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Abstract Vanin-1 is an amidohydrolase that catalyses the conversion of pantetheine into the amino-

thiol cysteamine and pantothenic acid (coenzyme A precursor), which plays a vital role in multiple phys-

iological and pathological processes. In this study, an enzyme-activated near-infrared (NIR) fluorescent

probe (DDAV) has been constructed for sensitively detecting Vanin-1 activity in complicated biosamples

on the basis of its catalytic characteristics. DDAV exhibited a high selectivity and sensitivity toward

Vanin-1 and was successfully applied to the early diagnosis of kidney injury in cisplatin-induced kidney

injury model. In addition, DDAV could serve as a visual tool for in situ imaging endogenous Vanin-1

in vivo. More importantly, Enterococcus faecalis 20247 which possessed high expression of Vanin-1

was screened out from intestinal bacteria using DDAV, provided useful guidance for the rational use

of NSAIDs in clinic. Finally, oleuropein as a potent natural inhibitor for Vanin-1 was discovered from
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herbal medicines library using a high-throughput screening method using DDAV, which held great prom-

ise for clinical therapy of inflammatory bowel disease.

ª 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vanin-1 (EC 3.5.1), also known as pantetheinase, is an epithelial
glycosylphosphatidylinositol (GPI)-anchored ectoenzyme which
catalyzes the cleavage of pantetheine into the amino-thiol cyste-
amine and pantothenic acid (vitamin B5, the coenzyme A pre-
cursor)1,2. Importantly, Vanin-1 plays a vital role in multiple
physiological and biological processes ranging from gluconeo-
genesis, pantothenic acid recycling, and cell migration, as well as
oxidative stress regulation and inflammation aggregation in
various pathological status3e7. It has a wide expression in different
organs, especially in kidney and intestine8e10. Recent studies
reveal that Vanin-1 expression is tightly intertwined with occur-
rence and development of certain diseases, such as kidney injury,
hepatotoxicity, inflammatory bowel disease (IBD), diabetes and
malaria8,10. In view of the powerful functions of Vanin-1 and
growing body of evidence, urinary Vanin-1 is regarded as a pre-
dictive biomarker for various kidney diseases, including drug-
induced renal injury, acute kidney injury and diabetic neph-
ropathy11e13. In addition, as a major regulator of intestinal
inflammation, Vanin-1 is also recognized to be a potential thera-
peutic target as a new anti-inflammatory strategy14. Collectively, it
is imperative to develop efficient tools for rapid and accurate
tracing endogenous Vanin-1 activity in complex biosystems,
which should be invaluable in further exploring Vanin-1’s patho-
physiology function and related diseases.

Traditional analysis methods for Vanin-1 including radioactive
isotope labeling and spectrophotometric assay are chiefly based on
the quantification of cysteamine15,16, which are not applicable for in
situ dynamic determining enzyme’s bioactivity, due to insufficient
sensitivity and laborious measurement procedure. Recently,
fluorescence/bioluminescence-based analytical technology has
received considerable attention for the advantages of simplicity,
superb selectivity/sensitivity, real-time visualization, and non-
invasive detecting17e25. For Vanin-1, few probes have been
designed and developed for detecting Vanin-1 in cells and mice
recently. For example, Lin et al.26 constructed a bioluminogenic
sensor based on aminoluciferin, Qian et al.27,28 developed two NIR
emission ratio fluorescent probes for sensing Vanin-1. Lately, Yang
et al.29 constructed a NIR probe for bioimaging Vanin-1 and
demonstrated the increase of Vanin-1 level in the tissues of mouse
inflammatory models. However, there is rare fluorescent probes
have been developed for exploring the vital function of Vanin-1 in
the aspect of kidney injury diagnosis, inflammatory prevention and
therapy, intestinal bacteria and inhibitor screening.

