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Abstract

Background: Pressure overload and prolonged angiotensin II (Ang II) infusion elicit cardiac hypertrophy in Ang II receptor 1
(AT1) null mouse, whereas Ang II receptor 2 (AT2) gene deletion abolishes the hypertrophic response. The roles and signals
of the cardiac AT2 receptor still remain unsettled. Promyelocytic leukemia zinc finger protein (PLZF) was shown to bind to
the AT2 receptor and transmit the hypertrophic signal. Using PLZF knockout mice we directed our studies on the function of
PLZF concerning the cardiac specific transcription factor GATA4, and GATA4 targets.

Methodology and Principal Findings: PLZF knockout and age-matched wild-type (WT) mice were treated with Ang II,
infused at a rate of 4.2 ng?kg21?min21 for 3 weeks. Ang II elevated systolic blood pressure to comparable levels in PLZF
knockout and WT mice (140 mmHg). WT mice developed prominent cardiac hypertrophy and fibrosis after Ang II infusion.
In contrast, there was no obvious cardiac hypertrophy or fibrosis in PLZF knockout mice. An AT2 receptor blocker given to
Ang II-infused wild type mice prevented hypertrophy, verifying the role of AT2 receptor for cardiac hypertrophy. Chromatin
immunoprecipitation and electrophoretic mobility shift assay showed that PLZF bound to the GATA4 gene regulatory
region. A Luciferase assay verified that PLZF up-regulated GATA4 gene expression and the absence of PLZF expression in
vivo produced a corresponding repression of GATA4 protein.

Conclusions: PLZF is an important AT2 receptor binding protein in mediating Ang II induced cardiac hypertrophy through
an AT2 receptor-dependent signal pathway. The angiotensin II-AT2-PLZF-GATA4 signal may further augment Ang II induced
pathological effects on cardiomyocytes.
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Introduction

Angiotensin (Ang) II is a potent vasoactive peptide, with strong

effects on cardiac hypertrophy and congestive heart failure. Ang II

has direct effects on elevated blood pressure, transactivation of the

EGF receptor, and generation of reactive oxygen species [1]. Ang

II binds to two major receptor subtypes, AT1 and AT2, with the

most noted physiological and pathophysiological actions through

the AT1 receptor. However, the AT2 receptor signaling and its

significance have become more important, especially regarding

cardiac remodeling mechanisms which are under-defined [2]. AT2

receptor expression is generally high in fetal tissues, declines

rapidly postnatal to low levels in specific tissues, and then is re-

expressed in certain pathological conditions such as cardiac

hypertrophy, strongly suggesting important roles of the AT2

receptor in tissue growth and remodeling [3].

Mechanical stress alone induces cardiac hypertrophy in vivo [4].

Pressure overload elicits ventricular hypertrophy in AT1a null mice

[5,6,7,8]. By contrast, in AT2 null mice with intact AT1 pressure

overload or chronic Ang II infusion fails to elicit cardiac

hypertrophy and interstitial fibrosis [9,10]. Transplantation of

wild type kidney to AT1a null mice and subsequent Ang II infusion

result in hypertension and cardiac hypertrophy indicating

exclusive roles of the kidney in the etiology of hypertension [11]

and a potential role of AT2 in cardiac hypertrophy. Also, the

transfection of the AT2 receptor into cultured neonatal cardio-

myocytes induces hypertrophy [12]. These results imply that in the

heart Ang II activates AT2 to transmit a hypertrophic signal. This

contrasts with other tissues where AT2 has been shown to elicit

antigrowth and pro-apoptotic signals.

A widely accepted AT2 antihypertrophic signaling mechanism is

a direct G-protein independent activation by AT2 of the protein

tyrosine phosphatase SHP-1 that blocks growth factor signals

[13,14].

In search of the molecular mechanism which may provide

material support for the unique cardiac hypertrophic response to
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the AT2 receptor action in vivo, we examined the hypothesis that a

specific AT2-binding or modulating protein exists in the heart.

