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a b s t r a c t

The eruption of COVID-19 at the beginning of 2020 has sounded the alarm, making experts pay more
attention to public health emergency events. A suitable emergency response plan plays a vital role
in handling emergency events. Therefore, this paper focuses on the evaluation of emergency response
plans among a set of group in the comprehensive prospect, and an emergency decision making method
integrated with the interval type-2 fuzzy information based on the third generation prospect theory
(PT3) and the extended MULTIMOORA method is proposed. Individuals express their preferences using
some given linguistic terms set. Furthermore, considering the conflicts may occur in the group, a
convergent iterative algorithm is designed for group consensus reaching. Then, the stochastic multi-
criteria acceptability analysis (SMAA) method and the Borda Count (BC) method are generated to
combine the results instead of the dominance theory in MULTIMOORA system. Finally, based on the
background of the COVID-19 pandemic from Wuhan, a case study about the selection of emergency
response plan and the corresponding sensitivity and comparative analysis are exhibited to explain the
effectiveness of the proposed method.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Emergency events refer to any situation arising from sudden
nd unforeseen catastrophe that may cause casualties, economic
osses, environmental damage, and serious social harm [1]. In
hina, kinds of emergency events have had severely negative
mpact on people’s life and social development, especially for
he public health emergency events, e.g. the outbreak of SARS in
003, the Wenchuan Earthquake in Sichuan, China on May 12,
008. Recently, the new corona virus (COVID-19) in the end of
019 caused huge loss of lives and properties. More seriously, the
onfirmed and suspected cases of COVID-19 have been increasing
ithout ending not only in Wuhan, Hubei Province, but also
hina and the world. As early as January 30, 2020, the World
ealth Organization (WHO) announced COVID-19 as the eruption
public health emergency of international concern. In the mean-
hile, China declared a travel quarantine of Wuhan and other 16
ities, encompassing a population of 45 million [2]. By October 18,
021, a total of 4,512 fatalities and 68,303 laboratory-confirmed
ases had been reported in Hubei Province. With the continu-
us exponential increase of the number of pandemic cases, the
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Chinese government has taken powerful preventive measures
followed by the highest level of class A infectious diseases based
on the Law of the People’s Republic of China on Prevention and
Treatment of Infectious Diseases (LPTID) [3]. China has imposed
strict restrictions on public activities containing a large number of
people, thus reducing the possibility of virus transmission, which
exists a negative impact on economy development and caused the
unemployment on a certain scale.

Therefore, researchers proposed the corresponding emergency
response plans to minimize destructive consequences for people’s
healthy life and the normal development of society. Apparently,
decision makers (DMs) from emergency department are sup-
posed to select the suitable and desirable emergency response
plan when tacking with these devastating hazards. Generally
speaking, the assessments of emergency response plans are com-
plicated, owing to the uncertain and partial information of the
catastrophic scenarios and the multi-perspectives of DMs. Hence,
many researchers have focused on this topic and made great
contributions [1,4–9]. For instance, Hämäläinen et al. [1] used
a multi-attribute utility theory analysis in a simulated nuclear
emergency, Levy and Taji [4] discussed the hazard planning and
emergency management in the group analytic network process
(GANP). Ferreira et al. [5] presented a new urban fire emergency
plan assessment method using the integrated geographical in-
formation system (GIS) tool. Shamim et al. [6] integrated the

https://doi.org/10.1016/j.asoc.2022.108812
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elphi technique with a mathematical model to qualify the per-
ormance of emergency planning response (EPR) in a real case
f a major accident in the process industry. Liu et al. [9] dealt
ith the decision making in emergency response plans about the
imulation of H1N1 infectious diseases based on Fault Tree Anal-
sis. These studies mentioned above provided various decision
aking methods for the selection of the optimal emergency re-
ponse plan. Whereas, in the existing literatures about emergency
esponse plans evaluation, the characteristics of the DMs are
eldomly considered. It is worth noting that the decision making
rocess in emergency events tend to be vague and uncertain
ue to the inadequate information. A substantial body of psy-
hological studies on human behaviors show that DMs incline to
xpress the reference dependence, preference reversal and other
ypical characteristics in the circumstance of fuzzy and uncertain
vents [10–13]. Hence, the psychological behaviors of DMs should
e taken into consideration.
Since, Kahneman and Tversky [10] introduced the alternative

odel, named prospect theory (PT) to replace the expected util-
ty theory considering human behaviors, the behavioral decision
aking theories showed rapid development, such as the regret

heory [14]. Afterwards, they extended the original PT called
umulative prospect theory (CPT) with using the cumulative de-
ision weights [12], inspired by the rank and sign dependent
tility(RSDU) by Luce and Fishburn [15]. Then, Schmidt et al. [13]
ounded that both PT and CPT have a common limitation: the
eference points in the prospects are supposed to be certainties,
hich cannot be applied to solve this type of situations: DMs
urchased lotteries and had the chance to sell or exchange them.
ence, they expanded these theories and proposed the third
eneration prospect theory (PT3), which retained the power of
revious version of PT and increased new proposals: the value-
aximal buying prices (WTP) and minimal selling prices (WTA).

t is easy to see that PT3 has the wider range to solve various de-
cision making problems in risk and uncertain environment [16–
18]. For instance, Wang et al. [17] constructed the three-way
decision model based on PT3 and Z-numbers to solve the task
ssessment in human–machine collaboration. Feng et al. [18]
pplied PT3 to illustrate the reduced demand of U.S. corn and
oybean producers. Thus, the idea to incorporate PT3 into the
assessments of emergency response plans deserves more atten-
tion. Simultaneously, one should consider the features of public
health emergency events affected by time series. The conse-
quences caused by COVID-19 are changed over time. Wuhan
switched from a high-risk area in March into a low-risk area
in June. Hence, the time factor is supposed to be considered
for the formation and updating of dynamic reference points. We
introduce the prediction method of reference points in the time
line referred in [19], which proposed a parsimonious formula to
predict reference points.

Furthermore, in a real emergency scenario, DMs often face the
incomplete and fuzzy information, which means DMs prefer to
make judgments on linguistic terms than single numbers in the
complex situations. Then type-2 fuzzy sets (T2FSs) is regarded
as the ideal tool to qualify terms, which offers capabilities to
handle higher level uncertain problems. In light of the compu-
tational complexity mathematical calculation, researchers intend
to choose interval type-2 fuzzy sets (IT2FSs), known as the special
type of T2FSs [20–26], which are characterized by the member-
ship values of numerical intervals, the benefits of IT2FSs can be
summarized as: IT2FSs are the extension of type-1 fuzzy sets
(T1FSs), they can handle higher degrees of uncertainty and am-
biguity when the preference information expressed linguistically.
Moreover, IT2FSs are relatively simpler among the higher order
fuzzy sets [22]. As a result, in this proposed model, the linguis-

tic terms set in the form of IT2FSs is served as the evaluation

2

systems for DMs. Meanwhile, the evaluation of emergency re-
sponse plans by a set of DMs can be viewed as multiple criteria
group decision making (MCGDM) process. Some integrated haz-
ard assessments using GANP [4], fuzzy analytic hierarchy process
(FAHP) [27], multiple multi-objective optimization by ratio analy-
sis (MULTIMOORA) [28] and other multi-criteria decision making
(MCDM) methods see in [27,29]. Among these approaches, MUL-
TIMOORA, initially introduced by Brauers and Zavadska [30], is
an effective decision making method for the benefits of com-
putational time, the simplicity and stability for mathematical
calculations [31]. There are wide applications of MULTIMOORA
method, for instance, the green supply chain management [32],
healthcare management [33] and other field referred in [34].
Since [30] first proposed the Multi-Objective Optimization by Ra-
tio Analysis (MOORA) method, which contained two major parts:
Ratio System (RS) and Reference Point Theory (RPT). Afterwards,
the Full Multiplicative Form (FMF) method is considered, then
the MULTIMOORA (MOORA plus FMF) method is constructed
in [35], which derives the three subordinate rankings. At present,
there are abundant ranking aggregation techniques to fuse these
results [24,32,36], the dominance theory is the classical integra-
tion tool in the initial MULTIMOORA method [35]. Furthermore,
other aggregation tools are proposed to take place the theory
which emerge the better robustness. For instance, Celik et al. [24]
applied the dominance directed graph, rank position method and
the Borda Count (BC) method [37] to integrate the three results.
Besides using the improved BC method as the fusion tool, Mi
et al. [32] applied the stochastic multi-criteria acceptability anal-
ysis (SMAA) to increase the stochastic uncertain factors for the
input of MULTIMOORA. The more fusion tools on MULTIMOORA
method refer to Ref. [36]. Inspired by these above studies, we
choose the improved BC method to aggregate the three subor-
dinate methods, instead of adding the rankings of these three
methods directly, we consider the integration of the utility values,
which are based on the cardinal numbers and further conform
the Arrow’s opinion [38], that is, a cardinal utility implies an
ordinal preference but not vice versa. Besides, considering the
advantages of SMAA in dealing with uncertain problems, we
introduce the combination of SMAA and MULTIMOORA by dis-
turbing the weights of criteria. SMAA is an efficient method to
deal with decision problems where little or no weight informa-
tion is available, which is suitable to assist DMs for tackling the
corresponding criteria weights of emergency response plans. The
detailed content on SMAA refers to Refs. [39–41]. Hence, in this
study, owing to the randomness and contingency of emergency
events, we integrate SMAA method with MULTIMOORA method
to form the extended MULTIMOORA method to deal with the
issue of information uncertainty in the assessment of emergency
response plans.

Furthermore, in the evaluation process of emergency response
plans, all DMs should reach consensus to avoid conflicts and
obtain higher-quality decision result with timely feedback [4,42].
Generally, there are two steps to reach group consensus: (i)
aggregate individual decision information into a group decision
result, and (ii) verify whether the result have reach consen-
sus, if not, use the relative algorithm to modify the group de-
cision result. Moreover, different distance functions are usually
applied to reflect consensus measures in [43,44]. In this paper,
a standard Euclidean-based distance measurement is proposed
to calculate the degree of group consensus. Simultaneously, the
distance threshold is given as referred to Refs. [43,45] and the
corresponding convergent iterative algorithm is put forward to
modify the group decision result. Hence, on the basis of con-
sidering group consensus, we combine the IT2FSs, PT3, and the
extended MULTIMOORA method to construct the evaluation sys-

tem of emergency response plans in the group set. Then a novel
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T2FS-PT3 with the extended MULTIMOORA method in a group
mergency response plan evaluation is proposed.
To emphasize the reasons for the novel combination of IT2FS,

T3 and MULTIMOORA method, it can be illustrated as follows:
onsidering that it is difficult to acquire enough essential infor-
ation in real emergency events and the evolution of diseases

s hard to estimate. Thus, it is unreasonable for DMs to assign
he accurate numerical assessments to the emergency response
lans. Hence, we apply the linguistic terms to assist DMs to
ake evaluations with IT2FSs served as the quantitative tool. In

he meanwhile when dealing with catastrophes, PT3 has a good
erformance in dealing with the subjectivity of decision making
rocess. Furthermore, the dynamic reference points suit well to
he timeliness of emergency events. In the end, it is vital to choose
n effective MCDM method and the reasonable establishment of
he relative criteria weight due to the huge pessimistic impact
rought by emergency events, the MULTIMOORA method is more
obust and objective from integrating three utility functions than
ther MCDM methods, such as AHP in [46], TOPSIS in [46], VIKOR
n [47], etc. In addition, SMAA method can be used with uncertain
riteria preference information [41].
Based on the above discussion, the major contributions of the

roposed model can be summarized as follows.