As is known, fluorescent probe with near-infrared (NIR)
emission is widely regarded as an ideal candidate for bioimaging
in living system due to its superiorities of deep tissue penetration
and minimum background autofluorescence30e35. Herein, based
on the catalytic characteristics of Vanin-1, a novel NIR
fluorescent probe DDAV was designed and developed by
conjugating pantothenic acid with the NIR fluorophore DDAN.
DDAV exhibited low cytotoxicity and ultra-sensitivity/
specificity, which acted as a practical tool for real-time detect-
ing Vanin-1 activity in vitro and in vivo. Furthermore, DDAV
was employed to monitor kidney function and diagnosis of
kidney injury by detecting the Vanin-1 levels in urine. In addi-
tion, DDAV could realize the in vivo imaging of Vanin-1 in
living animals, and further screening out functional intestinal
bacteria which had a high expression of Vanin-1. At last, using
DDAV, a high-throughput screening method for Vanin-1 in-
hibitors was established, and oleuropein as a novel natural in-
hibitor from herbal medicines library that possessed remarkable
inhibitory effect toward Vanin-1 was discovered, which would
hold a promising application for clinical treatment of inflam-
matory bowel disease.

2. Materials and methods
2.1. Materials

All chemicals were obtained from qualified reagent supplies with
analytical reagent grade and used without further purification.
Vanin-1 was purchased from Novoprotein Scientific Inc.
(Shanghai, China). Cisplatin, carbonic anhydrase (Cas), dipeptidyl
peptidase 4 (DPP4), leucine aminopeptidase (LAP), human serum
albumin (HSA), b-glucosidase (b-Glc), b-galactosidase (b-Gla),
b-glucuronidase (GLU), proteinase K (PK), carboxylesterases
(CE1b, CE1c, CE2), bovine serum albumin (BSA) and lysozyme
(Ls) were purchased from SigmaeAldrich (St. Louis, MO, USA).
Cytochrome P450 3A4 (CYP3A4) was supplied by Cypex (Dun-
dee, UK). Pooled human brain S9 (HBS9), pooled human lung S9
(HLuS9), pooled human intestine S9 (HIS9), pooled human kid-
ney S9 (HKS9), and pooled human liver S9 (HLS9) were pur-
chased from the Rild Research Institute for Liver Diseases
(Shanghai, China). Glucose, lysine (Lys), serine (Ser), glutamine
(Gln), glycine (Gly), arginine (Arg), tryptophan (Trp), myristic
acid, tyrosine (Tyr), cysteine (Cys), glutathione (GSH), glutamate
(Glu), bis (p-nitrophenyl) phosphate (BNPP) and loperamide
(LPA) were purchased from Shanghai Yuanye Bio-Technology
(Shanghai, China). b-Lapachone was obtained from Bide Phar-
matech Ltd. (Shanghai, China). Ketoconazole was purchased from
J&K Chemicals (Beijing, China). Creatinine kits and blood urea
nitrogen kits were obtained from Nanjing jiancheng biological
engineering research institute (Nanjing, China). LoVo cells
(human colon carcinoma cell line) and MCT cells (mouse renal
proximal tubule cell line) were purchased from ATCC (Manassas,
USA). Anti-fluorescence quenching sealant was obtained from
Beyotime Biotechnology (Shanghai, China). 40,6-Diamidino-2-
phenylindole (DAPI) was obtained from Vector Laboratories
(USA).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2.2. Synthesis of fluorescent probe DDAV

The fluorescent probe DDAV was synthesized according to the
synthetic route as shown in Supporting Information Scheme S1.

2.3. The application of DDAV in cisplatin-induced acute kidney
injury model

All protocols for this animal study conformed to the Guide for the
Care and Use of Laboratory Animals. All animal experiments
were carried out in accordance with guidelines approved by the
ethics committee of Dalian Medical University (Dalian, China).
C57BL/6 mice (6e8 weeks, 18e22 g), provided by the Experi-
mental Animal Center of Dalian Medical University (Dalian,
China), were housed under diurnal lighting condition with 12 h of
light and subjected to a standard normal diet with receiving water
ad libitum. Mice were divided into two groups (control group and
cisplatin group, n Z 5) randomly. Cisplatin group mice were
intraperitoneally administration with cisplatin (1.0 mg/mL, pre-
pared in normal saline) with 15 mg/kg dosage administration.
Meantime, control group mice received an intraperitoneal injec-
tion of equal amount of normal saline. The urine of experimental
mice was collected by metabolic cages for every 24 h. After
cisplatin injecting for 72 h, kidneys and blood of the experimental
mice were harvested.