The transcription factor promyelocytic leukemia zinc finger

protein (PLZF) acts as a binding partner to the C-terminus of

the AT2 receptor which was revealed by the yeast two-hybrid

system and affinity binding technique. PLZF highly expressed in

the heart activated gene transcription of the P85a regulatory

subunit of phosphatidylinositol 3 kinase (p85a-PI3K). P85a further

activated its downstream kinases Akt/PKB and p70S6k resulting in

cardiac hypertrophy [15].

PLZF is a transcription factor which contains 9 zinc fingers in

the carboxyl terminal area and its amino terminus BTB/POZ

domain mediates most biological functions of the zinc finger

protein [16]. As an important transcription factor in cell

differentiation and development, PLZF exhibits proapoptotic

function in limb development [17] and an antiapoptotic role in

developing testis [18]. PLZF regulates cyclin A2, c-myc, kit gene

expression [19,20,21] and is involved in the signal of AT2 [15] and

renin receptors [22].

The function of PLZF in different tissues and cells depends on

its specific gene sequence context and different functional

interaction partners [23,24,25].

Several cardiac transcription factors involved in fetal heart

development have been identified including GATA4,5,6, NFAT 3,

Nkx 2.5 and the transcription factor regulator HDACs

[26,27,28,29,30,31]. A reversion of these fetal gene expressions

leads to maladaptive heart function [32]. Given that PLZF is an

AT2 receptor binding protein in the heart; we hypothesized that it

can interact with some of these transcription factors, specifically

GATA4 in the heart. In the present study, we employed PLZF-/-

mice to consolidate the hypothesis that the cardiac hypertrophic

action of AT2 is regulated by PLZF in vivo.

Methods

Animals
All of the animal experimental protocols were approved by the

Vanderbilt University Animal Use and Care Committee (A3227-

01). Agtr 2-/Y mice were generated as described [33] and

backcrossed to C57BL/6 genetic background. PLZF deficient

mice were prepared by targeted disruption of the gene Zfp145 in

embryonic stem cells as described [18], they were backcrossed to

C57BL/6 background. Because PLZF-/- animals are defective in

hind limb bone formation, their access to chow was facilitated by

providing food in a dish placed at the floor level. Ten to twelve

weeks old PLZF-/- (n = 12) and WT (n = 10) male mice were used;

their body weight is shown in Figure 1. In a pentobarbital-

anesthetized (10 mg/kg I.P) mouse, an Ang II-impregnated pellet

(Innovative Research of America) was placed under the shoulder

skin. The pellets were prepared to release Ang II at a rate of 4.2 ng

kg21 min21 for 21 or 60 days. For control, saline pellets were

implanted. For the hydralazine group, wild type mice receiving

Ang II pellets were given hydralazine 500 mg/ml in drinking

water. For the AT2 receptor blockade group, wild type mice

received a pellet which releases the AT2 blocker PD123319 at a

rate of 15 mg kg21 min21 together with the Ang II pellet, as above.

Blood Pressure Measurement
Mouse systolic blood pressure (SBP) was measured by the tail-

cuff method and random samples (n = 6–7/group) verified the SBP

by carotid arterial catheterization method. We trained mice for the

manometry daily for 1 week prior to the experiment. Blood

pressure was measured at 0, 7, 14, and 21 days during Ang II

infusion.

Echocardiography
Transthoracic echocardiography was performed using Visual-

Sonics Vevo 770 High-Resolution Imaging System (VisualSonics

Inc.) or Sonos 5500 (Agilent) for measurements of left ventricle

(LV) internal diameter at end diastole and end systole, interven-

tricular septal wall thickness (IVS) and posterior wall thickness

(PW) as previously described [5].

