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Emergence of complex oscillatory
dynamics in the neuronal networks with long
activity time of inhibitory synapses

Mozhgan Khanjanianpak,1,2 Nahid Azimi-Tafreshi,1 and Alireza Valizadeh1,2,3,*
SUMMARY

The brain displays complex dynamics, including collective oscillations, and extensive research has been
conducted to understand their generation. However, our understanding of how biological constraints in-
fluence these oscillations is incomplete. This study investigates the essential properties of neuronal net-
works needed to generate oscillations resembling those in the brain. A simple discrete-time model of in-
terconnected excitable elements is developed, capable of closely resembling the complex oscillations
observed in biological neural networks. In the model, synaptic connections remain active for a duration
exceeding individual neuron activity. We show that the inhibitory synapses must exhibit longer activity
than excitatory synapses to produce a diverse range of the dynamical states, including biologically plau-
sible oscillations. Upon meeting this condition, the transition between different dynamical states can be
controlled by external stochastic input to the neurons. The study provides a comprehensive explanation
for the emergence of distinct dynamical states in neural networks based on specific parameters.

INTRODUCTION

The brain is a system of nonlinear components connected through a complex network and is considered as one of the most complex systems

in the universe.1 A variety of the nontrivial emergent phenomena that are widely studied in physical sciences are observed in brain dynamics,

including synchrony,2,3 multistability,4,5 and criticality.6–11 Brain oscillations, observed in a wide range of frequencies, emerge due to intricate

interactions between the activities of the neurons in the local or distant regions.12,13 The spectral pattern of the oscillations depends on the

state of the brain and the region under study,12 and the growing bunch of evidence support the crucial role of the oscillations in a variety of

high level brain functions, such as attention,14,15 perception,16 memory,17–19 andmotor functions.20,21 Therefore, a change in the properties of

the oscillation patterns could indicate a malfunction in the brain in a causal way.2,22–24 Theoretical studies have revealed different roles of the

synchrony and the collective oscillations in the brain networks.25–28 It is well known that while synchrony reduces the information capacity of an

isolated system, in a distributed dynamical system with a modular structure like the brain it can facilitate the transmission of information and

maximize mutual information between different functional modules.29–31 Coordinated activity of the neurons produces stronger signals from

the sources fromone side32,33 andmodulates the excitability of the receiver networks on the other side, therefore providing a possible tool for

control of the flexible communication between the brain areas.34,35 This communication is crucial for the integration of the information pro-

cessed in the functionally specialized brain regions that are essential for high level brain functions.36–39 While biologically inspired conduc-

tance-based neuronal models are commonly used to study the dynamics of neural populations,40–44 simpler models at different levels of

abstraction are also employed to gain insight into the collective dynamics of neural populations.45,46 These models are computationally effi-

cient and allow for the study of fundamental rules underlying highly complex dynamics in the brain and other complex systems.45,47–49 While

networks composed of discrete time excitable components can reproduce oscillatory dynamics, they do not fully capture the properties of

biological brain oscillations. In particular, gamma oscillations, which are generated by local populations of excitatory and inhibitory net-

works,36,50,51 exhibit bursts of highly variable amplitude and period, interspersed with periods of low synchrony activity.52,53 Additionally,

gamma oscillations are nested within low frequency oscillations that modulate their amplitude.54,55 These observations show that the collec-

tive brain oscillations produced by neurons differ from the periodic oscillations observed in many physical and biological systems, where

coupled limit-cycle oscillators are common.56,57 In the cortical networks of the brain, the balance between excitation and inhibition58,59 results

in neurons receiving a stochastic input with lowmean and high variance. As a result, individual neurons fire sparsely and irregularly, despite the

observed order in the macroscopic scale.60 This highly variable amplitude and frequency, multi-frequency oscillation, and irregular dynamics

of individual neurons have not been observed in simple computational models of brain networks. In this study, we aim to address this gap by

developing a simplemathematical model that meets theminimum requirements for generating gamma oscillations with properties similar to
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those observed in the brain. Specifically, we sought to answer the question: ‘‘What properties of neuronal networks are necessary for the gen-

eration of biological gamma oscillations?’’ We hypothesized that incorporating synaptic dynamics, which was missing in previous studies us-

ing discrete models, is a crucial requirement for a valid neuronal model capable of reproducing biologically plausible oscillatory dynamics.

Our findings demonstrate that by including synaptic dynamics in networks of excitable neuronal models, the network exhibits a variety of

dynamical regimes similar to those observed in biological neural networks. To validate themodel, we demonstrated its capability to generate

spontaneously emerging oscillations with basic properties compatible with those of biological oscillations. Consistent with previous studies

using spiking neural networks, we found that the duration of inhibitory synaptic activity is a crucial parameter that determines the properties of

the oscillations. However, we discovered that biological oscillations only occurred when the inhibitory synapses had longer activity compared

to the excitatory synapses. This constraint, which has been widely considered as a biological fact in computational studies, was not previously

acknowledged for its critical importance in the emergence of complex neural dynamics.61–63 Additionally, we demonstrated that when this

criterion is met, the external stochastic input acts as a control parameter that governs the transition between different dynamical regimes

resembling various states in the dynamics of the biological brain. Our findings also indicate that the intermittent dynamics of gamma oscil-

lations observed at low levels of external input result in a broadband low-frequency component in the network’s spectrum, which is generically

coupled to the amplitude of the fast (gamma) oscillations. Our model consisted of the excitatory and inhibitory neurons where both types

were implemented by an excitable model. The main advancement of the model compared to previous discrete time models was that the

dynamics of synapses incorporated in the model were similar to the susceptible-infected-susceptible (SIS) epidemic models.64 A synapse

became active if its pre-synaptic neuron was active at the previous step and it remains active for a constant time that was chosen based

on the observed values in realistic brain networks. The paper is divided into several sections. We begin by defining our model on a random

network and examining the dynamics that influence the nodes and links. In Section Results, we present the results of our numerical simula-

tions, exploring the influence of two control parameters, i.e., the noise strength and the time constant of the synapses, on the emergence of

different activity patterns. Finally, we conclude the article in Section Discussion.
The model

The network

We consider a network of sizeN composed of 80% excitatory nodes (neurons) and 20% inhibitory ones. A pre-synaptic excitatory (inhibitory)

node is connected to a post-synaptic node through an excitatory (inhibitory) directed connection. We denote excitatory (inhibitory) nodes

with E (I), such thatNE = 0:8N and NI = N � NE indicate the number of E and I nodes, respectively. Similarly, the excitatory and inhibitory

synapses are presented with E and I links, respectively. Both types of nodes are supposed to be connected randomly with a constant prob-

ability of p, such that each E (I) node is connected through E (I) links to the other nodes. We also assume that all links have the same coupling

strength. Figure 1A shows a schematic of the interaction network.

