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ABSTRACT

The organs of a eudicot flower are specified by
four functional classes, termed class A, B, C and
E, of MADS domain transcription factors. The com-
binatorial formation of tetrameric complexes, so
called ‘floral quartets’, between these classes is
widely believed to represent the molecular basis of
floral organ identity specification. As constituents
of all complexes, the class E floral homeotic pro-
teins are thought to be of critical relevance for the
formation of floral quartets. However, experimental
support for tetrameric complex formation remains
scarce. Here we provide physico-chemical evidence
that in vitro homotetramers of the class E floral
homeotic protein SEPALLATAS3 from Arabidopsis
thaliana bind cooperatively to two sequence ele-
ments termed ‘CArG boxes’ in a phase-dependent
manner involving DNA looping. We further show
that the N-terminal part of SEPALLATAS3 lacking
K3, a subdomain of the protein-protein interactions
mediating K domain, and the C-terminal domain,
is sufficient for protein dimerization, but not for
tetramer formation and cooperative DNA binding.
We hypothesize that the capacity of class E MADS
domain proteins to form tetrameric complexes
contributes significantly to the formation of floral
quartets. Our findings further suggest that the
spacing and phasing of CArG boxes are important
parameters in the molecular mechanism by which
floral homeotic proteins achieve target gene
specificity.

INTRODUCTION

Homeotic selector genes are key regulators during
development that determine the identity of whole organs
or segments. Prominent examples are the Hox genes
that manifest positional information along the anterior—
posterior axis of animals (1,2). In plants, homeotic selector
genes specifying floral organ identities—so called floral
homeotic genes—are especially well studied. Initially,
three classes A, B and C of floral homeotic genes have
been identified by mutant analysis (3,4). How the com-
binatorial interaction among these different classes of
floral homeotic genes governs organ identity is explained
by the ABC model, according to which class A genes
alone determine sepal identity, class A and class B genes
together specify petal identity, class B and class C genes
together govern stamen (male reproductive organ) devel-
opment and a class C gene alone determines carpel (female
reproductive organ) development (3,4). In Arabidopsis
thaliana, the class A genes are APETALAI (API) and
APETALA2 (AP2), the class B genes are APETALA3
(AP3) and PISTILLATA (PI) and the only class C gene
is AGAMOUS (AG) (5-9). With the exception of AP2,
all of these genes encode MADS domain transcription
factors.

Although class A, B and C floral homeotic genes are
necessary for floral organ development, ectopic expres-
sion experiments showed that they are not sufficient to
fully induce floral organ formation outside of the flower
(10-12). This indicated that other factors involved in
the determination of floral organ identity remained to
be discovered (10). Indeed, reverse genetics analysis in
A. thaliana revealed yet another group of largely redun-
dant MADS box genes, termed SEPALLATAI (SEPI),
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SEP2, SEP3 and SEP4 (also known as AGL2, AGL4,
AGL9 and AGL3, respectively), as being important
denominators for the identity of all floral organs (13,14).
Because the term ‘class D genes’ was meanwhile assigned
to genes important for ovule development, the SEP genes
were defined as ‘class E genes’ (15). Simultaneous disrup-
tion of SEPI, SEP2 and SEP3 leads to the development
of sepals rather than petals, stamens and carpels (hence
the name ‘SEPALLATA’) (13), while the complete disrup-
tion of the class E gene function (in sepl sep2 sep3 sep4
quadruple mutants) leads to the transformation of all
floral organs into vegetative leaves (14). Strikingly, ectopic
expression of the class E gene SEP3 together with class B
genes, or with class B and class C genes, in Arabidopsis
leads to the development of leaf primordia into petaloid
or staminoid organs, respectively, implying that these
combinations represent the set of master control genes
sufficient to direct stamen and petal development (16).
Similarly, ectopic expression of SEP2 together with AP3
and PI leads to a partial conversion of cauline leaves into
petals, and constitutive expression of SEP3 and SEP2
together with AP1, AP3 and PI leads to a nearly complete
conversion of rosette leaves into petals (17).

It was also shown that the class E floral homeotic
protein SEP3 interacts with the class B proteins AP3
and PI in yeast three-hybrid assays (16). Furthermore,
evidence was presented suggesting that the class B proteins
DEFICIENS and GLOBOSA from Antirrhinum majus
(snapdragon) bind in a complex together with the class
A-related protein SQUAMOSA to DNA probes contain-
ing two appropriate cis-regulatory DNA elements, so
called CArG boxes (for ‘C-Arich-G’, consensus sequence
5-CC(A/T)sGG-3) (18).