Histochemistry
Mouse hearts were isolated after perfusion with 40 mM KCl,

and fixed in 4% par formaldehyde with PBS. Four mm paraffin

sections were cut and stained with hematoxylin-eosin solution. The

collagen fraction was calculated as ratio of the sum of the total area

of interstitial fibrosis to the sum of the total connective tissue area

plus the myocyte area in the entire visual field of a section. The

area of perivascular fibrosis was determined as the ratio of the area

of fibrosis surrounding the vessel wall to the total vessel area.

Approximately 100 cells were examined in each heart.

Western Blot
Mouse ventricles were ground on dry ice, or in liquid nitrogen

in a pestle and mortar into a fine powder and homogenized in

1 mL of ice-cold TNF buffer (20 mM Tris-HCl (pH: 7.5),

150 mM NaCl, 2 mM EDTA, 1% NP-40, 50 mM NaF, 25 mg/

ml aprotinin, 25 mg/ml leupeptin, 1 mM Na3VO4, 1 mM PMSF

and 5 mM 2-mercaptoethanol). After 30 minutes exposure at 4uC,

homogenates were centrifuged at 30,0006g for 30 minutes and

supernatants were saved. Cardiac extracts were subjected to SDS-

PAGE and transblotted onto PVDF membranes. Membranes

were blocked, washed and incubated with primary and secondary

antibodies. Protein bands were visualized by enhanced chemilu-

minescence (ECL) plus detection system.

Competitive Reverse Transcription Polymerase Chain
Reaction (RT-PCR)

Mouse ventricles were extracted in RNeasy Fibrous Tissue Mini

kit (Qiagen). mRNA for AT1 and AT2 were determined by R-

PCR, according to the published method [34].

Elctrophoretic Mobility Shift Assay (EMSA)
Nuclear extracts (10 mg) from COS7 cells that were transfected

with pCDNA4-PLZF plasmid was incubated with 2 nM 32p-

labeled double-stranded oligonucleotide for 20 min at room

temperature. Mouse anti-PLZF antibody (Santa Cruz Biotechnol-

ogy, Santa Cruz, California) (2 mg) was added for the supershift

assay. Protein-DNA complexes were electrophoresed in 4% native

polyacrylamide gels and autoradioraphed. The sense strands of the

oligonucleotides used in the EMSA were: 59GGACAATC-

TAAAGTTCTTTCT-39 (GATA4 native), and 59GGACAAT-

CATATGTTCTTTCT-39 (GATA4 mutated), based on the

GATA4 gene sequence 3 (NC_000008 NCBI).

Chromatin Immunoprecipitation (ChIPs) Assay
ChIPs analysis was carried out with a commercial kit (Upstate

Biotechnology) with some modifications to the manufacturer’s

recommended conditions. Briefly, 26106 CHO-K1 cells, stably

expressing AT2 and PLZF were cultured for 2 days and treated

with 1% formaldehyde for protein-DNA cross-linking. The

nuclear pellet was suspended in 600 ml of lysis buffer containing

1% SDS and 16protease inhibitor cocktail, incubated for 10 min

on ice, and sonicated sufficiently to shear the DNA to an average

size of 500 to 1,000 bp. Chromatin was diluted 10-fold with ChIP

dilution buffer, precleared with 80 ml of protein A-agarose and
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incubated with the anti-PLZF antibodies on a rotating shaker at

4uC overnight. After protein removal purified DNA was

resuspended in 20 ml of H2O and analyzed by PCR. DNA for

the input control was diluted 1:100 before the PCR. Reactions

were carried out in a volume of 50 ml, with initial denaturation at

94uC for 5 min, followed by 30 cycles of denaturation at 94uC for

30 sec, annealing at 54uC for 1 min, and extension at 72uC for

40 sec, followed by a 7-min terminal extension at 72uC.