We define A as the adjacency matrix, such that for excitatory nodes 1% j%NE (inhibitory nodesNE < j%N),Aij = 1 if there is an excitatory

(inhibitory) link from j to i and otherwise,Aij = 0.We notice that there is no self-connection (autapse) in the network such thatAii = 0 for all the

nodes. Therefore, we can write the in-degree kin and out-degree kout of the nodes as follows:

kiin = ki;E
in + ki;Iin =

XNE

j = 1

Aij +
XN

j = NE+1

Aij (Equation 1)
ki;Eout =
XN
j = 1

Aji ;1% i%NE (Equation 2)
ki;I
out =

XN
j = 1

Aji;NE + 1% i%N (Equation 3)

where ki;ain=out witha˛ fE; Ig indicates the number of incoming/outgoing links of type a for node i. All the outgoing links of excitatory (inhibitory)

nodes are of excitatory (inhibitory) type, regardless of the type of target node. Figure 1B represents a schematic of the adjacency matrix

composed of four blocks, where diagonal blocks indicate links between the nodes of the same type, while anti-diagonal ones represent con-

nections between nodes of different types.

Dynamics of the nodes and the links

Compatible with realistic neurons, we assume that the nodes are excitable dynamical systems, which means that they remain inactive when

stimulated weakly. However, when the stimulus exceeds a certain threshold, the neurons become active and generate a response. To model

the dynamics of neurons in the network, we assign the activity state pa
i ðtÞ to each node i of a type (a˛ fE;Ig) at each time t, such that when the

neuron is activated pa
i ðtÞ = 1, and otherwise pa

i ðtÞ = 0. The binary state of the neurons is governed by a threshold condition, where the

neuron’s activation status changes based on this condition. Specifically, at each time step, if the internal inputs to a neuron reach a threshold

value, it becomes activated. Conversely, if the threshold is not met, the neuron remains at rest. In the nervous system, the postsynaptic ion

channels remain activated with a time constant that spans a wide range from a few to hundreds of milliseconds. To incorporate this fact in our
2 iScience 27, 109401, April 19, 2024
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Figure 1. Connectivity network and the dynamics of the neurons and synapses

(A) Schematic representation of the network comprising excitatory (E) and inhibitory (I) nodes connected through a random connectivitymatrix. Excitatory (E) and

inhibitory (I) links are shown with black and gray colors, respectively.

(B) Schematic of the corresponding adjacency matrix that consists of four blocks connecting different types of neurons.

(C) An active neuron is presented by a colored node while a gray node shows an inactive neuron. Green and violet arrows indicate the active excitatory and

inhibitory synapses, respectively. If the total input current Din of a neuron is less than threshold Dth, it remains inactive, otherwise it gets activated (fires). All

outgoing synapses of a firing neuron at time t become active after a delay of d at time t +d.

(D) The state of links as a function of time. If a pre-synaptic neuron is activated at t = 0, its outgoing links become active at t = d. A link of the type a remains

active for da time steps, and then the link is inactivated.
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model, we assign a state to the links in the network that depends on the state of the presynaptic node as follows.When a neuron fires, all of its

outgoing links become active after a synaptic delay time d and remain active for a time constant da where a denotes the type of link (excitatory

or inhibitory). To simplify our model, we make the assumption that the delay time for all links is uniform. Without loss of generality, we set the

delay time d = 1. This allows us to scale other time constants relative to the delay. The synapse activity time constant, denoted as da, varies

depending on the type of synapse and is treated as a variable in this study. We denote the activity state of a type links, connecting node i to j,

by pa
ji ðtÞ (a˛ fE;Ig). Each active E (I) link exerts a positive (negative) current to the postsynaptic node. To replicate the balanced state observed

in cortical networks, we set the magnitude of the excitatory current to unity. In contrast, the inhibitory currents are set to be four times stron-

ger. This adjustment ensures that the inhibitory currents exhibit a greater strength relative to the excitatory currents, thereby mimicking the

balanced state in cortical networks.58 Therefore, The activity of neuron i at time t is determined by the total input current it receives, denoted

as Di
inðtÞ. This input current is the sum of all excitatory and inhibitory currents. If the total input surpasses a specific threshold, the neuron be-

comes active. Otherwise, falling below the threshold, the neuron remains inactive:

� if Di
inðtÞ<Dth then pa

i ðtÞ = 0 (inactive).
iScience 27, 109401, April 19, 2024 3



Table 1. Definition of the model parameters

Parameter Definition Parameter Definition

E excitatory neuron I inhibitory neuron

E excitatory synapse I inhibitory synapse

N total number of neurons L total number of synapses

A adjacency matrix da activity time constant of a type synapse

kain number of in-coming a type synapses kaout number of out-going a type synapses

h noise probability intensity d synaptic delay time

Dth membrane potential threshold Di
inðtÞ input current of neuron i at time t

pa
i activity state of a type neuron i pa

ij activity state of a type synapse connecting neuron j to i

rðtÞ density of active neurons at time t 4ðtÞ density of active synapses at time t
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� if Di
inðtÞRDth then pa

i ðtÞ = 1 (active) and pa
ji ðt + 1Þ = Aji,

where Dth is the threshold for the activation of the neurons. Figure 1C schematically shows the dynamics of the nodes and the links based on

the sum of active links. As we already mentioned, when a node becomes active, its outgoing links become active after a delay time d and

remain active for the time constant da. Therefore, the post-synaptic node receives current during the time da after a single activity of the pre-

synaptic (see Figure 1D). To activate the network, all nodes receive an external noise in addition to the synaptic current they receive fromother

neurons in the network. This external noise represents the input from other parts of the nervous system. To this end, at each time step a frac-

tionh of the E and I nodes fire randomly. To find the density of active nodes for both types (E and I) as a function of time, we need to calculate

the total input (synaptic input from the other nodes in the network and the external noise) to each node.We note that at each time step, for all

pre-synaptic nodes j if pa
ij ðtÞ = 1, the post-synaptic node receives an amount of + 1 and� 4 units of current through excitatory and inhibitory

links, respectively. To capture this point, we define a weightmatrixW such thatWij = pE
ij when 1% j%NE , otherwiseWij = � 4pI

ij . Hence, we

can write the intra-network synaptic input to each node as follows:

Di
inðtÞ =

XN
j = 1

WijðtÞ; (Equation 4)

In addition, the neurons receive noise and fire with probability h regardless of the recurrent synaptic input. Nowwe define raðtÞ (a˛ fE;Ig)
and 4aðtÞ (a˛ fE;Ig) as the fraction of active nodes and active links of a type at time t, respectively. Therefore, by summing up the state of

nodes and links at t, we obtain the total fraction of active nodes rðtÞ and links 4ðtÞ as follows:

rðtÞ = rEðtÞ + rIðtÞ =
1

N

 XNE

i = 1

pE
i ðtÞ +

XN
i = NE+1

pI
i ðtÞ

!
(Equation 5)
4ðtÞ = 4EðtÞ + 4IðtÞ =
1

L

XN
i = 1

 XNE

j = 1

pE
ijðtÞ +

XN
j = NE+1

pI
ijðtÞ
!