These findings all support the ‘floral quartet model’,
suggesting that higher order complexes of MADS
domain proteins specify the identity of the different floral
organs (15,19). The floral quartet model predicts that the
genetic interactions hypothesized by the ABC model
are molecularly manifested by the formation of tetrameric
protein complexes that include class E floral homeotic
proteins. According to the quartet model, these tetrameric
complexes are formed by binding of two MADS domain
protein dimers to two nearby CArG boxes and loop-
ing of the intervening DNA (15,19). In this way, com-
plexes of two AP1 and two SEP molecules specify sepals,
complexes of AP1, SEP, AP3 and PI specify petals, com-
plexes of SEP, AP3, PI and AG specify stamens and
complexes comprising two SEP and two AG molecules
specify carpels (15,19,20). Intriguingly, at least one SEP
molecule is present in each of these complexes. Mean-
while, even more tetrameric MADS complexes have been
described or predicted for other kinds of organs and
tissues, such as ovules, the endothelium and the floral
meristem (21-23), again always containing at least one
SEP molecule.

Due to their predicted ubiquitous presence in floral
homeotic protein complexes, SEP proteins are of special
interest for further research. Among the four SEP pro-
teins of A. thaliana, SEP3 is the one that is characterized
best (14,16,17,21,23,24). Accumulating evidence suggests
that the SEP genes are not completely redundant and

Nucleic Acids Research, 2009, Vol. 37, No. 1 145

that SEP3 has a developmental role more prominent
than that of the other SEP genes. For example, one
copy of SEP3 is sufficient to promote ovule development
in a sepl sep2 background, whereas one copy of SEPI
or SEP2 fails to promote ovule identity in a sep2 sep3
and sepl sep3 background, respectively (21). Also for
floral organ development, SEP3 might be more critical
than other SEP proteins. The sep3 mutants, for example,
resemble intermediate apl/ mutants with a partial con-
version of petals into sepals (24), whereas in sepl sep2
sep4 triple mutants floral organ development is like in
the wild type (14).

In addition, yeast two-hybrid and yeast three-hybrid
screens with AP1 or AP3-PI as bait proteins identified
SEP3 but not other SEP proteins as interaction partners
(16,24). Moreover, SEP3 has a transcriptional activation
potential that exceeds that of SEP1 and SEP2 (16).

A more prominent role of SEP3 compared to the other
SEP proteins is in line with phylogenetic studies suggesting
that a duplication near the base of the angiosperms about
300 million years ago gave rise to two SEP lineages, one
that contains SEP3 and another one that underwent at
least two more duplication events resulting in SEPI,
SEP2 and SEP4 (25). Thus, SEP3 evolved much longer
than the other SEP genes and may thus during this time
have acquired functions that distinguishes it from the
other SEP genes.

Taken together, ample evidence suggests that SEP3 is
the most important class E floral homeotic protein, with
functions in floral meristem identity (23,24), floral organ
identity (13,14,17) and ovule development (21,22). It thus
appears timely to analyse the biochemical properties of
SEP3 and how it interacts with DNA. This is especially
evident as some essential assumptions of the floral quartet
model—the stoichiometry of the protein complexes, the
number of CArG boxes being involved and the looping
of DNA to bring them into close vicinity—have not been
confirmed experimentally yet, so that other mechanisms
of floral homeotic protein function cannot be excluded
(26,27).

Here, we use an in vitro approach to determine the
protein—-DNA interaction properties of SEP3. By using
different suitably designed DNA fragments, we were able
to reveal several unexpected intrinsic binding characteris-
tics of SEP3. It turned out that homotetramers of SEP3
alone can bind cooperatively to two CArG boxes in a
phase-dependent manner involving DNA looping, thus
supporting some of the major tenets of the floral quartet
model. Our findings suggest that quartet formation does
not require the interaction of different floral homeotic
proteins but is facilitated by an intrinsic capacity of
SEP3 to tetramerize.

MATERIALS AND METHODS
Cloning of SEP3 and SEP3AK3C

The SEP3 and SEP34K3C cDNAs (GI:2345157) were
amplified via PCR and cloned into pTNT (Promega;
Mannheim, Germany) using EcoRI and Sall recognition
sites. SEP34C was cloned into pSPUTK using Ncol and
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EcoRI recognition sites. The C-terminally truncated pro-
teins SEP3AK3C and SEP3AC have a length of 152 and
188 amino acids, respectively, in contrast to the wild-type
protein, which is 251 amino acids long.

DNA binding site probes

The CArG box sequence used in this study was derived
from the regulatory intron of AGAMOUS (sequence
5-GAAATTTAATTATATTCCAAATAAGGAAAGTA
TGGAACGTT-3/, the CArG box is underlined) (22). The
respective double stranded oligonucleotide was cloned
into both the Sall- and EcoRV recognition sites of
pBluescript II SK(+). The 5-overhangs produced by
Sall digestion were treated with Klenow enzyme prior to
blunt-end cloning. Digestion with Xhol and Xbal yielded
a DNA fragment containing two CArG boxes spaced by
63 bp. Probes containing one CArG box only were con-
structed by cloning an oligonucleotide that had the same
base composition as the oligonucleotide carrying the
CArG box but in a randomized order into either the
Sall or EcoRV site and the oligonucleotide encoding
the CArG box into the remaining site. Digestion with
Xhol and Xbal yielded a DNA fragment on which the
CArG box was more peripherally (when cloned into
the Sall recognition site) or more centrally (when cloned
into the EcoRV recognition site) located.

