments regarding cisplatin resistance were performed
only with the former FASN inhibitor. Importantly, se-
quential but not simultaneous application of cerulenin

and cisplatin reversed drug resistance. Cell line preincu-
bation with 17.5 umol/L cerulenin for 6 h followed by
single-agent cisplatin application for an additonal 72 h,
shifted the IC50 from 2.3 pmol/L to 1.6 umol/L (30% re-
duction; P=0.006) in Hey and from 14.5 pmol/L to
6.6 umol/L (54% reduction; P < 0.001) in Hey, (Figure 6).
Interestingly, 6 h of treatment with 8.75 pmol/L cerulenin
already increased the cisplatin sensitivity in the cisplatin-
resistant Hey, cells (41% IC50 reduction, from 14.5 nmol/
L to 8.5 pmol/L; P = 0,002), whereas no effect was observed
in the parental cells. (Identical treatment regime was ap-
plied to analyze reversal of cisplatin resistance in primary
culture of 6 serous ovarian cancers compared to 2 primary
cultures emanating from normal fallopian tube tissue and
appropriate IC50 values were provided in Additional file 2:
Table S2.)

Palmitic acid reverses the effect of FASN inhibition

The Hey and Hey, cell lines were exposed to cerulenin
(17.5 umol/L) and various concentrations of cisplatin
(0.63 — 40 umol/L) in the presence or absence of exoge-
neous PA, the final product of FASN-catalyzed synthesis.
As shown in Figure 7 the reduced cell viability after com-
bined treatment of cerulenin and cisplatin is recovered by
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Figure 3 Effect of the FASN inhibitors cerulenin and C75 on FASN
expression. Effect of the FASN inhibitors cerulenin and C75 on FASN
expression of ovarian cancer cell lines and ex vivo tumor material. (a)
Immunoblot and quantitative analyses of relative (rel) FASN protein
expression of the four selected ovarian cancer cell lines Hey, Heys,
Igrov-1, and Skov-3 when untreated (9) or after treatment with
cerulenin (cer) or C75. Treatment with 35 pumol/L cerulenin typically
markedly reduced FASN protein expression, whereas treatment with
35 umol/L C75 caused just a slight diminution or no diminution of
such expression in the investigated cell lines. (b) Immunoblot and
quantitative analyses of relative (rel) FASN protein expression of
primary ovarian cancer cell cultures G2, G3 #1, and G3 #2 when
untreated (@) or after treatment with cerulenin (cer) or C75. As in
the cell lines, in two of three cases the inhibitory effect of cerulenin
exceeded that of C75.

adding PA to the Hey cell line (7a; IC50 2.71 pumol/L to
1.78 pumol/L (P=0.007) vs. 2.58 pmol/L to 2.55 pumol/L
(P=0.02)) as well as to the Hey, cell line (7b; 16.8 pmol/L
to 10.5 pmol/L (P =0.003) vs. 17.1 pmol/L to 15.5 pmol/L
(P=0.03)).

The immunoblot analyses showed that FASN protein
expression is diminished by cerulenin independently on
PA treatment, whereas the repression of the active pro-
proliferative MAP kinase (phospho-ERK, p-ERK) and
the induction of apoptosis (cleavage of PARP) exclusively
occur in cells without PA administration (7c, d). The
additional treatment with exogenous PA only induces
minor repression of p-ERK and nearly no activation of
apoptotic pathway (7c, d). The expression of the active
form of AKT kinase (phospho-AKT) shows a slight

Page 6 of 12

repression by cerulenin after combined treatment with
cisplatin. This is reversed by the additional treatment
with PA in the Hey cell line (7c). (Quantitative analyses
are provided in the Supplementary Materials — Additional
file 2: Table S1.)

'8 F-FCH uptake
In initial measurements, untreated Hey and Hey; cells
showed markedly higher uptake of *®* F-FCH than of '®
E-FDG: respectively, Hey, 9.0% versus 1.2%, Hey.s, 3.5%
versus 0.6% of administered activity. Subsequent experi-
ments therefore were performed only with '® F-FCH.
Aligned with mRNA and protein expression results
(Figure 2), and presumably reflecting their relatively
lower FASN metabolic activity, the cisplatin-resistant
Hey,;s cells demonstrated lower mean '® F-FCH uptake
compared to parental Hey cells: 5.42% +0.23% versus
3.79% + 0.14% of administered activity (Figure 8).
Treatment with >2.5 umol/L cisplatin concentrations
induced changes in intracellular FCH uptake in both
Hey and Hey, cell lines. Importantly, these effects were
detectable only in cerulenin-pretreated cells. Moreover,
corresponding to the MTT data, at a 2.5 pmol/L cis-
platin concentration, both tested cerulenin concentra-
tions (8.75 and 17.5 pmol/L) influenced the cisplatin
tolerance and '®F-FCH uptake in cisplatin-resistant
Hey,s cells (Figure 8). For the parental Hey cells, this ef-
fect was only detectable at the higher cerulenin concen-
tration (17.5 pmol/L). The treatment with cerulenin
alone did not affect the cellular uptake of '® F-FCH in ei-
ther tested cell line.