(Equation 6)

where L =
PN

i;j Aij indicates the total number of links. A summary of model parameters is represented in Table 1.
RESULTS

We perform numerically simulations on a network with N = 5000, consisting NE = 4000 excitatory and NI = 1000 inhibitory neurons. We

consider the interaction graph as an Erd}os–Rényi (ER) random network, wherein E and I nodes are connected with a probability of p =

0:1, regardless of the type of nodes. Therefore, mean in-degree is CkinDxpN = 500 where the mean number of incoming E and I links are

400 and 100, respectively. The mean out-degree of the excitatory and inhibitory nodes is CkEoutD = CkIoutDx500. When a node becomes active

at time t, the outgoing links of node becomes active after delay time at t +d, and post-synaptic nodes receive an input that lasts for dE and dI

time steps for the E and I links, respectively. The nodes, whose input current exceeds the threshold value, become active at the same time and

spike. We set the threshold value Dth = 4. Simulations are run for tmax = 25000 time steps.
Emergence of oscillations in the network

To demonstrate the mechanism of the generation of collective oscillations in the network, we have shown the dynamics of the network in

Figure 2, for an exemplar set of the parameters. We set external input to all the nodes, such that on average regardless of the recurrent syn-

aptic inputs and the neurons type, a fraction h = 0:001 of the neurons fire randomly at each time step. This is compatible with the brain net-

works where every population that represents a region of the brain, continuously receives external input from the other parts of the brain. We
4 iScience 27, 109401, April 19, 2024
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Figure 2. Emergence of the oscillatory dynamics

(A) Fraction of active excitatory nodes rE (blue dots) and inhibitory nodes rI (red triangles) and (B) fraction of active excitatory links 4E (green squares) and

inhibitory links 4I (violet stars) versus time t.

(C) Fraction of total active nodes r (dashed line) and active links 4 (dotted-dashed line) versus time t.

(D) Mean input current in the network and (E) normalized input current of a random node versus time t. The dotted horizontal line denotes normalized threshold

Dth and the black cross mark symbols represent times in which the neuron fires. Note the irregular firing of the neuron despite the collective oscillations. The

results are obtained on ER network with N = 5000, CkEinD = 400 and CkIinD = 100, wherein 80% of neurons are excitatory. Other parameters are h = 0:001,

dE = 5, dI = 7, and Dth = 4. The synaptic current of inhibitory links is 4 times greater than the excitatory ones.

See also Figure S1.
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also take dE < dI, which is an important criterion, as will be revealed later. Figure 2A shows the time course of the fraction of active E and I

neurons. It is observed that the behavior of rEðtÞ and rIðtÞ is similar and both show oscillations with variable time courses in different cycles.

The time course of the fraction of active E and I links are also shown in Figure 2B. Similar to the nodes, the fraction of active links oscillates in

time in a sustained way, but with variable time courses during different cycles. Notably, I links stay active for a longer time compared to E links

since dI > dE. For a better comparison, we have also shown the time course of the density of all the active (sum of the excitatory and inhibitory)

neurons rðtÞ and active links 4ðtÞ, in Figure 2C. The activity of the links follows that of the nodes with a time lag d = 1, as we expect. In addi-

tion, the maximum value of 4 is always greater than r (see section Dynamic details about the activation of nodes and links; Figure S1 for more

details). Assuming all the links are inactive, applying noise causes some random excitatory and inhibitory nodes to fire. Therefore, about

hNCkoutD synapses will be activated at the next time step, of which %80 are excitatory, and the rest are inhibitory. This recurrent synaptic input

increases the probability of the firing of the neurons that receive excitatory inputs, and more neurons are recruited by the active population.

Due to the high out-degree of the neurons, the whole network receives the recurrent inputs after one or two time steps and the activity of the

network rapidly increases. Since inhibitory synapses are four times stronger than the excitatory ones, 4E � 44I gives the average synaptic

input current to the neurons in the entire network. It is notable that despite the increase in the density of active synapses, the average value

of 4E � 44I remains around zero (see Figure 2D), as a result of dynamical balance in the network.58,59 Although the average input is almost

zero, individual neurons can receive net supra-threshold current and become activated, as is shown in Figure 2E. Later in the time course of a

cycle, the fraction of active nodes and links starts to decrease since dE < dI. Hence 4E decreases faster than 4I and the inhibitory input of neu-

rons considerably exceeds the excitation. Therefore, the chance of firing of the neurons dramatically decreases, which leads to the cease of

the activity of the network (see Figures 2C and 2D). The next cycle begins when the average input to the neurons approaches zero, and some

neurons in the network again can fire due to external input and supra-threshold input to the random individual nodes. Note that the spiking

activity of the neurons is irregular, and a representative neuron might fire multiple times or not fire in different periods of network oscillation

(Figure 2E).
Effect of external input: Types of activity patterns

As discussed in the previous section, the external input plays a major role in the dynamics of the network by activating a small fraction of the

neurons whose activity spreads in the network and initiates different cycles (see Sec. Introduction). Here, we investigate how the level of the

external input can lead to the activation of different numbers of neurons and drive the network to different dynamic states. We performed

the simulations wherein the fraction of externally activated nodes h changes in the interval between ð0;1Þ, while all other parameters are

kept fixed. Figure 3A shows rðtÞ over a 700 time steps for different values of h (increasing level of the external input) from top to bottom.
iScience 27, 109401, April 19, 2024 5
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Figure 3. Different activity regimes

(A) The fraction of active neurons rðtÞ in 700 time steps. From top to bottom, the noise intensity h increases which results in the emergence of four phases; silence,

intermittent, semi-periodic, and periodic. Parameters are set as dE = 5, dI = 7, and Dth = 4.

(B) The power spectrum of the network activity for the four phases shown in (A).

(C) Time course of r where two bursts and one inter-burst interval are highlighted with red and blue. The triangles, stars and squares indicate the start point, the

maximum value and the endpoint of each cycle, respectively. ai specifies the amplitude, wi is the duration, and Ti is the period of the ith activity.

See also Figure S2.
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When the external input is very small, the intensity of excitation is not enough to exploit more neurons and to initiate an activity cycle and the

network effectively remains in a ‘‘silence’’ phase. In this phase, only a few neurons randomly activate in each time step due to the external

input.