Sequencing revealed that the orientation of the oligonu-
cleotide with the randomized base composition cloned in
the Sall site was reversed compared to the oligonucleotide
cloned in the EcoRYV site, but this was assumed to be of no
relevance for the experiments performed and the conclu-
sions drawn.

To construct probes in which the phasing between the
two CArG boxes varied, linker sequences of different
length were introduced into Clal/HindIII sites between
the two CArG boxes. Radioactive labelling was performed
according to standard protocols (28).

Sequences of the oligonucleotides used can be found in
Supplementary Table S1.

In vitro translation and electrophoretic mobility shift assays

In vitro translation was done using the SP6 TNT
QuickCoupled Transcription/Translation mix (Promega).
After in vitro translation, proteins were either used directly
for electrophoretic mobility shift assay (EMSA) or shock-
frozen in liquid nitrogen and stored at —70°C. In some
experiments °S-methionine was used for radioactive
labelling of proteins. The binding buffer used for gel retar-
dation was similar to the one decribed by Egea-Cortines et
al. (18). Briefly, for the protein—-DNA binding reaction,
3ul of a binding buffer containing 5.6 mM EDTA pH 8,
1.2 ug/ul BSA, 36 mM HEPES pH 7.2, 3.6mM DTT,
690ng salmon sperm DNA, 5.2mM spermidine, 10%
(w/v) CHAPS and 17.2% glycerol was incubated with
various amounts of protein and a DNA probe in a total
volume of 12-13 ul. For inferring cooperative binding,
amounts of in vitro translated protein used were usually
0.05pul, 0.1 pl, 0.2 pul, 0.4 ul, 0.6 ul, 0.8 ul, 1.2 ul, 1.5, 2 pl,
3ul, 4pl, 6l and 10 pl. For other analyses (phasing, cir-
cular permutation and stoichiometry) generally between

0.4ul and 4pl of in vitro translated proteins, depending
on the signal intensity desired, were used. Concentration
of the DNA probe was generally <0.1 nM. When unla-
belled DNA was used, concentration was between 10 nM
and 40 nM. Variations in the amount of in vitro translated
protein added were compensated by adding according
volumes of BSA (10 pg/pl). Protein and DNA were co-
incubated for at least 5h on ice in the binding cocktail
to allow the reaction to reach equilibrium. Ten microlitres
of the binding reaction were loaded on a 0.5x TBE
polyacrylamide gel that was pre-run for about 30 min.
Gel run was performed at 7.5V/cm for about 4h. After
gel drying, the signals were analysed by autoradiography
or phosphorimaging.

Calculation of cooperativity constants

To estimate cooperative binding, we used equations essen-
tially as described (29,30):

1

[Yol = 5 1
1+ (2/Kq1)[P2] + (1/(Kq1 Ka2))[P2]

[Ys] = (2/Ka1)[P] i 5
1+ (2/Kq)[P2] + (1/(Kq1 Ka2))[P2]

Y] (1/(Ka1 Ka)[P2]* 3

T 1+ (2/Ka)[Pa] + (1/(Ka1 Ka))[PT

[Yo], [Y>] and [Y4] describe relative concentrations of
DNA configurations in which no, two or four proteins
are bound to the DNA fragment. Ky, is the dissociation
constant for binding of a protein dimer to one of the two
CArG boxes (dissociation constants for protein binding to
either of the two identical CArG boxes were assumed to
be the same). Ky, denotes the dissociation constant for
binding of a protein dimer to a DNA fragment on
which one CArG box is already occupied (Figure 1B).
As the proteins were produced by in vitro translation,
the exact protein concentration is not known. We there-
fore used the amount M of in vitro translation mixture
added to the binding reaction as a proxy for the concen-
tration of protein dimers [P,] by assuming that

[P2] = a[M], 4

where a is a constant of proportionality. This implies
that [P,] increases linearly with [M]. This approximation
seems to be justified by the reasonable fit of our data to
the graphs produced. (R? values usually were between 0.85
and 0.99, except for the [Y,] graphs of SEP3 and SEP3AC,
where they varied between 0.51 and 0.77, probably due to
difficulties to quantify the weak signals. If, what rarely
happened, gel quantification was so difficult that one of
the graphs yielded an R? value <0.5, these gels were
excluded from the analysis.)

We also calculated Kg4;/K4, ratios by assuming that
the concentration of protein monomers [P] rather than



that of dimers increases linearly with the amount of
in vitro translation mixture added, i.e.