• We take into consideration the personality characteristics of
DMs, then introduce the PT3 combined the extended MUL-
TIMOORA method to make assessments to the emergency
response plans. In detail, we associate the time line with
the setting of dynamic reference points, which is in line
with time factor of emergency events and the SMAA method
is applied to randomize the criteria weight to increase the
stability and robustness of the final ranking results.
• We apply the linguistic evaluation matrix to make DMs

more flexible in expressing their preferences, and for the
qualification of the IT2FSs-based linguistic terms in PT3,
there are six possible cases to construct the corresponding
prospect matrix. Meanwhile, we design a standard Euclidean-
based distance formula to measure the level of agreement
between the individuals and the group, the relative conver-
gent consensus iterative algorithm is given as well.
• We present an emergency response plan assessments case

based on COVID-19 erupted in Wuhan, China. The corre-
sponding risk states can be referred from Wuhan Munici-
pal Health Commission (wjw.wuhan.gov.cn), which further
illustrates the effectiveness and practicality of this method.

The remainder of this paper is arranged as follows. Section 2
riefly exhibits the knowledge about IT2FSs, PT3 and the extended
ULTIMOORA method. Section 3 describes the main model of

his paper and the solution procedures of the optimal emergency
esponse plan selection. Section 4 gives a case study on COVID-19
nfectious diseases to demonstrate the feasibility of this proposed
odel. In the meanwhile, sensitivity analysis and comparative
nalysis are taken into consideration as well. Section 5 presents
further discussion. Finally, Section 6 summarizes conclusions,

imitations, and future studies.

. Preliminaries

In this section, the basic concepts about IT2FSs, PT3 and the
xtended MULTIMOORA method are briefly discussed.

.1. Interval type-2 fuzzy sets

IT2FSs, served as a kind of special T2FSs have a wider ap-
lication for its computational simplicity [48]. The important
ssociated concepts are given as below.
3

Fig. 1. An example of the IT2FS MF in a 3-D plane.

Definition 1 ([49]).. Let ˜̃A be a general T2FS, characterized by
type-2 membership function (MF) µ ˜̃A

in the universe of discourse
X it can be expressed as follows.

˜̃A =
∫
x∈X

∫
u∈Jx

µ ˜̃A
(x, u)/(x, u) (1)

here Jx is the primary MF, satisfied 0 ⩽ Jx ⩽ 1, µ ˜̃A
(x, u) = 1

stands for the secondary MF with 0 ⩽ µ ˜̃A
(x, u) ⩽ 1 and

∫∫
·

epresents the union contained all admissible x and u.

Definition 2 ([49]).. If all µ ˜̃A
(x, u) = 1 then, an IT2FS can be

expressed as follows.

˜̃A =
∫
x∈X

∫
u∈Jx

1/(x, u) Jx ∈ [0, 1] (2)

where Fig. 1 displays an example of IT2FS MF in a 3-D plane,
which the construction of IT2FS is intuitively presented, and the
lower MF (LMF) and upper MF (LMF) of the IT2FS are type-1 MF,
respectively.

Definition 3 ([50]).. Let cl and cr be the left and right end-points
of the centroid of an IT2FS satisfying the following equations.

cl = min
∀θ (xi)∈[µ̄˜̃A(xi),µ˜̃A(xi)]

∑N
i=1 xiθi∑N
i=1 θi

(3)

and

cr = max
∀θ (xi)∈[µ̄˜̃A(xi),µ˜̃A(xi)]

∑N
i=1 xiθi∑N
i=1 θi

(4)

where x ∈ X , θ (xi) (i = 1, . . . ,N) is the value of MF ˜̃A IT2FS,
µ̄˜̃A(xi) is the value of LMF of the IT2FS and µ˜̃A(xi) denotes the
UMF, which can be seen in Fig. 1. We can find the optimal values
of cl and cr by KM algorithm, for the detail procedures about KM
algorithm see in [51].

Remark 1. In order to better understand the operation mecha-
nism of IT2FSs, there exhibits a numerical example for illustration
with its MFs in Fig. 1: The IT2FS ˜̃A = ( ˜̃AL, ˜̃AU ) = ((aL1, a

L
2, a

L
3, a

L
4,

H( ˜̃AL), (aU1 , aU2 , aU3 , aU4 ,H( ˜̃AU )))), where ˜̃AL and ˜̃AU are the TIFSs,
and aL1, a

L
2, a

L
3, a

L
4, a

U
1 , aU2 , aU3 , aU4 are the reference points of ˜̃A on x

axis, and H( ˜̃AL),H( ˜̃AU ) ∈ [0, 1] represent the membership values
in the LMF µ̄˜̃A(x) and UMF µ˜̃A(x) respectively. In Fig. 1, aU1 = 1,

aL1 = 2, aL2, a
U
2 = 3, aL3, a

U
3 = 5, aL4 = 6, aU4 = 7, H( ˜̃AL) = 0.4 and

H( ˜̃AU ) = 0.8.
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.2. Third generation prospect theory

There are some prerequisites about PT3 are given as follows.

efinition 4 ([13]).. Let S = {si|i = 1, 2, . . . , n} be a finite state
pace, containing the states PI = {πi ≥ 0,

∑
i πi = 1|i =

, 2, . . . , n} be the objective probability set associated with S,
= {xi|i = 1, 2, . . . , n} is the result of state under probability

I , F be the set of all acts, and acts f , h ∈ F are the functions
rom S to X , satisfied f (si) ∈ X , h(si) ∈ X , where h is the reference
ct of f , the value function used in the PT3 can be expressed in
he following form.

(f , h) =
{
(f (si)− h (si))α f ≥ h
−σ(h (si)− f (si))α f < h

(5)

where the parameters α and σ are strictly positive, and α as-
ociated with the curvature of the value functions of gain and
osses, σ is the risk-aversion parameter, which controls the DMs’
ttitudes to gain and loss.

efinition 5 ([19]).. Let N = {1, . . . , i, . . . , n} be the time series
et, Y = {y1, . . . , yi, . . . , yn} be the outcome set in the time
line, and πn,i be the relative weight function of outcome yi. The
reference point rn+1 in period n + 1 can be calculated in the
ollowing form.

n+1 = ρ +

n∑
i=1

πn,iyi (6)

where ρ is a built-in parameter, the estimate value of ρ in [19] is
5.2. And

∑n
i=1 πn,i = 1, πn,i represents the weight information of

i−th time, which can be expressed as a weighting function w( 1n )
and Eq. (6) can be in the following form as well.

rn+1 = ρ +

n∑
i=1

[
w
(

i
n

)
−w

(
i− 1
n

)]
yi (7)

where the weight function w(·) can be any continuous and in-
creasing function with w(0) = 0 and w(1) = 1. Through the
xperiments in [19], the specific form of w(·) is represented in
q. (8).

(x) = e−(−Inx)γ /ξ (8)

where the value of γ is 0.2 and 0.26, the value of ξ is 0.9, 1.7 and
.1, from Fig. 2, it can be intuitively see that the shape of w(x)
s reverse S-shaped, with steep sides and quite flat in the middle
nd the parameter γ determines the curvature of w(x), while the
arameter ξ controls the elevation of w(x).

Definition 6 ([13]).. Let m+be the number of the states of weak
gains, N be the total number of states and m− = N −m+ be the
umber of the states of strict loss. The decision weight function
(si, f , h) assigned to state si when f is evaluated from h in PT3

can be represented as follows.

w(si, f , h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w+ (πi) i = N

w+

⎛⎝∑
j≥i

πj

⎞⎠− w+
(∑

j>i πj
)

m− + 1 ≤ i < N

w−

⎛⎝∑
j≤i

πj

⎞⎠− w−
(∑

j<i πj
)

1 ≤ i ≤ m−

w− (πi) i = 1
(9)

4

Fig. 2. Curve of w(x) where x ∈ [0, 1].

where w+(·) is the probability weight function for the gain do-
ains and w−(·) is the probability weight function for loss do-
ains, according to the Ref. [11], the form of w+(·) and w−(·) are
enoted as follows.

+(πi) =
(

π ε

π ε + (1− π )ε

)1/ε

(10)

−(πi) =
(

π δ

π δ + (1− π )δ

)1/δ

(11)

where ε and δ are model parameters controlling the shape of the
weighting function.

Remark 2. For any f , h pair, there is a weak gain in a state si if
f (si) ≥ h(si), and a strict loss if f (si) < h(si).

efinition 7 ([13]).. Let M be the set of weak gains, G denotes the
trict loss. The prospect value of PT3 can be expressed as follows.

(f , h) =
∑
i∈M

v (f , h)×w (si, f , h)−
∑
i∈G

v (f , h)×w (si, f , h) (12)

Thus, the function V (f , h) can be applied to construct the
rospect value matrix of each DM.

.3. The extended MULTIMOORA method

In this subsection, the major part in MULTIMOORA method is
resented. Furthermore, the SMAA method [39] and BC method
37,52] are applied to replace the dominance theory to deter-
ine the final ranking results, where the BC method is named
nd proposed by the French mathematician and physicist Jean-
harles de Borda [53], which is inspired the voting paradox first
ntroduced by Condorcet [54]. BC method can be regarded as the
eneralization of the majority-voting rule. To a certain degree, it
an be defined as a mapping from individuals ranking results to
he integrated ranking result to the most relevant decision.

(1) Ratio System
There are the decision matrix X = (xij)m×n for alterna-
tive set A = {a1, a2, . . . , am} and the criteria set c =
{c1, c2, . . . , cn} with its corresponding weight set wc =
{wc1, wc2, . . . , wcn} and

∑n
j=1 wcj = 1, where xij is the
evaluation value of alternative ai on the criteria cj. Then



J. Qin and X. Ma Applied Soft Computing 122 (2022) 108812
standardization X is completed in the form [55].

x∗ij =
xij√∑m
i=1 x

2
ij

(13)

After that,

y∗i =
g∑

j=1

wcjx∗ij −
n∑

j=g+1

wcjx∗ij (14)

where g and n − g respectively denote the numbers of
benefit criteria and cost criteria, the parameter y∗i repre-
sents the normalized evaluation of alternative ai related to
all objectives. The optimal alternative a∗RS under RS can be
acquired as

a∗RS = {ai|max
i

y∗i } (15)

(2) Reference Point Theory
The first step is to find the reference point for each alterna-
tive using the standardized data obtained by Eq. (13), then
the reference point rj can be defined as follows.

rj =

⎧⎨⎩max
j

x∗ij j ≤ g

min
j

x∗ij j > g
(16)

Based on this, a Tchebycheff Min–Max metric to calcu-
late the deviation between the assessment value of each
alternative and the reference point in Eq. (17) as below.

di = {max
j

wcj|rj − x∗ij|} (17)

where i ∈ [1, n] and the optimal alternative in reference
point theory can be obtained as

a∗RP = {ai|min
i

di} (18)

(3) Full Multiplicative Form Method
The utility value of the alternative can be written as fol-
lows.