As the excitation input to the network increases, higher proportion of externally activated nodes rises the probability of the initiating an

activity cycle. These activity cycles typically appear in the bursts of activity each consisting of several cycles, similar to the bursts of sponta-

neous gamma oscillations in the brain.52,65–67 Bursts (a collection of activity peaks) appear randomly and are separated by ‘‘inter-burst pauses

(IBPs)’’, over which the activity is very low rðtÞz0. We call this regime of the activity an ‘‘intermittent’’ phase. For the lower values of h, the

bursts are separated by long inter-burst pauses and increasing the external input shortens the pauses and increases the duration of the bursts

(Figure 3A, second and third rows). This intermittent behavior manifests itself in the power spectrum as the appearance of a peak in high fre-

quencies, representing intra-burst fast oscillatory activity, and a broad peak in low frequencies representing inter-burst statistic that is the

appearance of the bursts in random, with a long timescale compared to intra-burst dynamics (Figure 3B, second and third rows). For hx

10� 3, the inter-burst interval approaches zero and bursts merge. This ‘‘semi-periodic’’ phase is characterized by the cycles of activity with var-

iable amplitude and time courses, as was shown in Figure 2. In this regime low-frequency peak in the spectrum, representing inter-burst dy-

namics vanishes. It is also notable that intra-burst frequency remains constant with increasing the external input and the period of the oscil-

lations within the bursts is not affected by the input in this range (Figures 3A and 3B, fourth row). Further increasing the input enhances the

regularity of the oscillations. In this phase, the amplitude of peaks is precisely the same and equal to the maximum value of rðtÞ = 1, and the

spectrum shows a pronounced peak indicating a regular ‘‘periodic’’ phase (Figures 3A and 3B, last row). In the periodic regime, the minimum

activity of the network, troughs of the oscillations, increases with the higher inputs, such that ultimately at h = 1 all the neurons remain active

i.e., rðtÞ = 1 at all the time steps, as expected.

Tobetter explore the different phases, we have shown the statistic of the bursts in the intermittent regime in Figure 4 and thoseof the cycles

in three different states in Figure 5. The distribution of the duration of the bursts and the pauses shown for three different values of the noise in

Figure 4 confirm the presence of the long IBPs for weak noises, and long bursts for strong ones. In both cases, the long tail of the distributions

suggests that the start and end of the bursts are the result of a stochastic process, which is further explained in section Dynamic details about

the activation of nodes and links (see Figure S1). These results show that the duration and the rate of the generation of the bursts are highly

dependent on the strength of the external noise. To explore the statistics of the cycles, we define attributes of period Ti, amplitude ai, and

duration wi for each activity cycle as demonstrated in Figure 3C. Distribution of these three measures during the oscillatory behavior in the

periodic, semi-periodic, and within the bursts in the intermittent phase is shown in Figure 5. Notably, the distributions shown in the first

two rows of Figure 5, indicate that the intra-burst oscillatory dynamics are quite similar to that of the semi-periodic state. Increasing the noise

in this range does not impact the properties of the cycles within the bursts and only alters the rate and the duration of the bursts (Figure 4).

These two states, intermittent and semi-periodic, are both characterized by the variability in the amplitude and the period of the oscillations’

cycles. This variability in the oscillatory activity decreases with further increasing the external input, leading to periodic dynamics observed in

the lowest row of Figure 3A and the third row of Figure 5. As shown in Figure 3B, our findings indicate that the wax andwane of high frequency

oscillations during the intermittent state contribute to the presence of a broadband peak in low frequencies. In contrast, previous studies have
6 iScience 27, 109401, April 19, 2024



A CB

Figure 4. Statistics of activity bursts in the intermittent phase

Distribution of duration of the bursts (red) and the inter-burst pauses (blue) in the intermittent phase with dE = 5 and dI = 7. The intensity of the applied noise is

increased from (A)–(C) as indicated on the top of each panel. The results are averaged over 10 realizations.
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proposed that other mechanisms such as adaptation or short term synaptic plasticity that operate in slower time scales, typically several hun-

dreds of milliseconds, underlie the generation of slow rhythms.68–71 In the other words, the slow and fast oscillations observed in these studies

are generated by distinctmechanisms. Notably, ourmodel lacks such distinctmechanismswith slow time scales and slow spectral components

are an emergent dynamical phenomenon resulted from the intermittent appearance of the bursts of the fast oscillations. Therefore, the peak in

the low frequencies in our model is only seen in the intermittent state (see the second and third rows of Figure 3B). Moreover, in our model the

relationship between the phase of slow oscillations (SOP) and the amplitude of the fast oscillations (FOA) is generic since the slow oscillations

are a result of the variable amplitude fast oscillations and they are not generated by a different mechanism. To show the relationship between

fast and slow oscillations in our model, we first identified low and high frequency components in the time course and in the spectrum of the

network activity in the intermittent state (Figures 6A and 6B). Then we showed the amplitude of the fast oscillations in different phases of the

slow oscillations and the corresponding distribution of amplitudes in Figures 6C and 6D, respectively. Non-uniform distribution of the FOA

with respect to the SOP is an indicator of the non-zero phase-amplitude coupling (PAC).54,72–74 We also show the dependency of FOA and

SOP for a broad range of external noise between 10� 5 % h% 10� 4, in which intermittent phase is observed, in Figure 6E. Notably, coupling

between the fast and slow oscillations is detectable for the whole range of intermittent phase.
Effect of synaptic time constants

In the above simulations, we assumed that the activity time of the inhibitory links is greater than the excitatory ones, i.e., dI > dE, compatible

with the typical values of the time constants of fast receptors of AMPAandGABAA.
75 For comparison, it is important to test the results for other

cases when the activity time of the excitatory synapses is equal to, or larger than the inhibitory ones. For dE = dI, the density of active nodes

behaves in a different way, andweobserve another phase, namely noisy oscillations, where the network activity fluctuates around amean value

with small amplitude (see supplementary). Figure S2A shows that the behavior of rðtÞ in this regime is almost independent of the noise ampli-

tude h. For all the values of noise amplitude, a distinguished frequency is observed in the power spectrum and the peak’s frequency does not

change with noise (Figure S2B). This behavior is a consequence of the balance betweenmean excitation and inhibition at all the time steps so

that only fluctuations in the net input can activate the nodes in the network. Furthermore, when dE > dI, (see Figures S2C and S2D) a periodic

phase is observed for almost the whole range of the external input level except for the case that the noise intensity is too low. The difference

between the behavior of the network with different relations between excitatory and inhibitory time constants is further explored by showing

different collective dynamical attributes in the three cases. In Figure 7 we have shown the power spectrum, and in Figure 8, the period, the

mean amplitude, and the mean density of the active neurons are shown in (a)-(c) versus h and for three different values of inhibitory time con-

stant in (e)-(f) versus dI for different values of noise. For dE > dI periodic behavior with constant frequency (period) and amplitude is observed in

all the range of the input, except for very small and very large values over which the system will be in the silence and in the fully active state,

respectively. Spectrum has a single pronounced peak in the oscillation frequency with zero component over other frequencies (Figure 7A).