[P] = b[M], 5

where b is a constant of proportionality. Dimerization
prior to DNA binding was incorporated in Equations
(1-3) by making the substitution

[P’

p,] = 1 6
[P>] Ky’

thus yielding

1
Y/ =
Yol=17y (2/Kar)[PF+(1/(Kqr Kax )[PT* ’
2
[Yy] = (2/§d1’)[P] . 8
1+ (2/Ka)[P]"+(1/(Kar Kq2))[P]
B (1/(Kai Ka2))[P)*
[Y4’] - 2 40 9
1 + (2/Ka)[P]"+(1/(Kar Ka2))[P]
with
Ky = Kq1 Ky 10
Kay = K Kg; 11

In most cases, the fit Equations (7-9) yielded were not
as good as the ones obtained with Equations (1-3) as
judged form the R* values of the individual graphs. For
some cases of SEP3AK3C, the fit obtained with Equations
(7-9) yielded higher R* values than that obtained with
Equations (1-3) (data not shown). However, the resulting
Kq41/Kg4> ratios obtained for these data sets were always
smaller when using Equations (7-9) compared to the
ones obtained with Equations (1-3), and therefore rather
increased the difference seen in cooperative binding
between SEP3 and SEP3AC compared to SEP3AK3C.
We therefore consider our approach to calculate Ky;/Kq>
ratios by always using Equations (1-3) as a conservative
estimate with respect to the differences between the differ-
ent Kq,/Kq4> values.

Data obtained from the gel shift experiments were fitted
to the equations with the systemfit package implemented
in R 2.6 (R development core team 2007).

Circular permutation analyses

Probe preparation was done as described (31). About
10005000 c.p.m. of labelled DNA was used per binding
reaction. Sequence of the oligonucleotide encoding the
CArG box that was cloned into the Sall/Xbal site of
pBend2 (32) can be found in Supplementary Table S1.
Bending angles were calculated as described (33-35).
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Bimolecular fluorescence complementation analyses

Bimolecular fluorescence complementation (BiFC) ana-
lyses were performed as described (36,37). Pictures shown
were taken 3—4 days after Agrobacterium infiltration using
a fluorescence microscope equipped with appropriate
filter cubes. Signals were also checked using a confocal
laser scanning microscope.

DNase I footprinting

Protein—-DNA incubation was performed as described
for EMSA. About 10000 c.p.m. of DNA labelled accord-
ing to standard protocols (28) and 5-10 pl of in vitro trans-
lated protein were used per reaction. As for the EMSA
analyses, the total reaction volume was 12-13 pl. After
incubation, 2 ul DNase I (~5U/ul in 9mM HEPES, pH
7.2, 30mM MgCl,, SmM CaCl, and 0.1 mg/ml BSA) were
added and incubated on ice for 30s. The reaction was
stopped by addition of 1ul 500mM EDTA. Free DNA
was separated from protein—-DNA complexes on a native
5% polyacrylamide gel. After gel run, bands were excised,
the DNA eluted and resolved on a sequencing gel. After
gel drying, the signals were analysed by phosphorimaging.

The A + G ladder was prepared by chemical sequencing
essentially as described (38).

RESULTS

Four SEP3 proteins bind cooperatively to a DNA
fragment carrying two CArG boxes

We used EMSAs to determine the stoichiometry of a
SEP3-DNA complex. It is known that MADS domain
proteins bind as dimers to DNA sequences termed
CArG boxes [consensus sequence 5-CC(A/T)sGG-3']
(31,39-47). To test whether this also applies to SEP3, we
incubated a mixture of a full-length and a C-terminal trun-
cated (SEP3AC) in vitro translated SEP3 protein with a
DNA fragment carrying one CArG box (Figure 1A). The
sequence of the CArG box was derived from the regula-
tory intron of AGAMOUS (see Materials and methods
section). If both SEP3 and SEP3AC bind as homodimers
to DNA, an intermediate shift representing the SEP3-
SEP3AC heterodimer should be observed when both are
applied together. Figure 1A shows that one intermediate
shift can indeed be observed (band 2b’), indicating
that SEP3 binds as a dimer to a DNA fragment carry-
ing one CArG box. However, when a probe carrying
two CArG boxes is used, five additional complexes
(Figure 1A, bands ‘4a—4¢’) can be resolved when full-
length and C-terminal deleted SEP3 are mixed. This is
likely caused by the binding of four SEP3 proteins to
this DNA fragment (Figure 1A). However, in these
assays it cannot be distinguished whether two dimers
bind independently to the two CArG boxes, or whether
a tetramer binds to both CArG boxes by looping the
intervening DNA (Figure 1B). A striking feature of protein
complexes that loop DNA is cooperativity in protein-DNA
assembly (48). Additional EMSAs were therefore per-
formed to examine whether SEP3 binds cooperatively to
DNA.
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Figure 1. Stoichiometry of SEP3 protein-DNA assembly. (A) EMSA in which full length (‘SEP3’) and C-terminal deleted SEP3 (‘SEP3AC’) were co-
incubated at different ratios obtained by mixing plasmid templates in ratios of 0:1, 1:5, 1:3, 1:1, 3:1, 5:1 or 1:0. Per reaction, 2 ul of in vitro translated
protein was used. DNA fragments carried either one or two CArG boxes (orange bars) as depicted at the bottom of the gel. Proteins applied are
noted above the gel. AP3, that alone is not expected to bind to DNA, was used as a negative control. In lanes where no free DNA (marked by ‘0’) is
visible, proteins were labelled instead of DNA for the sake of band resolution. Signals obtained with radioactively labelled DNA are shown on the
right and on the left for comparison. Bands are marked with numbers (‘0’, 2 and ‘4’) according to the number of proteins bound to the DNA
fragment; lowercase letters are used to differentiate between complexes composed of different proteins. The inferred complex composition is shown
on the right. Full length proteins are shown in green, truncated ones in yellow. ‘M’ denotes marker lanes in which a radioactively labelled DNA
ladder (100-bp DNA ladder, NEB) was applied. All signals were obtained from a single gel, but exposure time for lanes containing radioactively
labelled DNA fragments was different from the rest. (B) Proposed mechanism of MADS domain protein-DNA assembly. Binding of the first protein
dimer to a CArG box is characterized by the dissociation constant Ky, binding of the second dimer is characterized by the dissociation constant Kgs.
Binding of the second dimer can be independent of binding of the first dimer, or cooperative and involving DNA looping.