Discussion

This in vitro investigation had three main findings. First,
we confirmed and extended our earlier observations [7]
and others [6,14,28] of considerable FASN overexpres-
sion in human ovarian cancer cells relative to that in
healthy human tissue with a tendency towards higher
expression in more aggressive, de-differentiated tumors.
Cai et al. reported that the expression of FASN corre-
lated with tumor grade and FIGO stage and is associated
with HER2 expression in ovarian cancer; additionally,
high expression of FASN was accompanied with poor
prognosis of ovarian cancer [29]. In the present work,
such overexpression was clearly demonstrated in immu-
nohistochemical analysis of a TMA including tumors of
high or low grades and different histological subtypes.
Also, we showed marked FASN overexpression at the
mRNA level by qRT-PCR and at the post-transcriptional
level by WB in cell lines as well as primary tumor cul-
tures of varying degrees of chemoresistance and differ-
entiation. As stated in other studies for e.g. etoposide
and paclitaxel [12,13], a correlation between multidrug re-
sistance and FASN overexpression could not be proven in
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Figure 4 Effect of the FASN inhibitors cerulenin and C75 on cell viability. Effect of the FASN inhibitors cerulenin and C75 on cell viability of
ovarian cancer cell lines and ex vivo tumor material. The four selected ovarian cancer cell lines, Hey, Hey.;, Igrov-1, and Skov-3, and primary
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—~
ex vivo tumor cells

our experiments. In contrast, the drug sensitive Hey cell
line demonstrated highest FASN expression level, whereas
the single-drug resistant cell line Hey,;s and the multidrug
resistent Skov-3 cell line displayed less FASN expression
compared to the cisplatin-sensitive Hey cells.

Our second main finding was that in cell lines and pri-
mary cultures, the FASN inhibitor cerulenin strongly
blocked FASN protein expression and both stimulated
apoptosis and re-induced platinum sensitivity. Preclinical
reversal of chemoresistance by FASN inhibition was de-
scribed before in ovarian cancer and other human malig-
nancies. Concomitant C75 and cisplatin administration
augmented apoptosis in ovarian carcinoma cells com-
pared to that seen with cisplatin alone [6]. A cerulenin/

paclitaxel combination significantly inhibited growth in
FASN-overexpressing, paclitaxel-resistant hepatocellular
carcinoma cells [13]. In colon cancer low concentrations
of a cerulenin/oxaliplatin combination enhanced apop-
tosis in vitro compared to the same concentrations of
the drugs as single agents [30]. Additionally, the com-
bination significantly inhibited tumor progression com-
pared to that in untreated controls as well as in both
single agent groups in vivo in xenotransplanted mice
with severe combined immunodeficiency.

However, unlike other investigators [6,28,31], we de-
tected a reducing effect of cerulenin on FASN protein
expression and cell viability considerably exceeding that
of C75 in ovarian cancer cell lines when the drugs were

50

40

30

20

L 1]

m 25 umol/L

10

cer

Apoptoses [OD405nm/OD490nm x100]

control Hey

Figure 5 Effect of the FASN inhibitor cerulenin on apoptosis. Effect of cerulenin on apoptosis in ovarian cancer cell lines and ex vivo tumor
material. CDDE was used to analyze programmed cell death in the four selected ovarian cancer cell lines, Hey, Hey,, Igrov-1, and Skov-3, and
two primary ovarian cancer cell cultures G2 and G3 #1, after administration of 25 umol/L cerulenin. Caspase activation was increased from 1.5- to
3.3-fold in the ovarian cancer cell lines and from 1.3- to 1.7-fold in the ex vivo cancer cells relative to that (caspase activation induced by cerulenin
to 12x100) in healthy tube tissue cells (controls; @). Optical density (OD) =405 nm (490-nm reference wavelength).
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G3#1




Bauerschlag et al. Journal of Translational Medicine (2015) 13:146

Page 8 of 12

a Hey
125
100 +
=z -“\_\ & ~
£ «%. — ;_ o ——9
2 = A\
= —l —8.75 pumol/L cer
g s <
X \\ —a— 17.5 pmol/L cer
N Ny
25
b3 ~ \XQ.
0 T T T T T T 1
o 0.3 0.6 13 2.5 5 10
[umol/L cis]
b
H €Vcis
125

—— 0

— — 8.75 umol/Lcer

[% cell viability]

—a— - 17.5 umol/Lcer

[umol/L cis]