Luciferase Assay
Human GATA4 gene 59 upstream regulatory sequence was

amplified by PCR with primers 59-GGCATTGTA-

CATTCTTCTCA-39/59-ACCTATTGGGGGCAGAAGC-39,

and was cut by KpnI and Bgl II. The promoter region of the

GATA4 gene was amplified with primers 59GTAGCG-

CACGTCTCTTTCC-39/59GGTAGCACTTGGGCATTTTC-

39, and was cut by Bgl II and Hind III. These fragments were

inserted to PGL3 basic vector plasmid (Promega). The dual

luciferase assay system (Promega) was used to normalize for

transfection efficiency by Renilla luciferase activity.

Statistics
Data are expressed as mean6SEM. The significance of

differences between control and experimental groups were

evaluated using a one-way ANOVA with Student Newman-Keuls

test. P,0.05 was considered statistically significant.

Results

Reduced Cardiac Hypertrophy and Fibrosis in Ang II-
treated Homozygous PLZF-/- Mice

We reported that prolonged Ang II infusion [9] or pressure

overload [10] failed to cause cardiac hypertrophy in AT2 deficient

mice. We also reported that in cells and tissues high in PLZF

expression the AT2 signal was transduced by PLZF [15]. We

treated PLZF-/- and WT male mice with Ang II or with saline for

3 weeks by continuous infusion from subcutaneously embedded

Ang II impregnated pellets to investigate the role of PLZF in Ang

II induced cardiac hypertrophy. The systolic blood pressures of

WT and PLZF-/- mice with Ang II infusion was raised to

140 mmHg (Figure 2A). The wild type mice showed a robust

increase in the heart weight/body weight ratio whereas PLZF -/-

mice showed little change in the ratio. (Figure 2 B,C).

The Ang II treatment significantly increased wall thickness of

IVS and PW in WT mice, but no obvious change was detected in

PLZF-/- mice (Figure 2, D, E). Masson’s staining revealed that

both interstitial and perivascular fibrosis (Figure 3,A,B) were

significantly increased by Ang II infusion in WT mice, and no

significant increase was seen in PLZF-/- mice after the Ang II

infusion. Taken together, the reduced cardiac hypertrophy and

fibrosis indicate that PLZF is one of the transcription factors

mediating Ang II-induced cardiovascular remodeling.

AT2 Receptor Pathway is Necessary for Ang II Induced
Cardiac Hypertrophy

We performed a series of in vivo studies, including wild type mice

with control pellet, wild type mice with Ang II infusion, wild type

mice with Ang II plus hydralazine, wild type mice with Ang II plus

PD123319 and AT2 knockout mice with Ang II (Figure 4,

A,B,C,D) to distinguish the functional roles of AT2 and pressure

load in cardiac hypertrophy. We found that co-infusion of the

specific AT2 blocker PD123319 with Ang II in wild type C57BL/

6 mice suppressed Ang II-induced cardiac hypertrophy (Figure 4

B,C,D) confirming that AT2 is responsible for Ang II-stimulated

hypertrophy. Ang II infusion into both wild type and AT2

knockout mice led to sustained elevation in systolic blood pressure

(,140 mmHg) which was normalized to 103–106 mmHg by a

non-specific vasodilator hydralazine (Figure 4A). The hydralazine

administration abolished Ang II induced cardiac hypertrophy

(Figure 4 B,C,D). These results suggest that the elevated blood

pressure is an important component of the increased hypertrophic

response in AT2-dependent Ang II signals.

AT2 Expression in Cardiac Ventricles is Promoted by Ang
II Infusion in Wild Type Mice

Given evidence for the role of AT2 in ventricular hypertrophy in

wild type mice receiving Ang II infusion (Fig. 4 B,C,D) we

examined possible changes in expression levels of AT1 and AT2

during infusion of Ang II. In vivo cardiac AT2 receptor protein is

expressed at about 20% of AT1 protein level in untreated C57BL6

mouse strain which is too low to be determined by competitive

ligand binding assay [34]. By RT-PCR AT2 mRNA expression

increased by 80% in 3 days and 180% in 7 days with615% error,

n = 4. Whereas AT1 mRNA did not increase in the first 3 days and

showed a 100% increase in 7 days (with619% error, n = 4).