Ui =

∏g
j=1(x

∗

ij)
wcj∏n

j=g+1(x
∗

ij)
wcj

(19)

where
∏g

j=1 x
∗

ij stands for the product of evaluation value
of all benefit criteria and

∏n
j=g+1 x

∗

ij is the product of the
evaluation values of all cost criteria. After that, the optimal
alternative under the MFM method can be expressed as
a∗MFM = {ai|maxi Ui}.

(4) The BC method
After the establishment of the ranking results of the three
subordinate methods, it is need to aggregate these re-
sults to obtain the final rankings, all of these methods
in MULTIMOORA are non-correlated objectives [56]. The
original dominance theory determines the overall rankings
by integrating the subordinate rankings, when the number
of alternatives is in a small scale, the original dominant
theory can quickly obtain the overall rankings. However,
in the large amount of alternatives, its operation efficiency
will reduce. Furthermore, it fails to consider the utility
value of each alternative in the three methods. Based on
these analysis, BC method as a substitute for aggregation
of the results. The vector normalization method in Eq. (13)
is used to normalize the three sub utility values, which
proved to be the suitable choice for normalization [55]. The
aggregation process can be seen in Eq. (20)

bc = n(ai )− n(ai )+ n(ai ) (20)
i RS RP MFM

5

where n(·) denotes the normalized utility values, aiRS , a
i
RP

and aiMFM are the values of alternative xi under the three
utility functions. The larger value of the bc i indicates that
the corresponding alternative has the better performance.

(5) SMAA method
There are two feasible space of W and X , where W is the
space of criteria weights, while Xm×n presents the evalua-
tion matrix of alternatives under a set of criteria. Firstly the
ranking of alternative xi can be obtained in Eq. (21).

rank (xi, ϕ,w) = 1+
m∑
k̸=i

ρ
(
u
(
ϕ(xk), w

)
> u

(
ϕ(xi), w

))
(21)

where ϕ represents the stochastic value of alternative on a
criterion and w denotes a random giving criterion weight
value, satisfying the uniform distribution in [0, 1] and∑

wj = 1, u(·) is the related utility function of alternative,
where u

(
ϕ(xi), w

)
=
∑n

j=1 wjϕij. ρ (·) is a binary function,
if u

(
ϕ(xk), w

)
> u

(
ϕ(xi), w

)
, then ρ (·) = 1, else ρ (·) = 0.

Then W r
i (ϕ) = {w ∈ W |rank (xi, ϕ,w) = r} is the set of

rank weights making alternative xi in the rank r .
There are three measurements of SMAA to evaluate the
final rankings, the rank acceptability indexes, the central
weight vectors and the confidence factors. Let bri be the
rank acceptability index of alternative xi being on r − th
position. Where the expression of bri bri ∈ [0, 1] can be
written as follows.

bri =
∫

ϕ∈X
fX (ϕ)

∫
wi∈W r

i (ϕ)

fW (w) dwdϕ (22)

where fX and fW are the probability density functions of ϕ

and w.
Let wcentral

i be the central weight vector of alternative xi
being on the first rank The value of wcentral

i is displayed as.

wcentral
i =

1
b1i

∫
ϕ∈X

fX (ϕ)

∫
wi∈W1

i (ϕ)

fW (w) wdwdϕ (23)

where the rank acceptability index b1i indicates xi is on the
first rank, and W 1

i (ϕ) = {w ∈ W |rank (xi, ϕ,w) = 1}.
The confidence factor pcentrali stands for the possibility of
alternative xi in the first position with determined central
weight vector, which is shown as follows.

pcentrali =

∫
ϕ∈X :rank(xi,ϕ,w)=1

fX (ϕ) dϕ (24)

The SMAA-MULTIMOORA method is based on Monte Carlo
simulation to calculate the results of the measurements,
the detail procedures are illustrated in Algorithm 1.

3. Solution procedures for assessment of emergency response
plan

In this section, we develop a novel emergency response plans
evaluation method based on GDM. Firstly, the IT2FS-PT3 method
is represented, then we integrate the extended MULTIMOORA
method, and the group consensus is considered as well by design-
ing a convergent iterative algorithm to gain the consentaneous
group decision result. Finally, the solution process of emergency
response plan selection is illustrated. In the evaluation process
depicted in Fig. 3, the linguistic terms are quantified as the
centroid intervals of IT2FSs through KM algorithm, then interval-
based decision matrix of each DM is constructed. In the PT3

framework, we input the concept of time series to predict the
reference points in different periods for the setting of dynamic

reference points, which is line with the timeliness of emergency
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Fig. 3. Construction of a consensus prospect value matrix.
Table 1
Possible cases of ∆x.
Possible Cases ∆x For Benefit/ Neutral Criteria For Cost Criteria

Gain Loss Gain Loss

case1: xlij < xrij < hl
j < hr

j hl
j − 0.5(xrij + xlij) ✓ ✓

case2: xlij < hl
j < xrij < hr

j (hl
j − xlij)

2/2(xrij − xlij) ✓ ✓

case3: hl
j < xlij < xrij < hr

j 0

case4: hl
j < xlij < hr

j < xrij −(hr
j − xrij)

2/2(xrij − xlij) ✓ ✓

case5: xlij < hl
j < hr

j < xrij 0.5(hl
j + hr

j )− 0.5(xlij + xrij) ✓ ✓

case6: hl
j < hr

j < xlij < xrij hr
j − 0.5(xlij + xrij) ✓ ✓
response plans. Simultaneously, there are six possible cases of
the relationship between interval-based evaluation information
and the related reference point, shown in Table 1. Thereafter,
we construct the decision matrix in the level of reaching group
consensus, and the final ranking results can be determined by the
extended MULTIMOORA method.

In this study, we assume that all the DMs make their judg-
ents on the aspect of emergency response plans evaluations by
sing the same linguistic terms set.

.1. Description of IT2FS-PT3 based emergency response plan evalu-
tion

We can see that the assessments for emergency response plans
an be regarded as a MCGDM problem in the uncertain and
uzzy environment. First, the relative parameters are expressed
s follows.

• D = {d1, d2, . . . , dT }: the set of DMs from hospitals, public
health departments and other related sectors, the corre-
sponding weight of experts λt satisfying

∑T
t=1 λt = 1.

• A = {a1, a2, . . . , aI}: the set of I emergency response
plans (alternatives) needs to find the optimal one in an
emergency event.
• C = {c1, c2, . . . , cJ}: the set of J criteria is served as evalu-

ation indexes of emergency events, which can be divided
in 3 types: the beneficial criteria, the cost criteria and
6

the neutral criteria and wj is the weight of criterion cj,
satisfying wj ∈ [0, 1] and

∑J
j=1 wj = 1.

• L = {l1, l2, . . . , lM}: the set of linguistic terms, these lin-
guistic terms are expressed in the form of IT2FSs in this
proposed model.
• S = {s1, s2, . . . , sN}: the set of n states of a public health

emergency event, where sn is the n-th state. Generally, the
classification of S can be obtained by the previous similar
emergency events.
• P = {p1, p2, . . . , pN}: the probability set for the state

S, where pn ∈ [0, 1] and
∑N

n=1 pn = 1, pn means the
probability of state sn occurring in the future.
• X = (xij)I×J : the decision making matrix from a DM, where

xij denotes the value of alternative ai under the criteria cj.
• O = {o1, o2, . . . , oW }: the time line set for an emer-

gency event, where length(O) = W , length(o1) = · · · =
length(oW ) and ow stands for the w-th time period.
• H=

{
H1,H2, . . . ,HW

|Hw
= Hw (s1) ,Hw (s2) , . . . ,Hw (sN)

}
:

the uncertain reference point vector set, where
Hw(sn) means the reference point vector in the state sn at
period ow and can be expressed as
Hw (sn) =

(
hw(sn)1, hw(sn)2, . . . , hw(sn)J

)
.

• V =
{
V(1), V(2), . . . , V(T )|V(t) =

(
vij
)I×J
(t)

}
: the illustration of

value matrix set from DMs, where V(t) is the prospect value
matrix from DM dt and vij(t) presents the prospect value of
alternative a under the criteria c of DM d .
i j t
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Fig. 4. Overall process behind the proposed model.
emark 3. In the process of a real-world emergency response
lans evaluation, due to the complexity and inadequate informa-
ion of the emergency event, the selection of evaluation indexes
s supposed to be summarized from all relative aspects. These
ndexes are abstract and cannot be explained by numeric en-
ries [28,42]. Consequently, the expressions of linguistic terms are
ore reasonable for DM making assessments. When for the set-

ing of parameters α, σ , ε and δ of PT3 mentioned in Section 2.2,
e refer the values of these parameters in Ref. [11], the median

xponent of value function α = 0.88, σ = 2.25 and the median
alues of ε = 0.61, δ = 0.69.

In this paper, we develop a novel IT2FS-PT3 with the extended
ULTIMOORA method to evaluate and select the optimal emer-
ency response plan. Firstly, the process of the IT2FS-PT3 method
n an emergency event can be described in Fig. 4, which shows
n detail the construction of the prospect decision matrix of each
M in different states, then forms the consensus reached prospect
ecision matrix.
In the process of group consensus reaching, the group prospect

alue matrix can be obtained by aggregating the single DM’s
rospect value matrix through the additive weighted aggregation
AWA) operator, which can be expressed as follows.

=

T∑
t=1

λtV(t) (25)

here λt denotes the weight of t-th DM and V(t) is the prospect
alue of t-th DM. To measure the level of similarity of prospect

value matrix between the individuals and the group, the distance
function is expressed as.

d
(
V(t), V

)
=

1
mn

⎛⎝ m∑
i=1

n∑
j=1

⏐⏐vij(t) − vij
⏐⏐2⎞⎠1/2

(26)

where d
(
V(t), V

)
stands the similarity degree of V(t) and V . It

is worth noting that d
(
V(t), V

)
satisfies the attributes of general

distance function as: 0 ≤ d
(
V(t), V

)
≤ 1, d

(
V(t), V

)
= d

(
V , V(t)

)
and d (V , V ) = 0.