Figure 6 Effect of combined cerulenin/cisplatin treatment on cell viability. Effect of combined cerulenin/cisplatin treatment in the Hey (a) and
cisplatin-resistant Heys (b) cell lines. Cisplatin was given in various concentrations as a single agent or following administration of 8.75 pmol/L
or 17.5 umol/L cerulenin. As illustrated by the bold black arrows, sequential application of cerulenin for 6 h, followed by 72 h incubation in
cisplatin-containing media shifted the cisplatin half maximum inhibitory concentration (IC50) from 2.3 umol/L to 1.6 umol/L (30% reduction;
P=0.004) in parental Hey cells and from 14.5 umol/L to 6.6 pmol/L (54% reduction; P < 0.001) in the cisplatin-resistant Hey,; cells.

80

given as single agents. The only structural difference be-
tween these FASN inhibitors is the lack of the highly re-
active epoxide moiety in C75 [4], presumably accounting
for the lesser activity of C75.

Also in contrast to other work, we found that se-
quential application of a FASN inhibitor followed by
the cytotoxic agent was more effective than was simul-
taneous application. The Uddin et al. study of C75 and
cisplatin in ovarian cancer [6] and the Meena et al.
study of cerulenin and paclitaxel in hepatocellular car-
cinoma [13], for example, administered both agents
concomitantly or nearly so. Indeed, another study
showed synergistic reduction of cell viability effects in
breast cancer cell lines with concomitant C75/pacli-
taxel treatment, but antagonistic effects when C75 was
given before paclitaxel [32]. We hypothesize that our
observation that concomitant cerulenin/cisplatin treatment
was less effective than sequential administration may be

attributable to complexation of the two drugs when given
simultaneously.

It was proposed that certain signaling pathways in-
volved in cell apoptosis were closely associated with the
inhibition of FASN, which helps to explain why FASN
inhibitors may potentially be used to treat cancer. Other
studies, however, have shown that palmitic acid, the final
product of FASN pathway, is important for the forma-
tion of cell membranes [33], predominantly needed for
the generation of phospholipids [34]. Therefore, the re-
duction of synthesized palmitic acid may be a reason to
explain why the inhibition of FASN could induce apop-
tosis. The study by Zhao et al. showed a rescue effect of
PA when additionally administered to quercetin, a FASN
inhibitor that induced apoptosis in human liver cancer
HepG2 cells [35]. In the current study, it was found that
the observed effects of FASN inhibiton such as reduced cell
viability, induction of apoptosis, and dephosphorylation of
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Figure 7 Effect of PA supplementation to combined cerulenin/cisplatin treatment in the Hey (a, €) and cisplatin-resistant Hey; (b, d) cells
analyzing cell viability and proliferation and apoptosis. (a, b) Cisplatin was given in various concentrations as a single agent or following administration

of 17.5 umol/L cerulenin in the absence or presence of 50 umol/L PA. Cell viability was investigated by the MTT assay. The shifted cisplatin IC50 from

2.7 umol/L to 1.8 umol/L (33% reduction; P=0.007) in parental Hey cells after sequential application of cerulenin for 6 h, followed by 72 h incubation in
cisplatin-containing media was completely reversed by administration of PA (both cisplatin IC50 of 2.6 pmol/L; P=0.02) (a). In the Hey; cell line the shifted
IC50 from 168 pmol/L to 10.5 pmol/L (38% reduction; P=0.003) was partly abrogated by administration of PA (shifted cisplatin IC50 from 17.1 umol/L to
15.5 umol/L (only 9% reduction; P=0.03) (b). (c, d) Immunoblot analyses of phospho-AKT, AKT, phospho-ERK, ERK, FASN, PARP (total and cleaved) and
B-actin (control) protein expression was investigated in in the Hey (c) and Hey,s (d) cell lines after either single or combined cerulenin/cisplatin treatment
in the absence or presence of PA with indicated concentrations. In the Hey cell line the slight dephosphorylation of AKT by combined
treatment of cerulenin and cisplatin was less in the cells additionally treated with PA. In both the Hey and Hey; cell lines the reduction
of the active pro-proliferative kinase phospho-ERK by drug treatment failed to appear in the additionally PA treated cells. Also, in both
cell lines cerulenin diminished FASN protein expression in absence or presence of PA, but the significant induction of apoptosis (PARP
cleavage) was prevented by adminstration of PA. (Quantitative analyses are provided in the Supplementary Materials — Additional file 2:

the pro-proliferative kinases ERK and AKT could be abro-
gate by adding exogenous PA.