Furthermore, over a wide range of input levels, the mean value of activity, the amplitude, and frequency of the oscillations are constant

and independent of the input (Figures 8A–8C). On the other hand, the nonzero spectrum of the network activity over a wide frequency range

(Figure 7B) indicates noisy oscillations for the case dE = dI, except for the extreme values of h that drive the network to silence and fully active

states. As is seen in Figures 8A–8C, in this case, the mean value of the activity, the amplitude and the frequency of the oscillations are again

independent of the input level over a wide range of h, and the amplitude is considerably smaller, compared to the case dE > dI. When dE < dI,

the intermittent and the semi-periodic states are also recognizable as is shown in Figure 7C. For both states, the spectrumhas components for

all the frequencies reflecting the irregularity of the dynamics, whereas for the intermittent state a broad peak in low frequencies, reflecting the

inter-burst statistics, is also apparent. Compared to noisy oscillations of the case dE = dI, here both the amplitude and the period of the os-

cillations are larger as seen in Figures 8A and 8B. Compatible with theoretical and simulation studies with conductance-based neuronal

models, our results (Figures 7C and 8A) show that the frequency of the oscillations is not significantly affected by the input level.56 The small

amplitude of the oscillations in the intermittent and semi-periodic states (the square and triangle symbols in Figure 8B) is indicative of the
iScience 27, 109401, April 19, 2024 7
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Figure 5. Analysis of the activity at different states

From left to right, histograms of amplitude, activity duration, and period respectively are shown for (A–C) intermittent, (D–F) semi-periodic and (G–I) periodic

phases. Parameters are dE = 5, dI = 7, and Dth = 4. The results are averaged over 10 realizations.

ll
OPEN ACCESS

iScience
Article
so-called sparse firing of the single neurons that are observed in the gamma oscillations.56 In these states, the firing of the neurons is not reg-

ular despite oscillatory activity at the network level. The irregular firing of sample neurons in this state is shown in the supplementary (Figure S3).

Notably, in the intermittent and semi-periodic regimen single neurons do not fire in every cycle of the oscillations and instead, over the time

windows that the inhibition and excitation are almost balanced (i.e., inhibition is not dominant in the network), they randomly fire due to the

random fluctuation of the single neurons input around zero. As noted above, the transition of the intermittent to semi-periodic state takes

place through the expansion and the merge of the oscillation bursts, therefore, changing input in this range (from 10� 5 to 10� 2) does not

significantly affect the properties of the oscillations as is seen in Figures 8A and 8B. However, the emergence of the regular oscillations (at

hx10� 2) is accompanied by a drop in the period and an increase in the amplitude of the oscillations right at the transition point. Moreover,

Figure 8C indicates that the mean value of active neurons, CrD, almost remains constant in the semi-periodic state, while rising in the intermit-

tent and periodic states with increasing the input level. In Figures 8D–8F we have also shown the dependence of the mean activity value, the

period and the amplitude of the oscillations to the inhibitory synaptic time constant. As is seen in Figure 8D the period of the oscillations in-

creases with dI almost linearly, for different values of the input level. This is in accordance with the previous results observed in the EI networks

composed of conductance-based model neurons.56 Moreover, the amplitude of the oscillations clearly shows the difference in the results for

three cases where dI is smaller than, equal to, or larger than dE . Notably, the small amplitude of the oscillations for very small dI (Figure 8E) is due

to the nonzero activity in the troughs of the periodic oscillations. For dI = dE small amplitude is a hallmark of the state of the noisy oscillations

seen in Figure 7 and for dI > dE oscillation amplitude depends on the input and resulting state of the network. Figure 8F also shows that in both

cases dI < dE and dI > dE, the mean value of active neurons decreases as the inhibition activity time increases.

The results presented in this section are summarized in Figure 9 where the dynamical state of the system is shown in the parameter space

including external noise and the inhibitory time constant. It is seen that the switching between the states of neural networks and biologically

relevant states of intermittent and semi-periodic oscillations with sparse firing of the single neurons is only observable when dE < dI. These

results highlight the important role of the biological observation that inhibitory synapses typically decay in a relatively longer time compared

to excitatory ones.76–81 With this criterion, plausible oscillations can be expected from the neural networks compatible with those seen in the

brain dynamics.

The validity of the results in more realistic models

Our model aimed to possess very basic properties of biological neural networks, leading to several structural and dynamical simplifications

in its construction. In this section, we examine the robustness of the main results against exemplar changes in the network structure and
8 iScience 27, 109401, April 19, 2024
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Figure 6. Phase amplitude coupling for the intermittent state

(A) The blue curve shows the fraction of active neurons rðtÞ in a window of 1600 time steps when h = 53 10� 5. The orange and green curves show the low and

high-frequency components of r, whose frequency range is depicted by the shaded area in the power spectrum of the activity shown in panel (B). The amplitude

of fast oscillation (FOA) at different phases of slow oscillation (SOP) is shown in panel (C). The non-uniform distribution of the mean amplitude of the fast

oscillations over different phases of the slow oscillations (panel (D)) is a hallmark of the coupling between the two variables. Such coupling can be observed

in a broad range of external noise h over which intermittent phase is observed, as is shown in panel (E).
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model parameters that make the model more representative of a realistic brain network. In the first experiment, we altered the connectivity

between the excitatory neurons. Previous experiments have indicated that the connectivity between excitatory neurons is sparser than

other types of connections (see e.g.,82). While in the main experiments all connection types were assumed to have similar probabilities,

here we reduced the probability of the E/E connections. The results shown in Figure S4 are qualitatively in line with those presented

in Figure 3. All activity regimes are present in the new variant of the model, and the only change is that the domain of intermittent regime

is smaller. Other properties of the model, including the frequency of the oscillations, remained unaltered compared to the main model

with equal probabilities of connections. In the next variant, we tested how changes in the network’s topology can affect the results. In

the main model, we assumed that the network’s connectivity is random (Figures 1A and 1B).3,27,60,62,83–89 Although this topology is a

good approximation for brain connectivity on small scales ((100 microns), it does not take into account the decrease in connection prob-

ability with distance,82 or the presence of long-range connections between different regions.90 To test how changes in topology affect the

results and to incorporate long-range connections, we constructed a small-world network by rewiring the excitatory connections in a reg-

ular network (see Figures S5A and S5B, and STAR Methods).91–98 The results shown in Figures S5C and S5D confirm that the primary find-