Cooperativity in a two-site system is best examined
if both binding sites are bound with equal affinity (29).
In order to meet this criterion, we used a suitably designed
DNA fragment containing the same CArG box twice. To
ensure that binding affinity to these sites is the same, we
calculated binding isotherms from EMSAs with probes
in which either of the two CArG boxes was replaced by
a randomized sequence of the same nucleotide compo-
sition (Supplementary Figure S1). Both isotherms were

nearly identical, thus confirming equal affinity of binding
to both CArG boxes (Supplementary Figure S1).

For measuring cooperativity, increasing amounts of
in vitro translated protein were incubated with a DNA
fragment carrying two CArG boxes that are spaced by
six helical turns (assuming 10.5bp per helical turn, i.e.
63bp, as measured from CArG box centre to CArG
box centre). Surprisingly, a complex consisting of four
SEP3 proteins was readily detected while only a small
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Figure 2. Analysis of cooperative DNA binding of SEP3. (A and B) Examples of EMSAs used to determine cooperative DNA binding of SEP3.
Different protein concentrations were added to a DNA probe carrying two CArG boxes. (A) A DNA probe carrying two CArG boxes spaced by 6
helical turns was used. (B) Spacing between the CArG boxes was 6.5 helical turns. Comparing the gel pictures shown in (A) and (B), the difference in
cooperative binding is evident by the stronger signal caused by a DNA-bound SEP3 dimer (2°) in (B). (DNA fragments to which a single SEP3
dimer is bound migrate more slowly at increased protein concentration possibly due to higher glycerol concentrations in these samples.) For size
comparison, a SEP3 dimer bound to a probe containing only one CArG box is shown always on the left. Quantitative analysis showing the fractional
saturation of the different bands (circles: free DNA; triangles: one dimer bound; squares: two dimer/tetramer bound) is shown below each gel picture.
Binding curves were calculated as described in Materials and methods section. (C) Phase dependence of the formation of the SEP3-DNA complex.
The binding cocktail contained 0.4 pl of in vitro translated protein. Signals resulting from complexes bound to probes containing one CArG box are
shown in the leftmost lanes. A dimer bound to a CArG box peripheral located on the DNA fragment is indicated by 2’, whereas ‘2" indicates a
dimer bound to a CArG box centrally located on the DNA fragment. The difference in migration of the two complexes results in part from the
ability of SEP3 to bend DNA. Below the gel picture, quantitative analysis of homotetramer formation is shown. Fractional saturation of the signal
intensity caused by the homotetramer is expressed as percentage of the fractional saturation of the homotetramer bound to the CArG boxes spaced
by 6 helical turns. Band assignment is as in Figure 1.

fraction of DNA was bound by a single SEP3 dimer In general, computational and experimental analyses
(Figure 2A). In these experiments, single SEP3 dimers indicate that—if the protein-DNA interactions are
did bind <20% of the total DNA per lane, a clear hall- weak—the observed pattern can also be obtained for a

mark of a cooperative protein—-DNA interaction (29,49). completely non-cooperative system (50). This is because
Quantitative analysis of the signals indicated that the singly bound complexes tend to dissociate more easily
relative dissociation constant for binding of a SEP3 than doubly bound complexes during gel run and hence

dimer to the CArG box is around 80-fold decreased give unrepresentative weak signals (50). To study whether
when one dimer is already bound to the neighbouring considerable complex dissociation occurs during gel run,
CArG box (Table 1). we analysed binding of SEP3 to a DNA fragment
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Table 1. Domain structure of SEP3 [positions where SEP3AC and
SEP3AK3C have been truncated are indicated (amino acid positions
in brackets)] and apparent Ky /Ky, ratios determined for the different
proteins binding to probes containing two CArG boxes spaced by 6 or
6.5 helical turns