Definition 8.
Let η be the threshold of acceptable consensus level, which

can be determined by DMs in advance.

d
(
V , V

)
≤ η (27)
(t)
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If ∀t ∈ {1, . . . , T }, Eq. (27) is satisfied, which means that the
group has reached consensus.

Definition 9. If ∃t ∈ {1, . . . , T } such that d
(
V(t), V

)
> η, then

matrices V(t) and V are of unacceptable similarity. The Eq. (28)
is given to reconstruct these matrices in a convergent iterative
form.

vl+1
ij(t) =

{
µvl

ij(t) + (1− µ)vl
ij d

(
V(t), V

)
> η

vl
ij(t) otherwise

(28)

where µ is a constant satisfied 0 < µ < 1 and l be the l-th of
iterative time.

Theorem 1. Under the above hypotheses, there is d
(
V l+1

(t) , V l+1
)
≤

d
(
V(t), V

)
.

Proof. if d
(
V(t), V

)
> η, then

d
(
V l+1

(t) , V l+1)
=

1
mn

⎛⎝ m∑
i=1

n∑
j=1

⏐⏐⏐v(l+1)
ij(t) − v

(l+1)
ij

⏐⏐⏐2
⎞⎠1/2

=
1
mn

⎛⎝ m∑
i=1

n∑
j=1

⏐⏐⏐⏐⏐v(l+1)
ij(t) −

t∑
k′=1

λ(t ′)v
(l+1)
ij(t ′)

⏐⏐⏐⏐⏐
2
⎞⎠1/2

=
1
mn

⎛⎝ m∑
i=1

n∑
j=1

⏐⏐⏐⏐⏐
t∑

t ′=1

λ(t ′)

(
v

(l+1)
ij(t) − v

(l+1)
ij(t ′)

)⏐⏐⏐⏐⏐
2
⎞⎠1/2

From Eq. (28), we have v
(l+1)
ij(t) − v

(l+1)
ij(t ′)
= µv

(l)
ij(t) + (1− µ) v

(l)
ij −(

µv
(l)
ij(t ′)
+ (1− µ) v

(l)
ij

)
. Then:

d
(
V l+1

(t) , V l+1)
=

1
mn

⎛⎝ m∑
i=1

n∑
j=1

⏐⏐⏐⏐⏐
t∑

t ′=1

λ(t ′)

(
µv

(l)
ij(t) − µv

(l)
ij(t ′)

)⏐⏐⏐⏐⏐
2
⎞⎠1/2

=
µ

mn

⎛⎝ m∑
i=1

n∑
j=1

⏐⏐⏐v(l)
ij(t) − v

(l+1)
ij

⏐⏐⏐2
⎞⎠1/2

= µd
(
V l

(t), V
l)
≤ d

(
V l

(t), V
l)

which completes the proof of Theorem 1.
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.2. The IT2FS-PT3 integrated with the extended MULTIMOORA
ethod

For this section, we focus on the main model proposed in this
aper, in what follows, the specific procedures are given below.

(1) Data Processing
In the evaluation system, there are three types of criteria:
the benefit criteria, the neural criteria and the cost criteria.
For these types of criteria, we assign different parameter
values in the subsequent value functions. Then, the initial
linguistic evaluation matrix given by each DM is trans-
formed into IT2FSs-based decision matrix according to the
given UMF and LMF of each linguistic term. Through the
KM algorithm mentioned in Section 2, we can calculate
the centroids of the IT2FSs. Supposed that, the values of
linguistic terms follow uniform distribution in the centroid
intervals of the IT2FSs, then the expression of linguistic
terms is.

lm =
[
cml , cmr , g (x)

]
(29)

where lm is the m-th linguistic term, for instance, the lin-
guistic term "Low" can be expressed as [c lowl , c lowr , g (x)].
g(x) is the corresponding probability density function ex-
pressed as follows.

g(x) =

{
1

cmr −c
m
l

cml ≤ x ≤ cmr
0 otherwise

(30)

where x is an arbitrary value satisfied x ∈ [cml , cmr ].
(2) Determination of the value function from DMs

According to the psychological characteristics of each DM,
we give the corresponding value functions and the deter-
mination of the parameters is based on the research in
Ref. [11]. The value functions of the benefit criteria and
neutral criteria are expressed as follows.

v
(
∆xsnij(t)

)
=

{(
−∆xsnij(t)

)α xsnij(t) ≥ h(sn)j Gain

−σ
(
∆xsnij(t)

)α xsnij(t) < h(sn)j Loss
(31)

and the value function of the cost criteria can be expressed
as.

v
(
∆xsnij(t)

)
=

{(
∆xsnij(t)

)α xsnij(t) ≤ h(sn)j Gain

−σ
(
−∆xsnij(t)

)α xsnij(t) > h(sn)j Loss
(32)

where ∆xsnij(t) = h(sn)j − xsnij(t) and xsnij(t) denotes t-th DM’s
assessment result of the i-th emergency response plan un-
der the j-th criterion in the state sn, h(sn)j is the reference
value of the j-th criterion in the state sn. And for the benefit
and cost criteria, the loss aversion parameter σ is 2.55, α

is 0.88, while for the neural criteria, σ = 1 and α = 0.88.
Simultaneously, considering the features of public health
emergency events affected by time series. Wuhan switched
from a high risk area in March into a low risk area in
April. Hence, the time factor is supposed to taken into
consideration for the formation and updating of dynamic
reference point. We introduce the prediction method of
reference point formation in the time line referred in [19]
as follows.

h (sn)wj = ρ +

W∑
w=1

[
f
( w

W

)
− f

(
w − 1
W

)]
· yw (33)

where f (·) is the continuously increasing function of the
variable in the interval [0,1], satisfying f (0) = 0 and f (1) =
1. the form of f (·) is shown in Eq. (8). And y is the mean
w
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vector of DMs for all criteria in the w-th time period, which
can be written as.

yw = avg

(∑
t

λtx
sn
ij(t)

)
(34)

where avg(·) is applied to calculate the average value of the
column in the matrix calculations.
Therefore, considering that xsnij(t) and h(sn)j are interval
numbers, there are six possible situations for ∆x, as shown
in the Table 1, and the procedures of these cases are
illustrated in Appendix A.

(3) Calculation for the decision weight function
The decision weight function of the value of emergency
response plan in the criterion expressed as below.

w
(
sn, x

sn
ij(t), hj (sn)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w+ (pn) n = N

w+

(∑
o≥n

pn

)
− w+

(∑
o>n pn

)
m− + 1 ≤ i ≤ N

w−

(∑
o≤n

pn

)
− w−

(∑
o<n pn

)
1 < i ≤ m−

w− (pn) n = 1
(35)

where w+ (pn) and w− (pn) in Ref. [11] can be expressed as
follows.

w+ (pn)=
pnε

(pnε + (1− pn)ε)1/ε
(36)

and

w− (pn) =
pnδ(

pnδ + (1− pn)δ
)1/δ (37)

where the value of ε is 0.61 and δ is 0.69, which are the
same settings in Ref. [11].

(4) Construction of the prospect value matrix of each DM
Through the calculation of Eq. (38), we can obtain the
prospect value of each DM for the emergency response
plans in different criteria.

V(t) =
∑
i∈M

v
(
xsnij(t)

)
×w+ (pn)−

∑
i∈G

v
(
xsnij(t)

)
×w− (pn) (38)

where V(t) is the prospect value matrix from DM dt .
(5) The group prospect matrix in an admissible consensus

level
After attaining the prospect matrices of individual DMs,
AWA operators is used to formalize the group prospect
matrix as exhibited in Eq. (39).

V ∗ =
T∑

t=1

λtV(t) (39)

where V ∗ is the group prospect matrix, if the obtained
group prospect matrix does not satisfy the acceptable con-
sensus condition given in Eq. (27), then Eq. (28) is applied
to recalculate the group prospect matrix until satisfying the
group consensus. Thereafter, Eqs. (40) and (41) are applied
to standardize V ∗.

v∗ij =
v∗ij −mini v

∗

ij

maxi v∗ij −mini v
∗

ij
(40)

and

v∗ij =
maxi v∗ij − v∗ij

∗ ∗
(41)
maxi vij −mini vij
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Table 2
Risk classification standard.

Definition Explanation in detail

s1 High Risk Area The cumulative number of cases exceeds 50, and a cluster of epidemics
occurred within 14 days

s2 Medium Risk Area Newly confirmed cases within 14 days, the cumulative number of confirmed
cases does not exceed 50, or the cumulative number of confirmed cases
exceeds 50, and no cluster epidemic occurs within 14 days

s3 Low Risk Area No confirmed cases or no new confirmed cases for 14 consecutive days
Table 3
The criteria for the assessment of emergency response plans.
Criterion Definition Explanation in detail

c1 Time The most important index in emergency response plan evaluation, it is
required to solve emergency events in time to reduce the damage

c2 Attendance of Medical Staff The required number of medical staff in an emergency response plan
c3 Economic Impact Cost of the emergency response plan for handling public health emergency

events
c4 Social Influence The positive impact on society after taking emergency response plans to

resolve emergency events
c5 Resource Consumption The consumption medical supplies in the public health emergency events
c6 Transportation Security Implement blockade management on epidemic areas When the pandemic

happened
c7 Flexibility The emergency response plan should be dynamically adjustable for the

uncertainty of emergency events
where Eq. (40) is for the benefit criteria and Eq. (41) is for
the cost criteria.

(6) Evaluation results in the extended MULTIMOORA method
Substitute the consensus reached group prospect matrix
into the extended MULTIMOORA method at the aim of
making the sequence for these emergency response plans.
Firstly, determine the feasible criteria weights space W in
this proposed model, it is assumed that DMs have the same
preference for each criterion, which implies the weight
space can be expressed as W =

{
wj ≥ 0|

∑J
j=1 wj = 1

}
,

where wj is a random number generated by a normal distri-
bution. Secondly, calculate the rankings of the three utility
functions RS in Eq. (15), RP in Eq. (18) and FMF in Eq. (19)
of MULTIMOORA method with the weight wj (j = 1, . . . , J),
then BC method in Eq. (20) is applied to aggregate the three
utility values. Finally, Monte Carlo simulation runs 1000
times to calculate the integrals, thereafter, bri in Eq. (22),
wcentral

i in Eq. (23) can be obtained.
(7) The final ranking of emergency response plan

In the end, we can obtain the final ranking of these emer-
gency response plans. The whole algorithm of this pro-
posed method can be seen in Algorithm 1 given below.

4. Case study

On the aim of explaining the validity and feasibility of the pro-
posed model, this section exhibits the real case, that is, the erup-
tion of infectious disease, adapted from COVID-19 that occurred
in Wuhan, China.