Both serum creatinine (sCr) and blood urea nitrogen (BUN)
were investigated based on corresponding commercial kits. The
Vanin-1 activity in urine was measured in the mixed system with a
final incubation volume of 0.2 mL consisting of potassium phos-
phate buffer (100 mmol/L, pH 7.4), 2 mL of stock solution of
DDAV (10 mmol/L) and 20 mL mouse urine. After incubation at
37 �C for 1 h in a thermostat, the reaction was quenched by
addition of ice acetonitrile (100 mL), and the mixtures were then
centrifuged at 20,000�g at 4 �C for 20 min. After that, the ali-
quots of supernatant were collected and used for fluorescence
analysis. Control experiments without mouse urine were carried
out which using equal volume potassium phosphate buffer
replacing urine sample. The protein level of experimental mice
urine was evaluated by SDS-PAGE (SDS-polyacrylamide gel
electrophoresis), and the gel was stained with Coomassie brilliant
blue.

In addition, the renal histopathologic features were investi-
gated. Before embedded in paraffin for 72 h, the kidney speci-
mens from the two groups of experimental mice were fixed in
10% buffered formalin for 24 h. After that, the kidney sections of
10 mm thickness were subjected to Hematoxylin and Eosin
(H&E) staining in accordance with the manufacturer’s in-
structions, which were then photographed by an Axioplan 2
Imaging system. The histological examinations were conducted
blind.

2.4. Imaging of Vanin-1 in mice

BALB/C mice (6e8 weeks, 18e22 g) were provided by the
Experimental Animal Center of Dalian Medical University
(Dalian, China). Mice were randomly divided into two groups
(n Z 3), normal group: mouse was subjected to an intraperito-
neal injection of DDAV (200 mL, 40 mmol/L in normal saline),
inhibition group: mouse was subjected to co-administration of
DDAV (40 mmol/L) and b-lapachone (200 mmol/L) in normal
saline 200 mL intraperitoneally. Next, these mice were anes-
thetized and then scanned using Night OWL II LB983 in vivo
imaging system at the different time interval within 20 min, with
an excitation laser of 605 nm and an emission filter of 660 nm.
In addition, the abdominal cavity of probe-treated group mice
was exposed for further imaging under the same imaging
conditions.

2.5. The distribution of Vanin-1 in intestine

Randomly number BALB/c mice 1e5 and collected fresh feces.
The mice were oral administration mixed antibiotic: neomycin
sulfate, vancomycin and metronidazole with 10 mg/kg dosage
administration every 12 h; added cephalexin 100 mg/mL in water.
After mixed antibiotic administration for a week, fresh feces were
collected. One part of feces was coated on LuriaeBertani (LB)
agar plate, the other part was collected for lyophilization. Crushed
the lyophilized feces and added PBS buffer to 20 mg/mL, the
mixtures were then centrifuged at 1000�g at 4 �C for 10 min after
vortex, and the supernatant was collected as feces S9. The Vanin-1
activity in feces was measured in the mixed system with a final
incubation volume of 0.2 mL consisting of potassium phosphate
buffer (100 mmol/L, pH 7.4), 2 mL of stock solution of DDAV
(10 mmol/L) and 50 mL feces S9. After incubation at 37 �C for 1 h
in a thermostat, the reaction was quenched by addition of ice
acetonitrile and the mixtures were centrifuged at 20,000�g at 4 �C
for 20 min. After that, the aliquots of supernatant were collected
and used for fluorescence analysis. All assays were carried out in
duplicates.

2.6. The screening of intestinal bacteria

Initially, prepared the different intestinal bacteria in LB medium,
and centrifuged at 5000 � rpm at RT for 5 min when the bac-
teria at logarithmic growth period. After washed with PBS for
two times, bacteria suspension was equally divided into three
tubes with volume of 0.2 mL. Subsequently, the bacteria sus-
pension was incubated with DDAV (10 mmol/L), b-lapachone
(20 mmol/L) and DDAV (10 mmol/L), equal amount of organic
solvent at 37 �C for 1 h. The content of organic solvent in the
system shall not exceed 1%. Lastly, centrifuged at RT and
washed the bacteria with PBS for three times, bacteria suspen-
sion was dropped on the slide glasses for fluorescence imaging
with excitation at 633 nm and the collected windows were set as
645e690 nm.