SEP3AK3C SEP3AC
(152)  (188)
| ]
[maps | 1 | K [ c |

K1 K2 K3

CArG boxes separated
by 6 helical turns

CArG boxes separated
by 6.5 helical turns

Kd]/KdZ Kdl/KdZ
SEP3 83 (£15) SEP3 10 (£0.8)
SEP3AC 89 (£34) SEP3AC 9.6 (1)
SEP3AK3C 3.2 (£0.5) SEP3AK3C 3.5 (£0.2)

The Kgy1/Kg4p ratios represent the mean of at least three independent
experiments; standard errors are given in brackets.

containing one CArG box. It is assumed that the dis-
appearance of free DNA is independent of complex dis-
sociation and thus a more reliable estimator of binding
strength (51). Independent analysis of binding curves
obtained for bound and unbound DNA fragments
should thus yield similar Ky values if no complex disso-
ciation occurs (29). With our experimental setup, we esti-
mated that Ky values differed around 2.5-fold or less when
analysing bound and unbound fragments separately
(Supplementary Figure S1). This indicates that only little
complex dissociation occurs during gel run and that the
attenuation of the dimer band observed when a fragment
carrying two CArG boxes is incubated together with SEP3
is indeed largely due to cooperative binding.

Cooperative binding of SEP3 is phase-dependent
and involves DNA loop formation

Cooperative binding of proteins to two distant DNA sites
can in principle be achieved by at least two mechanisms.
Cooperativity can result from alterations in DNA struc-
ture after protein binding to one site that in turn facilitates
binding to the second site. Alternatively, cooperativity is
mediated by direct protein—protein interactions between
the proteins bound to the two sites, requiring DNA loop-
ing when the distance between the DNA sites is greater
than the radius of the proteins.

To distinguish between these possibilities in case of
SEP3 binding to CArG boxes, we employed the fact that
cooperative protein—DNA interactions are expected to
critically depend on the stereco-specific alignment of the
respective cis-regulatory DNA elements in case direct
protein—protein interactions are involved (48,52). In the
experiments shown in Figure 2A, the CArG boxes were
spaced by 6 helical turns (63 bp). Hence, SEP3 dimers
bound to the two CArG boxes are expected to directly
face each other. In contrast, increasing the spacing from

6 to 6.5 helical turns rotates one site with respect to the
other half a turn around the helical axis. Loop formation
would now require twisting the DNA so that the two sites
face each other again. This is energetically costly and
decreases the frequency of loop formation (48,52,53).

Indeed, cooperativity significantly dropped when the
spacing between the CArG boxes was increased from
6 to 6.5 helical turns (68 bp) by inserting five nucleotides
in the intervening region (Figure 2B, Table 1). Cooper-
ativity was to a large extent re-established, however,
when the distance between the CArG boxes was increased
to 7 helical turns (74bp) (Figure 2C). In general, this
stereo-specificity in binding was confirmed for distances
between the CArG boxes from 6 to 9 helical turns in
increments of half helical turns (Figure 2C). These data
strongly suggest that a quartet of SEP3 proteins binds
cooperatively to two appropriately oriented cis-regulatory
DNA elements by looping the intervening DNA.

Further evidence that a SEP3 tetramer binds to its
target sites by DNA looping is provided by DNase I foot-
print analyses. As DNase I preferentially cuts sequences
located in widened minor grooves and hence is sensitive to
structural changes of the DNA, footprints have success-
fully been used to show DNA looping upon protein
binding (48,52). Probing a complex consisting of four
SEP3 proteins bound to DNA with DNase I yielded a
digestion pattern that resembles that observed for other
cases of protein-induced DNA loops (48,52). The two
CArG boxes are protected, while the intervening region
shows a characteristic pattern with sites of enhanced and
diminished DNase I sensitivity. Sites of similar differential
sensitivity are spaced in ~10-bp intervals, so that they
all come to lie on one side of the DNA helix (Figure 3).
This supports our conclusion that SEP3 homotetramers
loop DNA upon binding to two distant CArG boxes.