4.1. Background description

The COVID-19 as a potential deadly coronavirus has caused
a level of global illness unseen in numbers and rapidity since it
occurred in late 2019. Through the report of National Health Com-
mission of People’s Republic of China, there are three potential
states of risk levels S = {s1, s2, s3} in COVID-19, i.e. s1: high risk
area, s2:medium risk area and s3: low risk area. The specific ex-
planations of these status is shown in Table 2. Simultaneously, we
collect the statistics of cumulative confirmed cases from Wuhan
9

Table 4
Linguistic evaluation terms and their upper and lower membership functions.
Linguistic terms UMF LMF

Very Unimportant (VUI) (0,0.1,0.1,0.2,1) (0,0.1,0.1,0.2,0.8)
Unimportant (UI) (0.1,0.3,0.3,0.5,1) (0.1,0.3,0.3,0.5,0.8)
Slightly Important (SI) (0.3,0.5,0.5,0.7,1) (0.3,0.5,0.5,0.7,0.8)
Important (I) (0.5,0.7,0.7,0.9,1) (0.5,0.7,0.7,0.9,0.8)
Very Important (VI) (0.8,0.9,0.9,1,1) (0.8,0.9,0.9,1,0.8)

Municipal Health Commission website (wjw.wuhan.gov.cn) on
March 5th, March 24th, April 7th and April 28th, which the cor-
responding data is shown in Appendix A. Fig. 5 presents the dis-
tribution of Wuhan epidemic risk level map at four time points,
which can be vividly seen that the change of risk level is affected
by time factors, and Fig. 5 also indicates the rationality of setting
three states in the evaluation of an emergency event.

Meanwhile, it can be known that Wuhan successfully con-
verted from full high risk areas to full low risk areas in nearly
about two months owing to the effective prevention and control-
lability of the government, we set the time set O = {o1, o2, o3},
the interval between them is set to 14 days. In the time point
o1 the corresponding states is s1, in the time point o1 is con-
nected with the state s2 and the state in the time point o3
is s3. Accordingly, the corresponding probability of the above
states are designed as follows: p1 = 0.2, p2 = 0.3 and p3 =
0.5. Suppose that there are 3 representative DMs D={d1, d2, d3}
from hospitals, disease control and prevention centers and other
clinical institutions their corresponding weights are set as λ1 =

0.4, λ2 = 0.3, λ3 = 0.3, 5 emergency response plans A =
{a1, a2, a3, a4, a5} for DMs to make evaluations. Considering the
complexity of emergency response plans evaluation, we select
7 criteria C = {c1, c2, c3, c4, c5, c6, c7} in the report of National
Health Commission of People’s Republic of China, displayed in
Table 3. And c1, c2, c3 and c5 are the cost criteria, c4 and c7 are the
benefit criteria, c6 is the neutral criterion. In general, the value
of the consensus threshold level η is 0.05, and the parameter
coefficient µ during the iteration process is set as 0.5.

4.2. Procedures of this proposed model

Some required conditions and specific solution steps are dis-
played in this section. Table 4 exhibits the linguistic terms set and
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Fig. 5. Distribution of COVID-19 states in Wuhan (Full high risk areas(marked in red) on March 5th; 8 medium risk areas(marked in light red) and 5 low risk
areas(marked in green) on March 24th;1 medium risk area and 12 low risk areas on April 7th;Full low risk areas on April 28th).
Table 5
The linguistic evaluation information of DMs in the state of s1 .

c1 c2 c3 c4 c5 c6 c7

DM1

a1 SI I UI VI UI VI SI
a2 I SI I I UI SI VI
a3 I UI VUI SI SI UI I
a4 UI I SI VI SI I VI
a5 VI VUI SI SI I UI I

DM2

a1 I UI SI I SI I I
a2 VI I I VI VUI UI SI
a3 SI UI UI I UI SI I
a4 SI I UI I SI I VI
a5 I SI I SI SI SI I

DM3

a1 SI SI UI I VUI SI UI
a2 I UI SI VI UI SI I
a3 VI SI UI I UI I VI
a4 VUI VI SI I I SI UI
a5 I SI UI I SI VUI VI

the relative IT2FS MF. The assessment information of DMs in the
state of s1 is displayed in Table 5, and the linguistic evaluation
information in other states s2 and s3 can be seen in Appendix A.

tep 1. Linguistic evaluation information process
According to Table 4, KM algorithm is used to calculate the
centroid intervals of each linguistic term, follows as: VUI:
[0.0963,0.1037], UI:[0.2926,0.3074], SI:[0.4926,0.5074],
I:[0.6926,0.7074] and VI:[0.8963,0.9037]. Thereafter, the lin-
guistic evaluation information of DMs can be transformed into
the interval-based decision matrices.

tep 2. Calculation of the prospect values
Firstly, in the s1 state, let the mean vector of each criterion
be the reference point vector h(s1)o1 . According to Eq. (34),
h(s1)o1 is equal to y1, then following by the Eq. (33), h(s2)o2
can be obtained as h(s2)o2 = ρ+f (1)·y1, and h(s3)o3 expressed
as h(s3)o3 = ρ+ f

( 1
2

)
·y1+

[
f (1)− f

( 1
2

)]
·y2, where y1 and y2

are the mean vectors of DMs for criteria in the o1 time and o2
time respectively. The value of γ and ξ are 0.26 and 1.7. The
estimation of ρ value in the research [19] is 5.2, the magnitude
of variables in [19] is 103, while in this proposed study the
magnitude of variables is between −1 and 0, then the value
10
of ρ is set as 0.0052. Thus the reference vector h(s1)o1 , h(s2)o2
and h(s3)o3 can be denoted in the following form.

h(s1)o1 = ([0.61, 0.63] , [0.49, 0.50] , [0.42, 0.44] , [0.71, 0.72] ,
× [0.41, 0.42] , [0.51, 0.52] , [0.69, 0.70])

h(s2)o2 = ([0.62, 0.63] , [0.49, 0.51] , [0.43, 0.44] , [0.71, 0.72] ,
× [0.41, 0.42] , [0.51, 0.53] , [0.69, 0.70])

h(s3)o3 = ([0.59, 0.60] , [0.52, 0.53] , [0.44, 0.45] , [0.69, 0.70] ,
× [0.42, 0.43] , [0.52, 0.53] , [0.67, 0.69])

Then, according to the six possible situations shown in Table 1,
the corresponding ∆x value obtained by comparing the refer-
ence points with the DMs’ evaluation values. Thus, the gain
or loss situation of each DM can be obtained. Table 6 exhibits
the DM’s evaluation values in state s1, the situations in state
s2 and state s3 are represented in Appendix A. For better
comprehension, here is an example: in state s1, the linguistic
evaluation term given by DM1 for emergency response plan
a1 under the benefit criterion c4 is VI:[0.8963,0.9037], and
h(s1)o1 (4) = [0.7056, 0.7184], which in accordance with case
6, the assessed value is acquired as: 0.7184 − 0.5(0.8963 +
0.9037) = −0.1816.
Secondly, calculate the prospect value and relative probability
weight of each emergency response plan under the different
criteria in Eqs. (31),(32) and (35). Hereafter, based on Eq. (38)
the prospect value matrices of d1, d2 and d3 can be attained
as follows.

V(1) =

⎛⎜⎜⎜⎜⎜⎝
0.0486 −0.1531 0.0090 0.1745 0.0382 0.0239 −0.2137
−0.0179 −0.2598 −0.0254 −0.1459 −0.0195 0.0673 −0.1326
−0.1091 0.0154 0.0440 0.0422 0.0020 −0.1083 0.0844
0.0404 −0.1531 −0.1665 0.1745 −0.1265 −0.0073 0.0083
−0.1266 0.0425 −0.0046 −0.2021 −0.2450 −0.0159 0.0767

⎞⎟⎟⎟⎟⎟⎠

V(2) =

⎛⎜⎜⎜⎜⎜⎝
0.0232 −0.0241 −0.0140 0.0474 −0.0351 −0.0073 −0.0426
−0.0366 −0.2393 −0.2346 −0.0683 0.0387 −0.1083 0.0160
−0.0242 0.0373 −0.0110 0.0474 0.0067 0.0388 −0.0948
0.0130 −0.0130 0.0236 0.0267 0.0167 0.0374 0.0269

⎞⎟⎟⎟⎟⎟⎠

−0.1125 −0.6409 −0.0389 0.0328 0.0164 0.0142 −0.0824
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Table 6
The value of evaluation from DMs in the state of s1 .

c1 c2 c3 c4 c5 c6 c7

DM1

a1 0.1136 −0.1971 0.1249 −0.1816 0.105 −0.3771 0.1859
a2 −0.0736 −1.4131 −0.2609 0.0057 0.105 0.0091 −0.2019
a3 −0.0736 0.1891 0.3249 0.2056 −0.081 0.2091 −1.2291
a4 0.3136 −0.1971 −0.0609 −0.1816 −0.081 −0.1771 −0.2019
a5 −0.2736 0.3891 −0.0609 0.2056 −0.281 0.2091 −1.2291

DM2

a1 −0.0736 0.1891 −0.0609 0.0057 −0.081 −0.1771 −0.0029
a2 −0.2736 −0.1971 −0.2609 −0.1816 0.305 0.2091 0.1859
a3 0.1136 0.1891 0.1249 0.0057 0.105 0.0091 −0.0029
a4 0.1136 −0.1971 0.1249 0.0057 −0.081 −0.1771 −0.2019
a5 −0.0736 −5.4275 −0.2609 0.2056 −0.081 0.0091 −0.0029

DM3

a1 0.1136 −1.4131 0.1249 0.0057 0.305 0.0091 0.3859
a2 −0.0736 0.1891 −0.0609 −0.1816 0.105 0.0091 −5.1581
a3 −0.2736 −1.4131 0.1249 0.0057 0.105 −0.1771 −0.2019
a4 0.5136 −0.3971 −0.0609 0.0057 −0.281 0.0091 0.3859
a5 −0.0736 −1.4131 0.1249 0.0057 −0.081 0.4091 −0.2019
S

a

V(3) =

⎛⎜⎜⎜⎜⎜⎝
0.0545 −0.1743 0.0103 0.4413 0.0389 0.0388 −0.0351
−0.0016 0.0154 −0.0695 0.0408 0.0387 0.0256 −0.0037
−0.1266 −0.2598 0.0418 −0.1276 0.0064 0.0374 0.0680
0.0683 −0.2131 −0.2319 −0.0796 −0.1355 −0.0176 −0.3817
−0.1828 −0.2061 0.0231 0.5083 −0.1317 −0.0771 0.0680

⎞⎟⎟⎟⎟⎟⎠
Then through the standardization of Eqs. (40) and (41), the
modified prospect matrices of d1, d2 and d3 can be obtained.