ings with random networks remain applicable in this alternative topology, as all regimes (silent, intermittent, semi-periodic, and periodic)

appear in the collective dynamics when changing the external drive. Another simplification in our model was that the inhibitory and excit-

atory conductance were assumed to maintain a constant value during synapse activity. However, after a typically sharp upraise, the conduc-

tance of biological synapses decays exponentially with a decay time constant that effectively specifies the duration of synapse activity. To

incorporate this fact in our model, we considered an exponential decay for synaptic activity with the decay time, instead of synaptic activity

time in previous sections (see STAR Methods). Figures S6 and S7 show different activity regimes on a random network for three cases of

dE < dI, dE = dI, and dE > dI. Similar to Figure S2A, we observe noisy oscillations with a smaller frequency that are independent of noise

amplitude when dE = dI. Furthermore, by comparing Figures S7C and S2C, for the whole range of external input level, only the periodic

phase is detected in the case of dE > dI. Accordingly, just like the simple model, different states including intermittent and semi-periodic

states are observed, as shown in Figure S6D, only when dE < dI. In summary, these experiments validate the main results of the manuscript

using more biologically realistic models. These findings help identify fundamental properties of neurons and synaptic connections that

contribute to the emergence of complex oscillations in the brain.
Dynamic details about the activation of nodes and links

In this section, we aim to explain how a sparse network consisting large number of neurons is activated by receiving a very small noise. Consid-

ering the interaction graph as an Erd}os–Rényi (ER) random network withN = 5000 and p = 0:1, we set external input to all the nodes as h =

0:001 such that, on average, four excitatory and one inhibitory neurons fire randomly at each time step. Regarding Figure S1A, let us assume

the neurons labeled with A to D and U are respectively the excitatory and inhibitory ones that fire at time t = 0. According to the model, all

outgoing links of the active neurons become active after a synaptic delay time d = 1. Given themean out-degree CkEoutD = CkIoutDx 500, about

lE = 2000 excitatory and lI = 500 inhibitory synapses become active at t = 1. Then with setting the threshold valueDth = 4, all those neurons

in the network that have in-going synapses from neuron A-D but not from neuron U, receive a minimum amount of input current to get acti-

vated (see nodes E and F in Figure S1B). The probability that we find such nodes is obtained by PðtÞ which is derived by regarding the con-

ditions for each time t. Deriving PðtÞ, about NPðtÞ neurons will fire at each time t as a result of synaptic current. Moreover, Nh neurons fire
iScience 27, 109401, April 19, 2024 9
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Figure 7. Spectral analysis of the different activity phases

Power spectrum of the density of active neurons versus noise intensity for different activity times of inhibitory synapses. The activation time of inhibitory synapses

dI is indicated on the top of panels (A)–(C), while dE = 5. Vertical dashed lines separate phases.
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directly due to the noise (for example see nodes G-J and V in Figure S1B) although some of themmay have been already activated because of

synaptic current. Consequently, at most, nEðtÞ = ½PðtÞ +h�NE excitatory and nIðtÞ = ½PðtÞ +h�NI inhibitory neurons have the chance to fire at

t. Here at t = 1, by employing binomial distribution we obtain P = C4
4C

1
0p

4ð1 � pÞ whereCa
b = a!

b!ða�bÞ!. The number of active excitatory and

inhibitory nods are also obtained as nE = 1+ 4 = 5 and nI = 0+ 1 = 1. To estimate the number of active links of type a at time t, we notice

that the number of active nodes in the previous time steps is an important variable. Given the rules governing synapse dynamics, active links

remain active for the time constant da. Hence, we need to take into account the number of active nodes at previous time steps between t � da

and t � 1. Therefore, we can estimate the maximum possible value of the a type active links as laðtÞ = CkaoutD
Pda

i = 1 naðt � iÞ. Consequently,
the fraction of active synapses of type a is alwaysmore than or equal to the active neurons fraction of that type:4aðtÞ = laðtÞ

L R raðtÞ = naðtÞ
N .We

also notice that if at time t a node whose links are active fires (due to noise or synaptic current) it does not affect the number of active links at

the next time step. Now according to the given description, we obtain lE = 4500 and lI = 1000 at t = 2. To estimate P at this time, we need to

consider that there are 4+ 5 = 9 excitatory and 1+ 1 = 2 inhibitory nodes whose out-going links have been already activated. Based on the

threshold value, only the following two types of neurons fire due to synaptic current:

� Nodes that have in-going links from at least four of nine E type nodes but not from the two inhibitory ones.
� Nodes that have in-going links from at least eight of nine excitatory nodes but from only one of the two I ones.

For the first and second items we obtain the probabilities P1 =
P9

b = 4 C
9
bC

2
0p

bð1 � pÞ11�b and P2 =
P9

b = 8 C
9
bC

2
1p

b+1ð1 � pÞ10�b,

respectively. Hence, ðP1 +P2 +hÞNE excitatory and ðP1 +P2 +hÞNI inhibitory neurons fire at t = 2 (see Table S1). Similarly, we can proceed

by estimation of the density of active nodes and links at each time t (Figure S1C). It is clear that in the interval between t = 1 to t = dE the values

of r and 4 increase. However, passing through the activation time of excitatory synapses, the number of excitatory nodes whose out-going

links are still active starts to fall. This results in a dramatic reduction in the number of active excitatory links, such that the net current within the

network becomes substantially negative (see Figure 2D). Hence, the chance of firing due to synaptic current reduces and both ra and 4a start

to decline. Notably, the number of neurons activated by noise is not big enough to increase ra and 4a dramatically. This reduction continues

until passing activation time of inhibitory synapses. Then, repeating the scenario, oscillations are formed periodically.

DISCUSSION

The study of oscillatory dynamics and the role of these oscillations in high-level brain functions has long been a focal point in brain sci-

ences.12–15,27–31,34–36 Brain oscillations provide a mechanism for the efficient and flexible communication between the brain areas that is

crucial for the high-level brain functions such as memory, perception, and motor functions.14–21 Disruptions in the normal patterns of os-

cillations can impair proper communication in the brain and contribute to a variety of brain and cognitive disorders.2,22–24 Neural oscilla-

tions arise from intricate interactions between neurons, which are mediated by a complex network of local and long-range synaptic con-

nections.2,12,56,88,99 Various neuronal and synaptic properties can influence the pattern of oscillatory activity in the brain by affecting the

electrical activity of neurons and synaptic connections. Given the high-dimensional parameter space of neuronal populations and the

multitude of factors that may contribute to the generation of oscillations, theoretical and simulation studies with simplified reduced models

are essential for understanding the role of different physiological constraints in rhythm genesis in the brain. In this work, our aim was to

introduce a computationally efficient discrete-time model that captures the essential aspects of biological neuronal networks, such as

neuronal excitability and synaptic dynamics. While previous studies have utilized similar discrete neuronal models based on excitable com-

ponents,45,46,48,49 they have struggled to reproduce the complex dynamics observed in biological neural networks. We sought to deter-

mine the minimal requirements for constructing a simplified model capable of capturing neural oscillatory dynamics. This research has
10 iScience 27, 109401, April 19, 2024
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Figure 8. Effect of noise and inhibition activity time on the activity of the neurons

The period of activities, the mean amplitude of cycles and the mean value of active neurons, (A–C) versus noise intensity h for different values of dI and (D–F)

versus inhibition activity time dI for different values of h. dE = 5 and the results are averaged over 10 realizations.