2.7. The screening of Vanin-1 inhibitors

Ethanol extractions of 92 herbal medicines (10 mg/mL) were
added into the reaction solution (consisting of 15 ng/mL Vanin-1
and 10 mmol/L DDAV in potassium phosphate buffer), respec-
tively. After a co-incubation of 30 min, the fluorescence intensity
of each plate was determined by BioTek Synergy H1 microplate
reader (lex/lem Z 600/670 nm).

The chemical components fraction of Cortex Fraxini was
separated by Waters preparative HPLC with C18 column com-
bined with an efficient HPLC method (mobile phase A: consisted
of 10% methanol þ 90% trifluoroacetic acid water; B: 100%
methanol) at a flow rate of 10 mL/min. The following gradient
condition was used: 0e5 min 85% A; 5e10 min 85%e80% A;
10e15 min 80%�65%A; 15e25 min 65% A; 25e30 min 65%e
40% A; 30e35 min 40%e45% A; 35e40 min 40%e10% A, and
the prepared fractions were further evaluated for the inhibitory
effect on Vanin-1 using the procedure mentioned above,



Enzyme-activated near-infrared fluorescent probe for Vanin-1 319
respectively. Then, the key compound in Fr. 8 was isolated by
HPLC and identified by NMR analysis. Finally, the IC50 value of
oleuropein as a Vanin-1 inhibitor was evaluated based on the
inhibitory effect in different concentrations.

3. Results

3.1. The hydrolysis of DDAV by Vanin-1

Firstly, the spectroscopic properties of DDAV toward Vanin-1
were investigated. As shown in Fig. 1B, DDAV exhibited a strong
absorption peak at 480 nm, while the maximum absorption peak
red-shifted to 620 nm after incubating with Vanin-1, accompanied
by a prominent enhancement of the fluorescence intensity at
670 nm (Fig. 1C). Clearly, the distinct spectral response was
ascribed to the specific cleavage of the recognition site of DDAV
and release of the fluorophore DDAN (F Z 0.135), the meta-
bolism progress was further verified by HPLC analysis with help
of standard of DDAN and HRMS analysis for the metabolite peak
at m/z Z 305.0261 [M�H]‒ (Supporting Information Fig. S1).

3.2. The fluorescence behavior of DDAV toward Vanin-1

Additionally, DDAV used as a molecular tool for evaluating
Vanin-1 activity has been investigated in consideration of its
sensitivity, selectivity and reliability. Firstly, the effect of pH and
temperature on the hydrolysis reaction of DDAV in Vanin-1 were
evaluated. As shown in Supporting Information Fig. S2A, the
hydrolysis reaction mediated by Vanin-1 maintained stabilized
efficiency at pH 5e8. Additionally, compared to the common
physiological temperature (37 �C) a modestly elevated tempera-
ture (45 �C) facilitated the enzymatic reaction at a certain extent
(Supporting Information Fig. S2B). All the above results indicated
that the assays of Vanin-1 by DDAV was suitable under the
physiological conditions (pH 7.4, 37 �C). Furthermore, as shown
in Fig. 2A and B, the variation of fluorescence intensity at 670 nm
displayed an excellent linearity with the increasing of Vanin-1
concentration from 0 to 50 ng/mL (R2 Z 0.9914) and a linear
variation with the reaction times up to 110 min (Supporting In-
formation Fig. S3), in favor of accurately monitoring Vanin-1
Figure 1 (A) Illustration of DDAV mediated by Vanin-1. The absorption
activity under various physiological conditions. Next, the speci-
ficity of DDAV was systemically evaluated among different hy-
drolase enzymes. As shown in Fig. 2C, only Vanin-1 could trigger
a marked fluorescence enhancement at 670 nm, while other en-
zymes including Ls, HSA, BSA, CE1b, CE1c, CE2, CYP3A4,
LAP, DPP4, Cas, b-Glc, b-Gla, GLU and PK displayed a negative
response. Subsequently, chemical inhibition was investigated to
further validate the selectivity of DDAV toward Vanin-1. As
Supporting Information Fig. S4 illustrated, b-lapachone, as a
specific inhibitor of Vanin-1, exhibited a strikingly inhibition to-
ward the enzyme-activated hydrolysis reaction, while other in-
hibitors such as BNPP (general inhibitor for CEs), LPA (a specific
inhibitor for CE2) and ketoconazole (a specific CYP3As inhibitor)
could not exert effective inhibitory effects on the hydrolysis
progress of DDAV. In addition, DDAV could exhibit a good sta-
bility among various biologically important ions or biomolecules
(Fig. 2D), all of which could fully confirm that DDAV was an
excellent specific probe for Vanin-1.