V(1)mod =

⎛⎜⎜⎜⎜⎝
0.0000 0.6471 0.1666 1.0000 0.0000 0.7530 0.0000
0.3794 1.0000 0.3298 0.1493 0.2039 1.0000 0.2721
0.8997 0.0896 0.0000 0.6487 0.1280 0.0000 1.0000
0.0471 0.6471 1.0000 1.0000 0.5817 0.5752 0.7448
1.0000 0.0000 0.2311 0.0000 1.0000 0.5262 0.9741

⎞⎟⎟⎟⎟⎠

V(2)mod =

⎛⎜⎜⎜⎜⎝
0.0000 0.0905 0.1456 1.0000 1.0000 0.6865 0.4286
0.4407 0.4079 1.0000 0.0000 0.0000 0.0000 0.9099
0.3491 0.0000 0.1343 1.0000 0.4345 1.0000 0.0000
0.0755 0.0742 0.0000 0.8215 0.2989 0.9906 1.0000
1.0000 1.0000 0.2424 0.8739 0.3031 0.8328 0.1019

⎞⎟⎟⎟⎟⎠

V(3)mod =

⎛⎜⎜⎜⎜⎝
0.0550 0.6893 0.1150 0.8947 0.0000 1.0000 0.7707
0.2783 0.0000 0.4067 0.2649 0.0012 0.8862 0.8406
0.7762 1.0000 0.0000 0.0000 0.1865 0.9880 1.0000
0.0000 0.8304 1.0000 0.0756 1.0000 0.5130 0.0000
1.0000 0.8047 0.0681 1.0000 0.9780 0.0000 1.0000

⎞⎟⎟⎟⎟⎠
Finally, the group prospect matrix is calculated by Eq. (38)
given as below.

V =

⎛⎜⎜⎜⎜⎝
0.0165 0.4928 0.1448 0.9684 0.3000 0.8071 0.3598
0.3674 0.5224 0.5539 0.1392 0.0819 0.6659 0.6340
0.6975 0.3358 0.0403 0.5595 0.2375 0.5964 0.7000
0.0415 0.5302 0.7000 0.6691 0.6224 0.6811 0.5979
1.0000 0.5414 0.1856 0.5622 0.7843 0.4603 0.7202

⎞⎟⎟⎟⎟⎠
tep 3. Consensus reaching process

For this part, we measure the distances between the individ-
ual matrices and the group matrix by Eq. (26), the results are
as follows d

(
V(1)mod, V

)
= 0.0436, d

(
V(2)mod, V

)
= 0.0620 and

d
(
V(3)mod, V

)
= 0.0529, which can be seen that d

(
V(2)mod, V

)
and d

(
V(3), V

)
exceed the threshold η. Hence, Eq. (28) is used

to modify V(2)mod, V(3)mod and V , the modified results are given
below.

V ′(2)mod =

⎛⎜⎜⎜⎜⎝
0.0083 0.2916 0.1452 0.9842 0.6500 0.7468 0.3942
0.4041 0.4651 0.7770 0.0696 0.0410 0.3329 0.7719
0.5233 0.1679 0.0873 0.7797 0.3360 0.7982 0.3500
0.0585 0.3022 0.3500 0.7453 0.4606 0.8358 0.7990

⎞⎟⎟⎟⎟⎠

1.0000 0.7707 0.2140 0.7180 0.5437 0.6466 0.4111

11
Fig. 6. The rank acceptability indexes of emergency response plans.

V ′(3)mod =

⎛⎜⎜⎜⎜⎝
0.0358 0.5910 0.1299 0.9316 0.1500 0.9036 0.5653
0.3229 0.2612 0.4803 0.2020 0.0415 0.7760 0.7373
0.7368 0.6679 0.0201 0.2797 0.2120 0.7922 0.8500
0.0207 0.6803 0.8500 0.3723 0.8112 0.5971 0.2990
1.0000 0.6731 0.1269 0.7811 0.8812 0.2302 0.8601

⎞⎟⎟⎟⎟⎠

V ′ =

⎛⎜⎜⎜⎜⎝
0.0132 0.5236 0.1492 0.9747 0.2400 0.7963 0.2878
0.3698 0.6179 0.5091 0.1412 0.1063 0.7327 0.5616
0.7379 0.2866 0.0322 0.5773 0.2156 0.4771 0.7600
0.0426 0.5536 0.7600 0.7353 0.6142 0.6599 0.6273
1.0000 0.4331 0.1947 0.4497 0.8275 0.4735 0.7710

⎞⎟⎟⎟⎟⎠
Again, we recalculate the level of similarity of the individ-
ual matrix and the group matrix, d

(
V ′(1), V

)
= 0.0349,

d
(
V ′(2), V

)
= 0.0370 and d

(
V ′(3), V

)
= 0.0308, all of them

satisfying the condition shown in Eq. (27). Therefore, V ′ is the
consensus group prospect matrix.

tep 4. SMAA-MULTIMOORA method
Let the consensus group prospect matrix be used in the ex-
tended MULTIMOORA method, calculate the rank acceptability
index in Eq. (22) and the central weight vector in Eq. (23) of
each emergency response plan respectively.

Eventually, Fig. 6 exhibits the distribution of the rank accept-
bility indexes, it can be obtained the final ranking results of
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Algorithm 1 Pseudocode for the IT2FS-PT3 integrated with the
xtended MULTIMOORA method

Input: Criteria set C , Emergency response plan set A, States set
S with time line set O, DM set D with relative weight set λ,
Linguistic term set L with LMF and UMF, Linguistic decision
matrix set X;

utput: The optimal emergency response plan in an accept-
able consensus level

1: function IT2FS-PT3(C, A,D, L, S,O, X)
2: group prospect value matrix← zeros(length(A), length(C))
3: for each DM = 1→ length(D) do
4: prospect value matrix← zeros(length(A), length(C))
5: for each state = 1 → length(S) and time= 1 →

length(O) do
6: Calculate the IT2FSs-based linguistic terms’ cen-

troids shown in Eqs. (3) and (4)) by KM algorithm
7: Calculate of the dynamic reference point in Eq. (33);

Consider the six possible cases in Table 1
8: Construct of the value function and weight function

in Eqs. (31), (32) and (35)
9: Obtain the prospect value in Eq. (38)
0: end for
1: return prospect value matrix
2: end for
3: function Consensus test(prospect value

matrices,λ,threshold)
4: group prospect value matrix← Eq. (25)
5: threshold← η

6: for each DM = 1→ length(D) do
7: Calculate the distance between the individuals and

the group in Eq. (26)
8: if distance > threshold shown in Eq. (27) then
9: Reconstruct the individual prospect value matrix

in Eq. (28)
0: end if
1: end for
2: end function
3: return group prospect value matrix
4: end function
5:
6: function EXTENDED MULTIMOORA(the agreeable group

prospect value matrix)
7: function Monte Carlo simulation
8: for time=1→ 1000 do
9: Generate a set of criteria weight wj in a normal

distribution
0: Calculate the utility values in RS, RP, FMF method
1: Aggregate the three subordinate values by BC

method
2: end for
3: end function
4: Calculate the measurements in Eqs. (22), (23)
5: end function

Table 7
Emergency response plans’ rank acceptability indexes.

1st 2nd 3rd 4th 5th

a1 0.0070 0.0830 0.3300 0.2720 0.3080
a2 0.0060 0.1610 0.2260 0.1680 0.4390
a3 0.0000 0.1730 0.1830 0.3910 0.2530
a4 0.5540 0.2330 0.0750 0.1380 0.0000
a5 0.4330 0.3500 0.1860 0.0310 0.0000

these emergency response plans according to the rank acceptabil-
ity indexes and the central weight vectors of emergency response

plans from Tables 7 and 8 as: a4 ≻ a5 ≻ a2 ≻ a3 ≻ a1.

12
Table 8
Emergency response plans’ central weight vectors.

c1 c2 c3 c4 c5 c6 c7
a1 0.0160 0.0880 0.0410 0.5170 0.0230 0.2880 0.0270
a2 0.1130 0.0860 0.1020 0.0420 0.0430 0.5210 0.0920
a3 NE NE NE NE NE NE NE
a4 0.0640 0.1320 0.1780 0.1760 0.1330 0.1710 0.1450
a5 0.1930 0.1250 0.0980 0.1030 0.1810 0.1340 0.1660

1 NE denotes ‘‘Not Exist’’, that is, a3 has got no possibility to rank the first place.

Fig. 7. The rank acceptability indexes of emergency plans with different γ and
ξ .

4.3. Sensitivity analysis

In this part, we explore the influences of related parameters
γ and ξ on the reference point vector and the final ranking
results. From the aforementioned in Section 2, parameters γ

and ξ in Eq. (8) determine the curvature and the elevation of
f (x) respectively, or in another perspective, γ and ξ control the
importance level of the current evaluation matrices of DMs in this
period.

It can be intuitively that the change of the parameter γ and
ξ merely have direct impacts on the reference point h(s3)o3 .
able 9 exhibits the values of h(s3)o3 and the ranking sequence
f emergency response plans in different values of γ and ξ . And
ig. 7 displays the distribution of the rank acceptability indexes
f emergency plans with different γ and ξ .
In the following discussion, we elaborate on the changes of

(s3)o3 and the final ranking results from Table 9 separately,
hich are described as.

• For the values of h(s3)o3
When the value of γ is fixed, through increasing the value
of ξ , the h(s3)o3 displays a distinct upward trend. Take an
example, when γ = 0.2, ξ = 0.9 the value of h(s3)o3 (1)
is [0.5675,0.5799], while γ = 0.2, ξ = 2.1 h(s3)o3 (1) is
[0.5903,0.6029]; meanwhile, if the value of ξ is constant, the
value of h(s3)o3 (1) has been slightly increased, and there is
basically no change in the length of the intervals.
• For the final results

It can be seen from Table 9 that parameters γ and ξ caused
an unobviously change in the ranking of emergency re-
sponse plans with keep the optimal alternative being a4
and the second optimal alternative being a5. This indicates
the parameters presents less sensitive to the final ranking
results in the proposed study.
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Table 9
The values of h(s3)o3 and ranking results of alternatives in different γ and ξ .
γ ξ h(s3)o3 Ranking results

0.2

0.9 (0.5675, 0.5276, 0.4432, 0.6797, 0.4181, 0.5222, 0.6652)a a4 ≻ a5 ≻ a1 ≻ a3 ≻ a2(0.5799, 0.5418, 0.4569, 0.6929, 0.4317, 0.5356, 0.6777)b

1.7 (0.5852, 0.5161, 0.4387, 0.6905, 0.4154, 0.5195, 0.6741) a4 ≻ a5 ≻ a1 ≻ a3 ≻ a2(0.5978, 0.5301, 0.4526, 0.7035, 0.4291, 0.5330, 0.6866)

2.1 (0.5903, 0.5128, 0.4374, 0.6935, 0.4146, 0.5187, 0.6767) a4 ≻ a5 ≻ a2 ≻ a3 ≻ a1(0.6029, 0.5268, 0.4513, 0.7065, 0.4284, 0.5323, 0.6891)

0.26

0.9 (0.5681, 0.5272, 0.4431, 0.6801, 0.4180, 0.5221, 0.6655) a4 ≻ a5 ≻ a1 ≻ a3 ≻ a2(0.5805, 0.5414, 0.4568, 0.6933, 0.4316, 0.5355, 0.6781)

1.7 (0.5858, 0.5157, 0.4385, 0.6908, 0.4153, 0.5194, 0.6744) a4 ≻ a5 ≻ a2 ≻ a3 ≻ a1(0.5983, 0.5298, 0.4524, 0.7038, 0.4290, 0.5329, 0.6869)

2.1 (0.5908, 0.5125, 0.4373, 0.6938, 0.4145, 0.5186, 0.6769) a4 ≻ a5 ≻ a2 ≻ a3 ≻ a1(0.6034, 0.5265, 0.4512, 0.7068, 0.4283, 0.5322, 0.6894)

aThe lower bound of h(s3)o3 when γ = 0.2, ξ = 0.9.
bThe upper bound of h(s3)o3 when γ = 0.2, ξ = 0.9.
Table 10
Ranking results of emergency response plans in different methods.