Our third main finding was that '® F-FCH showed po-
tential utility as an ovarian cancer imaging agent. In
both the Hey and Hey, lines, this radionuclide demon-
strated considerably higher uptake than that of the clin-
ically widely used '®* F-FDG. This observation, aligned
with that of a clinical study showing that gynecologic

tumors had higher ''C-choline than '® F-FDG uptake
[36], suggests potential for clinical use of '* F-FCH in
diagnostic positron emission tomography/computed
tomography in ovarian cancer patients. Moreover, dif-
ferential '® F-FCH uptake by platinum-resistant versus
platinum-non-resistant ovarian cancer cells raises the
possibility of predicting platinum resistance in vivo by
quantitative imaging. Such a biomarker-based strategy
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Figure 8 '® F-FCH uptake as a percentage of the administered activity normalized to protein content. '® F-FCH uptake as a percentage of the
administered activity normalized to protein content in the Hey (a) and cisplatin-resistant Hey,; (b) cell lines. Cisplatin-resistant Hey;; cells demonstrated
lower mean '® F-FCH uptake compared to parental Hey cells (542% + 0.23% vs. 3.79% =+ 0.14% of administered activity). At 2.5 umol/L cisplatin, both tested
cerulenin concentrations decreased '® F-FCH uptake in cisplatin-resistant Hey,;; cells. For the parental Hey cells, this effect was only detectable at the higher
cerulenin concentration. Treatment with cerulenin alone did not affect the cellular uptake of " F-FCH in any tested cell line. cis = cisplatin; cer = cerulenin.

potentially could spare patients ineffective chemother-
apy and resultant adverse events. Further studies in
additional cell lines, animal models, and, if warranted,
patients would be needed to establish clinical utility of
E_FCH in ovarian cancer. One potential issue that
may need to be addressed is the possibility of intense
physiological 18"-FCH uptake by the intestines ob-
scuring smaller ovarian cancer lesions in the abdom-
inal cavity.

Limitations of the present investigation should be con-
sidered. We could only include a small number of pri-
mary culture samples so far. Also, at this point we could
only investigate one pair of platinum non-resistant par-
ent/resistant daughter cell lines. Ideally, our findings
should be confirmed in larger collections of patient ma-
terials as well as in xenograft models.

Conclusions
Recently it has been shown, that adding the angiogenesis
inhibitor bevacizumab to platinum/taxane combination

regimens prolonged disease-free survival of advanced-
stage ovarian cancer patients in the first-line setting
[37-39]. Nonetheless, it remains important to develop
additional treatments which, as single agents or com-
bined with established cytostatic regimens, may over-
come chemoresistance and improve survival of patients
with this often lethal disease. Also in the management of
recurrent/progressive disease, in which pegylated liposo-
mal doxorubicin + carboplatin is widely used, a marginal
progression free survival advantage was observed only
in platinum-sensitive setting and second-line treatment
[40]. Therefore, the present results regarding FASN
overexpression and FASN inhibitor cytotoxic effects in
chemosensitive, but also in platinum-resistant ovarian
cancer cells make an important contribution and may
have an impact on treatment in the foreseeable future.
Cerulenin is unapproved for use in humans. However,
other FASN inhibitors such as orlistat, which has been
shown to reduce FASN activity in non-small cell lung
cancer [41], are readily available for clinical use, albeit
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issues of that drug’s low cell permeability and solubility,
lack of selectivity [42], and poor metabolic stability [43]
may need to be overcome, perhaps through use of orli-
stat metabolites.

Further research in animal models is warranted to as-
sess whether FASN inhibition can overcome platinum
resistance and improve survival. Study also should be
undertaken regarding FASN inhibition to reverse che-
moresistance to other drug classes such as taxanes.
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Additional file 1: Fatty Acid Synthase Overexpression: Target for
Therapy and Reversal of Chemoresistance in Ovarian Cancer.
Description of additional materials and methods Immunhistochemical
analyses, ovarian cancer cell lines and primary cell culture material, RNA
isolation, reverse transcription and quantitative real-time polymerase
chain reaction (qRT-PCR), Western Blot (WB), 3- (4,5-dimethylthiazol-2-yl)- 2,5-di-
phenyltetrazolium-bromide (MTT) assay, cell death detection enzyme-linked
immunoassay (CDDE).

Additional file 2: Table S1. Quantification of protein expression by the
analyzing software Image J®. Quantification of protein expression of
phospho-AKT, AKT, phospho-ERK and ERK in cis, cer, and PA-treated Hey
and Hey,; cells vs. untreated cells normalized to B-actin by the analyzing
software Image J°. Table S2. IC50 values of cisplatin in primary culture
combined with cerulenin treatment. Cell viability test (MTT assay) in
primary cultures after combined treatment of cerulenin and cisplatin. The
table shows the appropriate IC-50 values of cisplatin in 6 primary cultures
of serous ovarian cancer, G3, with various resistances against cisplatin
and 2 primary culture of healthy fallopian tube tissue after single treatment,
combined treatment with 8.75 umol/L cerulenin, or combined treatment with
17.5 umol/L cerulenin.
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