Almost 3-fold increase in AT2 mRNA suggests that Ang II will

Figure 1. PLZF-/- mice weigh less than their wild type and heterozygote siblings. Mice were weighed for comparison. (* indicates
p,0.05 vs all other groups; n = 12; data are mean6S.E.M).
doi:10.1371/journal.pone.0035632.g001
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have a fairly strong effect on downstream events of the heart.

These results are basically in agreement with observations

reported by Fujii on double transgenic mouse expressing human

renin and angiotensinogen which develops angiotensin dependent

hypertension [34].

PLZF Specifically Binds to the Upstream Flanking Region
of GATA4 Gene

We previously reported that the AT2-PLZF-p85a-PI3K-Akt

mechanism was involved in the AT2 mediated signaling pathway

[15]. Considering that PLZF is an important transcription factor

in development [17,18] and cardiac hypertrophy [15,22], we

further studied the possibility of a transcription function of PLZF.

According to Li et al. [36], a core consensus sequence for the

specific binding of the PLZF is AT/GG/CTA/CA/CAGT.

Based on MatInspector reports [37], a putative PLZF binding

site is present in the human GATA4 promoter region with a high

core and matrix similarity (Sequence from NC_000008 NCBI).

We performed an electrophoretic mobility shift assay (EMSA) to

investigate whether it is a PLZF target. The results showed a

positive band that was abolished by a competing mutant probe.

Supershift assay with PLZF antibody showed a retarded band,

which further confirmed the binding activity (Figure 5A). These

results indicate the potential for PLZF to bind to the GATA4

gene regulatory region. Further, chromatin immunoprecipitation

assay (ChIPs) analysis verified that this GATA4 gene sequence at

the chromatin level was indeed occupied by PLZF. A CHO-K1-

AT2-PLZF cell line with stable AT2 and PLZF expression was

cultured for 2 days and treated with 1% formaldehyde to cross-

link DNA and associated proteins. The chromatin was

fragmented by sonication. The resulting PLZF-bound fragments

were subjected to immunoprecipitation with PLZF antibody, and

the chromatin-bound proteins were digested overnight with

proteinase K in 200 mM NaCl at 65uC. DNA freed from the

bound protein was identified by PCR which was performed with

primers encompassing the putative PLZF binding sequence. As

shown in Figure 5B, this GATA4 regulatory sequence was bound

by PLZF.

Upregulation of GATA4 Gene Expression through the AT2

and PLZF Signaling Pathway
The present finding that the GATA4 gene has a specific PLZF

binding site in its upstream flanking region suggests that it may be

a functional site that regulates transcription of the GATA4 gene.

Since we have found that Ang II-mediated cardiac hypertrophy

depends on the expression of PLZF, and that PLZF activation is

driven by AT2 in the heart [15]; and since GATA4 is one of the

well known factors involved in cardiac development and

hypertrophy [26], we examined the possible transcriptional role

of PLZF on GATA4 gene expression by luciferase assay in R3T3

cells which express the AT2 receptor but not AT1. The luciferase

plasmid construction was based on pGL3-basal vector with a

904 bp insert from the upstream regulatory sequence of the

human GATA4 gene and a GATA4 promoter [35]. As shown in

Figure 6A, PLZF-expressing R3T3 cells had a markedly elevated

(200% of the basal level) luciferase transcription activity. When

Ang II (0.1 mM) was added to the PLZF-transfected R3T3 cells,

the luciferase activity was further elevated to 300% of the control

level. These results support the hypothesis that PLZF up-regulates

GATA4 gene expression, and that the activation is further

enhanced by Ang II action through the AT2 receptor.