Deletion of the K3 subdomain impairs cooperative
binding and looping of DNA

Floral homeotic MADS domain proteins have a modular
structure, comprising the DNA-binding MADS domain
followed by the intervening- (I-), keratin-like (K-) and
C-terminal domain (Table 1) (54-57). The K domain
and the C-terminal domain are thought to be involved
in mediating protein—protein interactions (58). We used
two truncated versions of the SEP3 protein to study
which domains are required for tetramerization of SEP3
upon DNA binding. As described above, in SEP3AC
almost the whole C-terminal domain [as defined in Ref.
(55)] is deleted, while SEP3AK3C also lacks K3, a subdo-
main of the K domain (Table 1). The EMSAs and BiFCs,
respectively, indicated that both of the truncated versions
are capable of binding to DNA as dimers in vitro, as well
as of dimerization and nuclear translocation in planta
(Figures 4 and 5). However, while SEP3AC is indistin-
guishable from the full-length protein in terms of coopera-
tive DNA binding, SEP3AK3C shows a clear reduction
in cooperativity (Figure 4A and B, Table 1). Also, stereo-
specific DNA-binding was observed for SEP3AC, but not
for SEP3AK3C (Figure 4).
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Figure 3. DNase I footprint assays. SEP3 or SEP3AK3C was incubated with a DNA probe carrying two CArG boxes spaced by 6 helical turns. For
SEP3AK3C, but not for SEP3, a complex with one dimer bound could be obtained at sufficient signal intensity and thus was also analysed on the
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DNA as a reference after correction for differences in DNA-loading by using invariable bands as an internal standard. The region protected by full-
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In addition, sites of enhanced and diminished sensitivity
in DNase I footprints, as observed for SEP3, were not
observed for SEP3AK3C (Figure 3).

Many MADS domain proteins show the capability to
bend DNA. This could, in principle, facilitate loop forma-
tion. We therefore determined the bending angles induced
by SEP3 and SEP3AK3C using circular permutation ana-
lysis. Bending was not severely impaired in SEP3AK3C,

with distortion angles of around 51° and 57° for SEP3 and
SEP3AK3C, respectively (Figure 6).

DISCUSSION

Here we provide data strongly suggesting that four mole-
cules of the class E floral homeotic protein SEP3 bind
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shown for SEP3 (fused to the N-terminal part of YFP) co-expressed with
SEP3AC (fused to the C-terminal part of YFP). This might be due to
steric hindrance of the C-terminal domain. Scale bars, 100 pm.

cooperatively to DNA fragments carrying two CArG
boxes by looping the intervening DNA. This shows that
SEP3 has the intrinsic ability to constitute quartet com-
plexes and to generate protein-induced DNA loops, as has
also been predicted for floral quartets.

Loop formation and target gene specificity

In our experimental setup, the accurate stereo-specific
alignment of the CArG boxes was an essential prerequisite
for cooperative binding of SEP3. We also found that the
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Figure 6. Circular permutation analysis of DNA distortions induced by
SEP3 and SEP3AK3C. The gel picture shows EMSAs with SEP3 and
SEP3AK3C bound to circularly permutated probes. In vitro translated
SEP3 and SEP3AK3C of 4pul and 2 pl, respectively, were used. DNA
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bar. In the diagram below the gel, the complex mobility is plotted
against the relative position of the CArG boxes. Bending angles repre-
sent the means of at least four different experiments (standard error in
brackets). Band assignment is as in Figure 1.

formation of tetrameric complexes declines with increas-
ing distance between the CArG boxes (Figure 2C). This is
in line with theoretical studies predicting that the prob-
ability of loop formation is highest when the span of the
protein complex is similar to the contour length of the
DNA and decreases rapidly with an increased distance
between the binding sites (59). This is interpreted to be
the result of the low elastic bending energy required to
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bring the protein dimers together over these short dis-
tances; the energy increases with higher distances between
the binding sites (59) and thus results in lower looping
probabilities. Also, the ability of SEP3 to bend DNA at
the binding site (CArG box) might, although to a minor
extent, affect the optimal size of a DNA loop and thus
could at least partly be responsible for the decline of
complex formation with increasing distance between the
CArG boxes.

Precedent cases from other eukaryotic systems suggest
that the phasing and spacing of cis-regulatory binding
sites is also of relevance in vivo (60-63). Furthermore,
given the close relationship of floral homeotic MADS
domain proteins, we are confident that the phase- and
distance-dependent DNA binding of SEP3 homotetramers
serves as a general model of how floral homeotic protein
complexes interact with DNA. If so, it would set con-
straints on the arrangement of CArG boxes in target
gene promoters and hence may be an important factor
of how target gene specificity is achieved. Indeed, in
some target gene promoters of MADS domain proteins,
CArG boxes are clustered as in our experiments; for exam-
ple, two of the three CArG boxes in the GLO promoter of
A. majus are spaced by 5.1 helical turns (54 bp), two of the
three CArG boxes in the AP3 promoter are spaced by
7 helical turns (73bp) and the two CArG boxes in
the CRABS CLAW promoter are spaced by 8.2 helical
turns (86 bp) (41,64-66). There is evidence that these
CArG boxes are indeed bound by MADS-type floral
homeotic proteins in planta (41,65-67).