See also Figure S3.
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two main benefits: it provides insights into the essential properties of neural networks that contribute to rhythm generation and other

emergent collective states, and it establishes a lower limit on how much the model can be simplified and which properties can be dis-

carded when designing a minimal model. Our study highlights the importance of incorporating synapses with prolonged activity as addi-

tional dynamical elements in the model to replicate the collective dynamics observed in biological neuronal networks. To evaluate the

model’s applicability, we incorporated several basic biological constraints commonly used in simulating cortical local networks, such as

random connectivity, the fraction of excitatory and inhibitory neurons, and the balance between inhibition and excitation.56 Our results

demonstrate that despite its simplicity, the model can reproduce complex oscillations where the period of oscillations is determined

by the activity time of inhibitory synapses. This finding is consistent with previous computational and theoretical studies on gamma-

band oscillations.29,36,56,57,88 In addition, we utilized the model to investigate the role of a commonly overlooked constraint in simulating

cortical neural populations: the longer activity of inhibitory synapses compared to excitatory synapses. While recent studies have identified

very fast and strong inhibitory connections in the hippocampus,57,100 experimental evidence consistently supports the longer activity of

GABA-A receptors compared to AMPA receptors. By incorporating this constraint into our model, we were able to explore the advantages

of the slower activity of the GABA-A receptors and its impact on the dynamics of neural networks.75,101,102 Our observations revealed that

the emergence of different dynamical regimes and complex oscillations are critically dependent on this constraint. Specifically, we found

that the longer activity of inhibitory synapses compared to excitatory synapses is responsible for the appearance of oscillations with var-

iable amplitudes, and sparse firing of neurons within cycles, as well as the emergence of low-frequency broad-band oscillations that modu-

late the amplitude of faster oscillations. We demonstrated that removing this constraint eliminates some of the dynamical regimes in the

phase diagram of the model, resulting in a considerably simpler collective activity that is incompatible with that observed in biological

neuronal networks. Furthermore, our study revealed that external input serves as a control parameter that regulates the collective dy-

namics and transition of the network between various dynamical regimes. Importantly, the role of external input is only significant

when the time constant of inhibitory links is greater than that of excitatory links. By varying the parameters of inhibitory time constants

and noise levels, we constructed a phase diagram of the model and identified the range of parameters over which different states can

be observed. In comparison to commonly used conductance-based models, our model offers significant computational advantages.

This is because, in continuous time models, each millisecond is divided into multiple time steps, requiring numerous arithmetic operations

at each step depending on the model’s complexity.103 In our model, each time step is approximately equivalent to the duration of an

action potential, which is about one to two milliseconds. This significantly reduces computational costs, meanwhile, the simplicity of

our model allows for a more comprehensible interpretation of the observed dynamics (Figure S1), facilitating the elucidation of principles

governing different dynamical regimes in brain networks. In summary, we presented a neuronal network model based on the very funda-

mental properties of neurons and synapses: membrane excitability and prolonged synaptic activity. Our findings suggest that many fea-

tures of the brain’s complex dynamics emerge from the interaction of simple excitable neuronal models through non-instantaneous syn-

apses in the network. Due to its simplicity, our model allows for a detailed examination of the mechanism underlying the emergence and

disappearance of complex oscillations.
iScience 27, 109401, April 19, 2024 11



Figure 9. Phase diagram in the space h � dI

The phase diagram of the model as a function of noise h and time constant of inhibitory links dI while dE = 5.
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Limitations of the study

Achieving a balance between abstraction and biological realism in the neuronal models is a critical challenge for neuroscientists.104,105 Bio-

logically plausible neuronal models strive to closely mirror the physiological and anatomical characteristics of real neurons and neural circuits.

Thesemodels incorporate a wealth of biological data, including ion channel kinetics, synaptic dynamics, and network connectivity patterns, to

emulate the behavior of actual neurons.106 While biologically plausible models offer a more faithful representation of neural processes, they

often come with increased computational complexity and data requirements, making them less scalable for certain applications. Our study’s

model resides at the other end of the spectrum. Emphasizing simplicity and computational efficiency to capture essential neural and synaptic

activity, we implemented a highly abstract neuronal model. While suitable for theoretical exploration and large-scale simulations, our model

may overlook biological details and struggle to accurately replicate the complexities of real neural systems. Notably, our model lacks several

characteristic properties of biological neurons, such as adaptation, bursting, and refractoriness.103,104,107,108 Additionally, the biological syn-

apses we used in the model are far less complex than their real counterparts, which exhibit a wide range of weights and time constants, and

their efficacy can be altered through short- and long-term plasticity rules.109,110 However, themodel holds potential for incorporatingmore of

these properties in future iterations. Furthermore, the study’s predictions could be validated by utilizing models featuring biologically plau-

sible spiking neuronal networks.
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13. Buzsáki, G., and Chrobak, J.J. (1995).
Temporal structure in spatially organized
neuronal ensembles: a role for interneuronal
networks. Curr. Opin. Neurobiol. 5,
504–510.

14. Fries, P., Reynolds, J.H., Rorie, A.E., and
Desimone, R. (2001). Modulation of
oscillatory neuronal synchronization by
selective visual attention. Science 291,
1560–1563.

15. Fries, P., Womelsdorf, T., Oostenveld, R.,
and Desimone, R. (2008). The effects of
visual stimulation and selective visual
attention on rhythmic neuronal
synchronization in macaque area v4.
J. Neurosci. 28, 4823–4835.

16. Melloni, L., Molina, C., Pena, M., Torres, D.,
Singer, W., and Rodriguez, E. (2007).
Synchronization of neural activity across
cortical areas correlates with conscious
perception. J. Neurosci. 27, 2858–2865.
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50. Buzsáki, G., and Wang, X.J. (2012).
Mechanisms of gamma oscillations. Annu.
Rev. Neurosci. 35, 203–225.

51. Geisler, C., Brunel, N., and Wang, X.J.
(2005). Contributions of intrinsic membrane
dynamics to fast network oscillations with
irregular neuronal discharges.
J. Neurophysiol. 94, 4344–4361.