Figure 2. PLZF-/- mice show no obvious cardiac hypertrophy by Ang II infusion. (A) Systolic blood pressure increased in Ang II group
(* indicates p,0.05 vs vehicle groups; n = 12; data are mean6S.E.M). (B) Mouse heart cross-section of the left ventricle. (C) The bar graph shows the
ratio of heart weight (mg) to body weight (g) of mice from each group (* indicates p,0.05 vs all other groups; n = 8; data are mean6S.E.M.). (D)(E)
Echocardiography data, (D) interventricular septal (IVS) and (E) left ventricular posterior wall (LVPW) thickness (* indicates p,0.05 vs all other groups;
n = 8; data are mean6S.E.M.).
doi:10.1371/journal.pone.0035632.g002
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Results in Figure 6B further confirm this conclusion as the non-

peptide AT2 receptor antagonist PD123319 completely eliminated

the enhanced effect of Ang II on luciferase activity.

Elevated Expression of GATA4 Protein in Ang II-treated
Wild Type Mouse Heart

Given the ability of PLZF to increase GATA4 gene expression

in vitro, we next examined whether the absence of PLZF expression

in vivo produced a corresponding repression of GATA4 protein.

PLZF-/- and wild type mice received Ang II infusion for 3 weeks.

GATA4 protein was examined in the left ventricular extract by

Western blotting using GATA4 polyclonal antibodies. GATA4

protein was markedly elevated after 3 weeks in WT mice, whereas

in PLZF-/- no significant induction of GATA4 protein was

recognized, as shown in Figure 7. This result provides further

support to the conclusion that the GATA4 gene is regulated by

PLZF in vivo.

Ang II Activates Cardiac GATA4 Signal to Target Genes
GATA4 controls numerous cardiac target genes. The question

arose whether the upstream signal of the Ang II-AT2-PLZF signal

generally reaches GATA4. To test such a possibility, we studied

whether Ang II infusion for 3 weeks to wild type C57BL/6 mouse

will stimulate synthesis of well known targets of GATA4 pro-atrial

natriuretic factor (pro-ANF) [38] and RhoA [39]. Ang II infusion

markedly increased ventricular pro ANF compared with controls

(n = 3) by Western blot analysis of the target proteins (Figure 8).

These results show Ang II signal, possibly via AT2, activates

GATA4 target genes.

Discussion

In the present study, we report evidence indicating PLZF, a

Kruppel-like zinc finger protein highly expressed in the heart [40],

is a crucial transcription factor that regulates cardiac hypertrophy

through the AT2 receptor in response to Ang II. Ang II-activated

AT2 receptor has been shown to bind PLZF and facilitate its

nuclear translocation [15]. The present study shows that it up-

regulates the expression of GATA4, a key cardiac morphogenic,

hypertrophy and remodeling regulator [41].

PLZF was first recognized to fuse with retinoic acid receptor

RARa in acute promyelocytic leukemia. PLZF suppresses gene

transcription by recruiting corepressors to the gene regulation

region and activate gene transcription with different molecular

mechanism which has not been well defined [25]. PLZF is

increasingly recognized as a key regulator in cell differentiation,

growth or self-renewal process. Using PLZF knockout mice, we

found suppressed cardiac hypertrophy (Fig. 2 B,C,D,E) and

fibrosis (Fig. 3 A,B,C,D) in PLZF-/- mice subjected to chronic Ang

II stimulation. Further experiments revealed PLZF regulated

GATA4 expression, a vital factor in heart development and

differentiation and remodeling [26,41,42]. GATA4 directly

stimulates numerous cardiac-specific genes, including those of a-

and b-myosin heavy chain genes which are key indices of

cardiomyocyte hypertrophy [43,44,45]. Therefore, we believe

that the expression of GATA4 directly regulated by PLZF is

Figure 3. Less fibrosis is observed in Ang II infused PLZF-/- than wild type mice. Sections of left ventricle were stained with Masson’s
trichrome to determine fibrosis. (A) Interstitial fibrosis. (* indicates significant changes at p,0.05 vs all other groups; n = 100; 5 mice for each group;
data are mean6S.E.M.). (B) Perivascular fibrosis. (* indicates p,0.05 vs all other groups; n = 100; 5 mice for each group; data are mean6S.E.M.).
doi:10.1371/journal.pone.0035632.g003
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another important factor of the cardiac remodeling controlled by

the transcription factor PLZF in the Ang II AT2 signaling

pathway.