Main Methods Ranking Indices Ranking Results

Wang et al.’s [42] Method Group emergency decision making method
based on PT

v(a1) = 0.4320, v(a2) = 0.5321,
a4 ≻ a5 ≻ a2 ≻ a1 ≻ a3v(a3) = 0.4194, v(a4) = 0.5623,

v(a5) = 0.5586

Wang et al.’s [57] Method MLUTIMOORA method in IT2FSs environment
s∗rs(a1) > s∗rs(a3) > s∗rs(a2) > s∗rs(a4) > s∗rs(a5)

a1 ≻ a3 ≻ a2 ≻ a4 ≻ a5s∗IT2p(a1) < s∗IT2p(a2) < s∗IT2p(a4) < s∗IT2p(a3) < s∗IT2p(a5)
s∗fm(a1) > s∗fm(a3) > s∗fm(a2) > s∗fm(a4) > s∗fm(a5)

The Proposed Method PT3 and with the extended MULTIMOORA
method in IT2FSs environment

The indexes shown in Tables 7 and 8 a4 ≻ a5 ≻ a1 ≻ a3 ≻ a2
m

Table 11
The linguistic evaluation information of DMs in the state of s2 .

c1 c2 c3 c4 c5 c6 c7

DM1

a1 UI SI VUI I UI I SI
a2 SI I SI I SI VI I
a3 UI SI UI UI SI VUI VI
a4 VUI SI I I VI SI I
a5 VI UI UI SI I SI I

DM2

a1 SI SI I VI UI SI SI
a2 I VI VI I UI VUI I
a3 UI SI SI VI SI I I
a4 I SI SI I UI SI VI
a5 VI I UI I UI I SI

DM3

a1 UI SI UI SI VUI I VI
a2 I SI SI I VUI SI SI
a3 VI I VUI SI SI SI I
a4 UI I I I UI I VUI
a5 VI UI SI VI SI UI I

4.4. Comparative analysis

In what follows, we conduct the comparative analysis with
he exisited MCDM methods [42,57] in emergency situation to
erify the feasibility and comprehensiveness of this study. The
orresponding calculations and analysis are all based on the same
cenario mentioned above.
Firstly, Wang et al. [42] considered and emphasized the psy-

hological behaviors of DMs in risk and uncertainty environment
or solving group emergency decision making problem. Therefore,
hey applied PT into decision making process, simultaneously, the
udgments provided by DMs were expressed in the interval-based
inguistic terms. Then Wang et al. [57] discussed the MULTI-
OORA method under IT2FS fuzzy environment. They used the

T2FSs-based linguistic terms to deal with the uncertainty and
uzzy evaluations which is the same as the proposed model, after
hat they calculated the ranking results by MULTIMOORA method.
able 10 represents the ranking results in different methods, it
 e

13
can be clearly seen that the results obtained by this proposed
model are closely to the method in [42], while are different from
those obtained by method in [57].

The above two studies have both considered the issue of
setting criteria weights and proposed the distance based methods
for determining the criteria weights. And for the GDM scenario,
both of them merely used AWA operators to aggregate the indi-
vidual’s assessments, and the group consensus reaching process
is not reflected. Compared with these methods, the features of
the proposed model can be summarized in the following aspects.

• Compared with Wang et al.’s [42] method, this study in-
troduces PT3 and develops the dynamic reference points
associated with time series, which is more flexible than
PT and has wider application in dealing with emergency
events. Meanwhile, this proposed model selects the IT2FSs-
based linguistic terms set which is more reasonable for
solving emergency response plans evaluation problems than
interval-based linguistic terms.
• Compared to Wang et al.’s [57] research, this paper consid-

ers the bounded rationality of DMs, and combines PT3 and
the SMAA-MULTIMOORA method to calculate the results in
a multi perspective. The introduction of SMAA method al-
lows the stochastic input data of MULTIMOORA framework,
which can increase the consistency of the final ranking
results.
• In addition, in GDM process, this paper considers the group

consensus and designs a consensus iterative algorithm to
promote group consensus reaching. Moreover, we use Monte
Carlo simulation to produce the criteria’s weights randomly,
thereafter, the three measurements in SMAA method are
applied to testify the ranking results. It increases the ro-
bustness of results compared with the establishment of the
criteria weights in the previous two studies [42,57].

Therefore, through the comparative analysis, the propose
ethod can be applied in the process of emergency response plan

valuation in a more comprehensive perspective.
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Table 12
The value of evaluation from DMs in the state of s2 .

c1 c2 c3 c4 c5 c6 c7

DM1

a1 0.3188 0.0001 0.3301 0.0108 0.1102 −0.1719 0.1911
a2 0.1188 −0.1919 −0.0557 0.0108 −0.0758 −0.3719 −0.0006
a3 0.3188 0.0001 0.1301 0.4108 −0.0758 0.4143 −0.1967
a4 0.5188 0.0001 −0.2557 0.0108 −0.4758 0.0143 −0.0006
a5 −0.2684 0.1943 0.1301 0.2108 −0.2758 0.0143 −0.0006

DM2

a1 0.1188 0.0001 −0.2557 −0.1764 0.1102 0.0143 0.1911
a2 −0.0684 −0.3919 −0.4557 0.0108 0.1102 0.4143 −1.3568
a3 0.3188 0.0001 −0.0557 −0.1764 −0.0758 −0.1719 −1.3568
a4 −0.0684 0.0001 −0.0557 0.0108 0.1102 0.0143 −0.1967
a5 −0.2684 −0.1919 0.1301 0.0108 0.1102 −0.1719 0.1911

DM3

a1 0.3188 0.0001 0.1301 0.2108 0.3102 −0.1719 −0.1967
a2 −0.0684 0.0001 −0.0557 0.0108 0.3102 0.0143 0.1911
a3 −0.2684 −0.1919 0.3301 0.2108 −0.0758 0.0143 −1.2965
a4 0.3188 −0.1919 −0.2557 0.0108 0.1102 −0.1719 0.5911
a5 −0.2684 0.1943 −0.0557 −0.1764 −0.0758 0.2143 −1.2965
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Table 13
The linguistic evaluation information of DMs in the state of s3 .

c1 c2 c3 c4 c5 c6 c7

DM1

a1 VUI VI SI I VUI SI UI
a2 I I UI UI SI VI UI
a3 VI SI UI I UI VUI VI
a4 SI VI I I SI UI I
a5 I VUI SI UI VI SI VI

DM2

a1 UI I UI VI SI UI I
a2 SI VI I SI VUI VUI I
a3 I VUI SI VI VUI VI UI
a4 SI SI UI VI VUI I I
a5 I I SI I UI SI SI

DM3

a1 UI SI SI I UI VI I
a2 SI SI I VI VUI I UI
a3 I I VUI SI UI I VI
a4 VUI VI VI SI I UI VUI
a5 VI I UI I I UI VI

5. Further discussion

In this proposed model, we have proposed an integrated
CGDM method, which takes the IT2FSs, PT3 and MULTIMOORA
ethod into consideration. The major parts of this research are
s follows: firstly, individual DMs make judgments on the emer-
ency response plans in PT3, then through the consensus iterative
lgorithm, obtain the group evaluation information. Thereafter,
ith the application of the extended MULTIMOORA method to
alculate the final ranking results.
Generally, in the assessments of emergency response plans,

inguistic terms are usually applied to express the preferences of
Ms. It is difficult to obtain sufficient information in emergency
vents, so we use IT2FSs to quantify the expressions of terms
nd reduce the loss in the data processing. We consider the
haracteristics of DMs and introduced the PT3. In the extended
ULTIMOORA framework, the BC method is arranged to aggre-
ate the utility values of the three subordinate methods instead
f the original dominance theory, and we apply the SMAA method
o randomize the criteria weight to increase the robustness of the
inal results.

After that, as shown in Table 9, by modifying the relevant
arameters for sensitivity analysis, it can be seen that the changes
f the parameters have a little effects on the final evaluation re-
ults, which illustrates the robustness of this model. Furthermore,
hrough the comparative analysis, it can reflect the reliability
f the method from the side. Based on the above discussions,
he major novelty and advantages of the proposed model can be
ighlighted as follows.
14
• The proposed model uses the IT2FSs as the quantitative tool
for linguistic terms for DMs making evaluations. Meanwhile
the six possible cases of dealing with the centroid intervals
of IT2FSs are designed, which can make the final qualified
evaluation values are closer to the real DMs’ assessments.
• PT3 is applied to construct the decision making matrix of

DMs, considering the bounded rationality in handling with
emergency events of DMs. Furthermore, the setting of dy-
namic reference points corresponds to the timeliness of the
development of emergency events as well.
• In the GDM situation, the distance formula in Eq. (26) is de-

signed to examine the group consensus, and we put forward
the related iterative algorithm to help consensus reaching,
which is not considered in [42,57].
• The extended MULTIMOORA method is presented. Specifi-

cally, the BC method is applied to fuse the utility values of
the three sub functions in MULTIMOORA framework, then
the Monte Carlo simulation is constructed to randomize the
criteria weights, and the corresponding indexes in the SMAA
method are supposed to verify the final rankings, which
increase robustness of results and make the model more
suitable to deal with real cases.