52. Susin, E., and Destexhe, A. (2021).
Integration, coincidence detection and
resonance in networks of spiking neurons
expressing gamma oscillations and
asynchronous states. PLoS Comput. Biol. 17,
e1009416.

53. Le Van Quyen, M., Muller, L.E., Telenczuk,
B., Halgren, E., Cash, S., Hatsopoulos, N.G.,
Dehghani, N., and Destexhe, A. (2016).
High-frequency oscillations in human and
monkey neocortex during the wake–sleep
cycle. Proc. Natl. Acad. Sci. USA 113,
9363–9368.

54. Lisman, J.E., and Jensen, O. (2013). The
theta-gamma neural code. Neuron 77,
1002–1016.

55. Belluscio, M.A., Mizuseki, K., Schmidt, R.,
Kempter, R., and Buzsáki, G. (2012). Cross-
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Buzsáki, G. (1998). Gamma frequency
oscillation in the hippocampus of the rat:
intracellular analysis in vivo. Eur. J. Neurosci.
10, 718–728.

67. Fernández-Ruiz, A., Oliva, A., Soula, M.,
Rocha-Almeida, F., Nagy, G.A., Martin-
Vazquez, G., and Buzsáki, G. (2021). Gamma
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Alireza Valizadeh

(valizade@iasbs.ac.ir).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The output of codes as data have been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in

the key resources table.

� All original codes has been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the key

resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

WeusedC++ for all numerical simulations. The network was composed ofN = 5000 neurons that 80 percent were excitatory. To create the ER

network, where nodes are connected randomly, we fixed the connection probability p which sets the mean value of incoming/outgoing syn-

apses such that CkD = ðN � 1Þp. To reproduce the ER network with different connection probability in each block of the adjacency matrix, we

changed the connection probability for each block separately. For the results shown in Figure S4, we set p = 0:05 for block E/ E while setting

p = 0:1 for the other blocks. But, tomaintain the samemean input as in Figure 3 for a more accurate comparison, we setAij = 2 for nodes 1%

i; j%NE (isj) which were linked, such that the synaptic input among excitatory neurons was twice stronger than that of E to I neurons. For a

k-regular structure, we first fixed the number of in-going links in a diagonal block a/a for each node as ka/a, as well as the exact number of

out-going links in blocks a/b (a;b˛ fE;Ig), namely ka/b, based on the desired degree. Then for diagonal blocks, putting the excitatory

nodes on a circle as well as inhibitory nodes on another circle, each node was connected to its ka/a=2 nearest neighbors on each side,

and also to the nodes directly opposite. The same was applied for connecting the nodes of opposite types regarding ka/b=2 for the anti

diagonal blocks. It is worthwhile to mention that since the number of excitatory nodes was four times of inhibitory ones, we set kI/E =

4kE/I to obtain a balanced structure. A schematic representation of the adjacency matrix of such a network, consisting four k-regular blocks

of E/E, E/I, I/E, and I/I, is shown in Figure S5A. Certainly, all nodes have uniform incoming excitatory and inhibitory links, as well as

identical outgoing links of type E and I, respectively for E and I nodes. Then, we proceeded tomodify the structure of block E/ E to resemble

a small-world network by adding some new links randomly (see Figure S5B). For a balanced structure, it was important to set parameters care-

fully; e.g. for a k-regular network with a small-world excitatory block andN = 5000, Cki;Ein Dz400, Cki;Iin Dz100; we set kE/E = 330, kI/I = 100,

kE/I = 100, and kI/E = 400, then new random excitatory links were created in block E/E with a probability of 0.02. We denoted the state

of node i at time t with piðtÞ˛ f0; 1g such that pi = 1 (0) for a firing (resting) neuron. Also, in the implementation code, the state of a type a˛
fE; Ig link from node i to jwas indicated with a counterCjiðtÞ at time t, such that 0<Cji % da if the link was active and otherwiseCji = 0. Based

on the external input, respectively hNE excitatory and hNI inhibitory neurons became active at t = 0 randomly. Increasing time, the state of

links was updated according to the pre-synaptic nodes state or links counter as follows. IfCjiðt � 1Þ = 0 and piðt � 1Þ = 1, thenCjiðtÞ = 1. In

the case that 1%Cjiðt � 1Þ< da, we set CjiðtÞ = Cjiðt � 1Þ+ 1, and links with Cjiðt � 1Þ = da became inactive such that CjiðtÞ = 0. Once
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updating links counters, the input current of nodes was obtained based on active in-going links. If the total input of node i was more than the

threshold, then piðtÞ = 1. We also made some nodes active randomly as a result of external input based on the h value. Then, the density of

active excitatory and inhibitory neurons at time twould be rEðtÞ = 1
N

PNE

i = 1 piðtÞ and rIðtÞ = 1
N

PNI

i = 1 piðtÞ, respectively. It was also possible to

obtain the density of active links, i.e. 4E and 4I, by counting links whose counter value was not zero. The code was run for at least tmax = 25000

time steps. The main output of the simulation was a tmax33matrix where columns denoted the time, rE , and rI , respectively from left to right.

To replicate the results for an exponential decay for the synaptic input shown in Figures S6 and S7, while we regarded da initially as the acti-

vation time steps of an a type synapse (Figure 1D), here we considered da as the decay time constant of active links (see Figures S6A–S6C).We

assumed that when a synapse became active at time t = 0, the post-synaptic neuron received an amount of 1 and � 4 units of input on that

time through excitatory and inhibitory links, respectively. Then, for the subsequent time steps, the synaptic input decayed as exp� t=dE and

� 4 exp� t=dI . Here t was a discrete value corresponding to the time step ranged between zero and a cut-off value which we set such that

the excitatory input current became close to zero. Finally, we imported the output into Python to analyze the power spectrum of the network

activity. Using Numpy, we calculated the population frequency by applying fast Fourier transform (FFT) to r and recording the frequency with

the highest spectral power. Additionally, we analyzed the characteristics of activity cycles at different states by determining the start point,

end point, and maximum value of each cycle. As shown in Figure 3C, we defined the width of each activity as the time interval between two

consecutive start and end points, while the amplitudewas identified as themaximum value of rwithin this interval. Additionally, we calculated

the burst period as the time interval between the start and end points of the first and last activity cycles within a burst. The silence periods were

determined as the time interval between the end and start points of two adjacent bursts. We also utilized the Scipy library to examine the

phase amplitude coupling of the intermittent state. To start, we used functions signal.firwin and signal.filtfilt to obtain high- and slow-fre-

quency oscillations in the frequency ranges of interest (see Figure 6B). Then, SOP and FOA were extracted from the Hilbert transformation

of slow and fast oscillations, respectively (see ref.74).
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