Senbonmatsu, et al previously showed that stimulation of the

AT2 receptor [15] in cells expressing PLZF, such as cardiomyo-

cytes, elicits binding of PLZF to the receptor and its subsequent

translocation into the nucleus, where it up-regulates the p85a
regulatory subunit of PI3K. The nuclear translocation was

demonstrated by markedly increased PLZF in cardiocyte nuclei

(by immunohistochemical staining) of Ang II-infused wild type

mice and also in AT2-expressing R3T3 cells transfected with a

PLZF-expression plasmid [15]. It is this AT2-mediated nuclear

translocation of PLZF that accounts for the activation of p85a in

the previous studies [15] and GATA4 in the present study. The

activation of the PI3K/Akt signal leads to cellular hypertrophy

due to stimulation of protein synthesis by p70S6k. Moreover,

GSK3ß is another important downstream hypertrophic factor in

the PI3K/Akt signal pathway. GSK3ß phosphorylates GATA4 to

Figure 4. Elevated blood pressure and intact AT2 receptor are involved in eliciting Ang II-induced cardiac hypertrophy. (A) Systolic
blood pressure increased in Ang II group, Ang II + PD123319 group and Ang II+ Agtr2-/Y group (*indicates p,0.05 versus vehicle; n = 15; data are
mean6S.E.M.). (B) The bar graph shows the ratio of left ventricular weight (mg) to body weight (g) of mice from each group (* indicates p,0.05 vs all
other groups; n = 7; data are mean6S.E.M.). (C)(D) Echocardiography data, line graphs show changes in IVS (C) and LVPW (D) in mice of each group
(* indicates p,0.05 vs all other groups; n = 15; data are mean6S.E.M.).
doi:10.1371/journal.pone.0035632.g004

Figure 5. PLZF binds to the regulatory region of GATA4 gene. (A) Elctrophoretic mobility shift assay (EMSA) verified the PLZF binding activity
at GATA4 gene. Lane 1: negative control with nuclear extract of COS7 cells not expressing PLZF. Lane 2: positive control with PLZF expressing cell
nuclear extract. (B)Chromatin immunoprecipitation assay (ChIPs) analysis determined the PLZF occupancy in GATA4 gene at the chromatin level.
doi:10.1371/journal.pone.0035632.g005

PLZF Protein Regulates Cardiac Hypertrophy
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promote its export from the nucleus through the exportin, Crm1

[46]. Akt inhibits GSK3ß activity and enhances nuclear

accumulation of GATA4. Taken together the Ang II-AT2 exerted

multiple convergent effects directed to cardiac hypertrophy

through activation of p85a PI3K and p70S6k, inhibition of

GSK3ß to facilitate nuclear localization of GATA4 and stimula-

tion of GATA4 transcription.

The role of the AT2 receptor in cardiac hypertrophy is not

completely explained. The present findings that two of the

arbitrarily selected GATA4 targets are activated by Ang II,

presumably via AT2-PLZF system, seems to indicate that many of

GATA4 targets may be activated by this mechanism. More

detailed studies are necessary to generalize it as a new GATA

activation mechanism. The AT2 initiated GATA4 activation and

cardiac hypertrophy are novel and somewhat surprising in view of

the generally recognized AT2 function directed to growth

inhibition. However, since the present hypertrophic mechanism

involves cardiac specific GATA4 and heart selectively (but not

exclusively) expressed PLZF, it may be a uniquely heart specific

response under in vivo condition. Both AT1 and AT2 are

Figure 6. PLZF up-regulates GATA4 gene expression. (A) Luciferase reporter gene activity in PLZF co-transfected R3T3 cells (* indicates
p,0.05 vs control group; n = 5; data are mean6S.E.M.). (B) Luciferase reporter gene activity in R3T3 cells which were pretreated with AT2 antagonist
PD123319 for 1 hour before experiment. (* indicates p,0.05 vs all other groups; n = 5; data are mean6S.E.M.).
doi:10.1371/journal.pone.0035632.g006