. Conclusions, limitations, and future studies

In the recent years, owing to the harmfulness caused by emer-
ency events, researches on emergency response plans evaluation
as attracted many scholars. The related studies can be seen in
efs. [58–61]. In this paper, we have developed an emergency re-
ponse plans assessment method in a comprehensive way, owing
o the complexity of emergency events and the bounded rational-
ty of DMs, this proposed model combines PT3 and the extended
ULTIMOORA method with considering the group consensus

eaching, the whole process is described as follows: DMs use the
iven linguistic terms set to make judgments on the emergency
esponse plans, then based on centroids of IT2FSs, each term can
e qualified into interval numbers, formalize the interval-based
valuation matrices. When comparing with the related reference
oint vectors, six possible cases are presented to measure DMs’
xpectation of gains or losses of alternatives. It is worth not-
ng that we provide a formula for the formation of dynamic
eference point vectors over time. Thereafter, we calculate the
rospect matrix of each DM. Afterwards, through the consensus
onditions, we substitute the agreeable group prospect decision
atrix into the extended MULTIMOORA method, through 1000

imes of Monte Carlo simulation, the related indexes in SMAA
re calculated to determine the final ranking results of these
mergency response plans. Finally, the emergency response plans
valuation case of COVID-19 happened in Wuhan, China further
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Table 14
The value of evaluation from DMs in the state of s3 .

c1 c2 c3 c4 c5 c6 c7

DM1

a1 0.4858 −0.3702 −0.0476 −1.3037 0.3153 0.0194 0.3744
a2 −0.1017 −0.1702 0.1385 0.3908 −0.071 −0.3671 0.3744
a3 −0.3017 0.0157 0.1385 −1.3037 0.1153 0.4194 −0.2131
a4 0.0858 −0.3702 −0.2476 −1.3037 −0.071 0.2194 −0.0131
a5 −0.1017 0.4157 −0.0476 0.3908 −0.471 0.0194 −0.2131

DM2

a1 0.2858 −0.1702 0.1385 −0.1962 −0.071 0.2194 −0.0131
a2 0.0858 −0.3702 −0.2476 0.1908 0.3153 0.4194 −0.0131
a3 −0.1017 0.4157 −0.0476 −0.1962 0.3153 −0.3671 0.3744
a4 0.0858 0.0157 0.1385 −0.1962 0.3153 −0.1671 −0.0131
a5 −0.1017 −0.1702 −0.0476 −1.3037 0.1153 0.0194 0.1744

DM3

a1 0.2858 0.0157 −0.0476 −12.168 0.1153 −0.3671 −0.0131
a2 0.0858 0.0157 −0.2476 −0.1962 0.3153 −0.1671 0.3744
a3 −0.1017 −0.1702 0.3385 0.1908 0.1153 −0.1671 −0.2131
a4 0.4858 −0.3702 −0.4476 0.1908 −0.271 0.2194 0.5744
a5 −0.3017 −0.1702 0.1385 −12.168 −0.271 0.2194 −0.2131
s
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∆
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illustrates the application of the model in practice. The feasibility
and reliability of this study are validated by sensitivity analysis
and comparison analysis with other methods.

In the future, it is possible to extend the proposed model in
he following directions.

• In the initial evaluation process, DMs choose the linguistic
terms to express their opinions with IT2FSs served as the
quantitative tool. It will be worth studying to express the
evaluation information of DMs in other ways, for instance,
the generalized T2FSs [62], the use of quantum mechan-
ics in the DMs’ decision making process [63], the granular
computing in GDM [64].
• This proposed model considers the psychological behavior of

DMs and assumes that they are all risk-aversion, while DMs
may also exist risk-neutral or risk-preference emotion in
dealing with emergency events. Meanwhile, there is merely
one state for each time period. In some catastrophe, there
may be multiple risk states in a time period.
• We integrated PT3 with the extended MULTIMOORA method

in this paper, The introduction of the SMAA method in-
creases the uncertainty of the input data, thereby enhancing
the robustness of the results. It deserves to take further re-
search in stochastic dominance issues [65] and generalized
almost stochastic dominance issues [66].
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Appendix A

To better explain the six cases in Table 1, and make judgment
for the losses or gains under different types of criteria, the main
process is given as follows.

For case 1 : xlij < xrij < hl
j < hr

j , the relationship can be visually
een from Fig. 8.
It can be seen that hj = [hl

j, h
r
j ] completely exceeds xij =

xlij, x
r
ij], which indicates xij ≺ hj, ∆xij > 0, for the cost criteria

here are weak gains to DMs, while for the benefit there are strict
osses to DMs. Let x′ ij be a random variable in interval [xlij, x

r
ij]

atisfied a uniform distribution, the form of probability density
unction f

(
x′ ij
)
is referred in Eq. (30). Thereafter, ∆xij can be

btained as.

xij = hl
j − x′ ij = hl

j − xrij +
∫ xrij

xlij

(
xrij − x′ ij

)
f
(
x′ ij
)
d
(
x′ ij
)

= hl
j − xrij +

∫ xrij

xlij

(
xrij − x′ ij

) 1
xrij − xlij

d
(
x′ ij
)

= hl
j − xrij +

1
xrij − xlij

∫ xrij

xlij

(
xrij − x′ ij

)
d
(
x′ ij
)

= hl
j − xrij +

1
xrij − xlij

(
xrijx
′
ij −

1
2

(
x′ ij
)2)⏐⏐⏐⏐xrij

xlij

= hl
j − xrij +

1
2
(
xrij − xlij

) · (xrij − xlij
)2

= hl
j −

1
2

(
xrij + xlij

)
For case 2 : xlij < hl

j < xrij < hr
j , which is portrayed Fig. 9. In

his situation, there are overlapping parts in intervals xij and hj,
he value of the overlapping part is equal to 0, which means there
s neither loss nor gain for DMs, ∆x > 0, the same conclusion as
n case 1. And ∆x in case 2 presented as.

xij = hl
j − x′ ij =

∫ hlj

xlij

(
hl
j − x′ ij

)
f
(
x′ ij
)
d
(
x′ ij
)

=
1

xrij − xlij

∫ hlj

xlij

(
hl
j − x′ ij

)
d
(
x′ ij
)

=
1

xrij − xlij

(
hl
jx
′
ij −

1
2

(
x′ ij
)2)⏐⏐⏐⏐hlj

xlij

=

(
hl
j − xlij

)2(
r l

)

2 xij − xij
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Fig. 8. The situations of interval.

Fig. 9. The situations of interval.

Fig. 10. The situations of interval.

Fig. 11. The situations of interval.

Fig. 12. The situations of interval.

For case 3 : hl
j < xlij < xrij < hr

j , see in Fig. 10. Interval hj

contains interval xij, it can be expressed as [xlij, x
r
ij] ⊆

[
hl
j, h

r
j

]
, in

this case, ∆xij = 0 which means no gains or losses for DMs.
For case 4 : hl

j < xlij < hr
j < xrij, presented in Fig. 11. Compare

with case 4 there is an overlapping part as well, the difference
is, ∆x < 0, which denotes that DMs feel weak gains under the
benefit criteria evaluation, strict losses under the cost criteria
evaluation. The main construction of ∆x is shown as follows.

∆xij = hr
j − x′ ij =

∫ xrij

hrj

(
hr
j − x′ ij

)
f
(
x′ ij
)
d
(
x′ ij
)

=
1

xrij − xlij

∫ xrij

hrj

(
hr
j − x′ ij

)
d
(
x′ ij
)

=
1

xrij − xlij

(
hr
j x
′
ij −

1
2

(
x′ ij
)2)⏐⏐⏐⏐xrij

hrj

=
−
(
hr
j − xrij

)2
2
(
xrij − xlij

)
For case 5 : xlij < hl

j < hr
j < xrij, see in Fig. 12. This time, interval

xij contains interval hj, let x′ ij, x′′ ij be uniformly distributed values
on the interval xij which satisfy x′ ij ∈

[
xlij, h

l
j

]
and x′′ ij ∈

[
hr
j , x

r
ij

]
.

Divide ∆x into two parts ∆x′ and ∆x′′ , ∆x = ∆x′ +∆x′′ the
ij ij ij ij ij ij

16
Fig. 13. The situations of interval.

Table 15
Distribution of COVID-19 states in Wuhan on March 5th.
High risk area Medium risk area Low risk area

Qingshan 0 0
Hannan
Jiangan
Hanyang
Qiaokou
Jianghan
Wuchang
Hongshan
Xinzhou
Huangpi
Jiangxia
Caidian
Dongxihu

solving steps are as follows.

∆x′ ij =
∫ hlj

xlij

(
hl
j − x′ ij

)
f
(
x′ ij
)
d
(
x′ ij
)

=
1

xrij − xlij

∫ hlj

xlij

(
hl
j − x′ ij

)
d
(
x′ ij
)

=
1

hl
j − xlij

(
hl
jx
′
ij −

1
2

(
x′ ij
)2)⏐⏐⏐⏐hlj

xlij

=

(
hl
j − xlij

)
2

∆x′′ ij =
∫ xrij

hrj

(
hr
j − x′ ij

)
f
(
x′ ij
)
d
(
x′ ij
)

=
1

xrij − hr
j

∫ xrij

hrj

(
hr
j − x′ ij

)
d
(
x′ ij
)

=
1

xrij − hr
j

(
hr
j x
′
ij −

1
2

(
x′ ij
)2)⏐⏐⏐⏐xrij

hrj

= −
1

2
(
xrij − hr

j

) · (xrij − hr
j

)2
= −

(
xrij − hr

j

)
2

For case 6 : hl
j < hr

j < xlij < xrij, see in Fig. 13, It can be seen that
xij = [xlij, x

r
ij] completely exceeds hj = [hl

j, h
r
j ], which indicates

hj ≺ xij, ∆xij < 0, the situation of case 6 is the opposite of case
1, ∆xij is presented as (see Tables 11–18).

∆xij = hr
j − x′ ij = hr

j − xlij +
∫ xrij

xlij

(
xlij − x′ ij

)
f
(
x′ ij
)
d
(
x′ ij
)

= hr
j − xlij +

1
xrij − xlij

∫ xrij

xlij

(
xlij − x′ ij

)
d
(
x′ ij
)

= hr
j − xlij +

1
xr − xl

(
xlijx
′
ij −

1
2

(
x′ ij
)2)⏐⏐⏐⏐xrij

l
ij ij xij



J. Qin and X. Ma Applied Soft Computing 122 (2022) 108812

R

Table 16
Distribution of COVID-19 states in Wuhan on March 24th.
High risk area Medium risk area Low risk area

0 Qingshan Xinzhou
Hannan Huangpi
Jiangan Jiangxia
Hanyang Caidian
Qiaokou Dongxihu
Jianghan
Wuchang
Hongshan

Table 17
Distribution of COVID-19 states in Wuhan on April 7th.
High risk area Medium risk area Low risk area

0 Qiaokou Qingshan
Hannan
Jiangan
Hanyang
Jianghan
Wuchang
Hongshan
Xinzhou
Huangpi
Jiangxia
Caidian
Dongxihu

Table 18
Distribution of COVID-19 states in Wuhan on April 28th.
High risk area Medium risk area Low risk area

0 0 Qingshan
Hannan
Jiangan
Hanyang
Qiaokou
Jianghan
Wuchang
Hongshan
Xinzhou
Huangpi
Jiangxia
Caidian
Dongxihu

= hr
j − xlij −

1
2
(
xrij − xlij

) · (xrij − xlij
)2

= hr
j −

1
2

(
xrij + xlij

)
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