However, besides these relatively small DNA loops, it is
conceivable that much bigger MADS domain protein-
induced DNA loops are formed in vivo, and that factors
not considered here, such as nucleosomes (chromatin
structure), might influence the formation of floral quar-
tets. In line with this, the two CArG boxes in GA4, a target
gene of AGAMOUS, are spaced 1500 bp from each other
(67). It thus remains a goal for future research to study
the relevance of the positioning of CArG boxes to each
other in vivo, for example by transgenic reporter gene
assays in which the distance between two CArG boxes
is systematically varied. Moreover, whether a promoter
region involving two or more CArG boxes has a looped
DNA conformation in vivo could be determined employ-
ing chromosome conformation capture or a related tech-
nique (68,69).

On the biological significance of SEP3 homotetramers

Whether SEP3 functions only in heteromeric complexes
such as those described by the floral quartet model, or
whether also homotetramers of SEP3 have a function in
planta is not clear so far. Even though there is no conclu-
sive evidence that SEP3 has any function independent of
other MADS box genes, the available data certainly also
do not exclude such a function. As detailed above, SEP3 is
in several respects functionally distinct from the other
SEP genes; it is thus quite conceivable that SEP3 homo-
tetramers might be of biological relevance at some stage
and/or in certain tissues during flower development.

One function could be in increasing developmental
robustness. Using plants ectopically expressing SEP3
under control of the CaMV 35S promoter (35S::SEP3),
it was shown that SEP3 is sufficient to activate class B
and class C floral homeotic genes in leaves (23).
Although SEP3 is usually not required for the initial acti-
vation of class B and class C floral homeotic genes, as
these are normally expressed in sepl sep2 sep3 triple
mutants (13), a redundant and normally masked function
of SEP3 in the activation of floral homeotic genes might
increase the robustness of a critical developmental process,
i.e. flower formation. At stage 1 of floral development in
A. thaliana, the class A gene AP, among others, is acti-
vated by LEAFY (70-72). Afterwards, SEP3 is activated
at stage 2 (13,73), so that AP1 and SEP3 can now interact
to promote floral meristem identity (23,24), probably by
activating the floral organ identity genes, AP3, Pl and AG,
at stage 3 in parallel to the activation by LEAFY. It is
conceivable, therefore, that SEP3 tetramers provide a
redundant means of floral homeotic gene activation that
becomes of critical importance when, during development,
other factors such as LEAFY are not available at a suffi-
cient concentration, for example because of stochastic
events during gene expression.

However, even if SEP3 homotetramers do not have a
function in planta, we find it likely that the ability of SEP3
to bind cooperatively to DNA by DNA looping could be
of considerable importance for floral quartet formation.
SEP proteins are involved in many processes during flower
development, and they might serve as molecular bridges
that integrate other floral homeotic proteins in quartet
complexes. Along these lines, the ability of SEP3 to bind
cooperatively to DNA might be of importance. In general,
cooperative DNA binding of transcription factors is
regarded to be of high relevance in many developmental
processes. For the BICOID protein from Drosophila, for
example, cooperative binding is essential for establishing
sharp expression boundaries of some target genes and
hence for the morphogenic function of BICOID (74). It
has therefore been proposed that cooperative DNA bind-
ing is crucial for transcription factors to act as develop-
mental switches (75). The angiosperm flower is a highly
compressed structure in which different floral organs have
to be specified reliably in tight vicinity to each other in a
temporally controlled manner. We thus hypothesize that
cooperative binding—conferred to quartet-like complexes
by SEP proteins—constitutes essential developmental
switches during flower development.

Role of the K3 subdomain in higher order complex formation

We have shown that deletion of the C-terminal domain
does not impair cooperative DNA binding of SEP3, while
additional truncation of subdomain K3 leads to a clear
reduction in cooperativity (Figure 4, Table 1). This indi-
cates that the domains M, I and K are sufficient for coop-
erative DNA binding of SEP3, and that K3 is required for
cooperative DNA binding, at least in the absence of the
C-terminal domain. Whether the C-terminal domain could
substitute for K3 in terms of cooperative binding remains



to be tested using internal deletion constructs in which K3,
but not the C-terminal domain, is removed.

The K3 subdomain is predicted to form an amphipathic
a-helix (55,76). Neither dimerization nor DNA bending
is severely affected in the K3-deleted version of SEP3
(Figures 4-6). For SEP1, as well as for other floral homeo-
tic proteins, it has been demonstrated that the K3 subdo-
main is not involved in DNA binding (44,77,78). Rather,
it has been suggested that K3 is involved in mediating
protein—protein interactions between floral homeotic
proteins [Ref. (58) and references therein]. Taken together,
these data support our conclusion that two DNA-bound
SEP3 dimers can undergo direct protein—protein inter-
actions, and that the K3 subdomain is directly involved
in mediating protein—protein interactions between the
dimers, but not in DNA bending or in protein—protein
interactions between SEP3 monomers.

We are just beginning to elucidate the chemical and
physical details of MADS domain protein interactions
with DNA. Future research will tell us how representative
our findings with SEP3 are for floral homeotic proteins
in general. This again will help us to better understand
developmental switches during flower development at
the molecular level.
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