Figure 7. GATA4 protein expression is significantly elevated in the Ang II treated wild type mouse heart. Protein extracts from mice left
ventricles were measured by Western blot (* indicates p,0.05 vs all other groups; n = 5; data are mean6S.E.M.). Ordinate axis indicates protein
amount normalized by GAPDH, control is set to 1.0.
doi:10.1371/journal.pone.0035632.g007
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proportionally up-regulated in the hypertrophic heart [34,47].

AT1 inhibition does not prevent left ventricular remodeling

induced by pacing [48]. Pressure overload elicits ventricular

hypertrophy in AT1a null mice [5,6,7,8]. By contrast, in AT2 null

mice pressure overload or chronic Ang II infusion fails to elicit

cardiac hypertrophy and interstitial fibrosis [9,10]. Overexpression

of AT2 receptor in transgenic mice induces left ventricular

hypertrophy [49]. Ang II up-regulates the immediate early

transcription factor ATF3 through AT2 signal pathway and

induces left atrial hypertrophy [50]. Alternatively, deletion of

either AT1 or AT2 markedly attenuates cardiac hypertrophy in

natriuretic peptide receptor/guanylyl cyclase-A (GCA)-deficient

mice [51]. Similar to these observations, our in vivo studies showed

high blood pressure and AT2 were critical for Ang II induced

cardiac hypertrophy. Abating pressure overload by hydralazine,

blockade of AT2 receptor with the AT2 antagonist PD123319 or

deletion of AT2 (Agtr2-/Y) prevents cardiac hypertrophy.

Cardiac AT2 is up-regulated by mechanical stretch [52] and

pressure overload [34,53]. Moreover, AT2 promotes ligand-

independent, constitutive cardiomyocyte hypertrophy [54]. AT1

and AT2 receptors are considered to interact with each other to

enhance the effects they mediate. Combined treatment with

losartan and PD123319 proved to be more effective in attenuating

the reflex increase in plasma adrenaline concentrations during

insulin-induced hypoglycemia than either of the two Ang II

receptor antagonists given alone [55]. Furthermore, the combi-

nation of both AT1 and AT2 receptor antagonists, at concentra-

tions that each partly reduced inositol 1,4,5-trisphosphate (IP3),

completely inhibited IP3 formation, suggesting that AT1 and AT2

cooperate in Ang II-mediated IP3 signal transduction for the

actions of Ang II mediated by the IP3 signal transduction pathway

[56].

Because GATA4 with AP-1 (activator of protein-1) up-regulates

AT1 receptor expression [57], our study provides insight into a

plausible mechanism of interaction between AT1 and AT2

signaling pathways, in which PLZF bridges AT2 and AT1

signaling through GATA4. Thus, AT2 could be an upstream

cardiac hypertrophy factor of AT1 signaling. The interactions

between AT1 and AT2 are complicated but the comprehensive

understanding of these mechanisms could lead to better under-

standing of the therapeutic strategies of hypertension and cardiac

hypertrophy. The present observation that AT2 receptor antag-

onist PD123319 inhibits the Ang II mediated cardiac hypertrophy

is in agreement with our earlier observation with AT2 deficient

mice which lost hypertrophic response to Ang II. It is important to

note that normalization of blood pressure by hydralazine

prevented cardiac hypertrophy (Fig. 2A) which indicates that

pressure load is essential for the hypertrophy in agreement with

existing reports [4,34,47,57] as discussed above myocyte stretch

and tension induce expression of AT2 [52,53].

In summary, the present results of in vivo and in vitro studies

demonstrate that PLZF activates GATA4 gene transcription and

plays a significant role in the AT2-mediated cardiac hypertrophic

response to Ang II.
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