Meantime, the enzyme kinetic behavior of hydrolysis reaction
of DDAV in Vanin-1 was well characterized. As depicted in
Supporting Information Fig. S5, a classic MichaeliseMenten ki-
netics was observed for the metabolism of DDAV, with the
Km Z 4.667 mmol/L, and Vmax Z 2.879 mmol/min/mg. Subse-
quently, the activity of Vanin-1 in different human organs was
evaluated using DDAV among HLS9, HLuS9, HIS9, HKS9 and
HBS9, respectively. As a result, intestine and kidney exhibited
relatively high Vanin-1 activity (Supporting Information Fig. S6),
which was well consistent with the previous report8e10.
3.3. Detecting urinary Vanin-1 level in kidney injury mice model
using DDAV

Recently, numerous studies have confirmed that urinary Vanin-1
could serve as an earlier and high-sensitive biomarker for kidney
injury36,37. Although few optical imaging probes have been
developed to investigate drug-induced acute kidney injury by in
situ sensing superoxide anion, N-acetyl-b-D-glucosaminidase
(NAG) and g-glutamyl transferasein (GGT), convenient and rapid
noninvasive detection of urinary biomarker (such as Vanin-1)
in vitro based on sensitively fluorescence imaging techniques are
(B) and fluorescence (C) spectra response of DDAV toward Vanin-1.



Figure 2 (A, B) Fluorescence response of DDAV toward different concentrations of Vanin-1 over a range from 0 to 50 ng/mL. (C) The

selectivity assay of DDAV toward Vanin-1 among various hydrolysis enzymes. (D) The influence of various ions and biomolecules toward

DDAV.
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still lacking38e41. Herein, in order to further evaluate the diagnosis
value of Vanin-1 for renal injury, an acute kidney injury animal
model was established in C57BL/6 mice by administration of
cisplatin primarily. As shown in Fig. 3A and B, the cisplatin-
treated group displayed a significantly elevation for both blood
urea nitrogen (BUN) and serum creatinine (sCr) levels than con-
trol group. In addition, Hematoxylin and Eosin (H&E) staining
demonstrated a serious proximal tubule damage in cisplatin-
treated group (Fig. 3C and D). Moreover, the conspicuous albu-
min expression was detected in urine by Western blots (Fig. 3E).
All these results indicated that the cisplatin-induced kidney injury
model was well established.

Simultaneously, urinary Vanin-1 was detected by DDAV. As
shown in Fig. 3F, a sharply enhancement of Vanin-1 activity in
urine for cisplatin group was observed, which were further
confirmed by Western blots analysis (Supporting Information
Fig. S7), and these results were well in accordance with both BUN
and sCr detection for renal injury. Moreover, as shown in Fig. 3G,
urinary Vanin-1 level exhibited a significantly and continuously
increase after treatment with cisplatin within 72 h. Notably, the
Vanin-1 level in urine of the control group was almost undetect-
able, exhibiting a distinct lower background and consequently
higher signal to noise ratio than BUN and sCr.
3.4. Bioimaging of Vanin-1 in living cells

Next, the application potential of DDAV for imaging endogenous
Vanin-1 in living cells was explored. Initially, DDAV exhibited
very low cytotoxicity and superior biocompatibility to cultured cell
lines by CCK8 assay (Supporting Information Fig. S8). Thereafter,
the fluorescence imaging of endogenous Vanin-1 was conducted in
MCT cells and LoVo cells. As shown in Fig. 4 and Supporting
Information Fig. S9, both MCT and LoVo cells exhibited no
fluorescence background, while a robust red fluorescence signal
was detected in cells after the incubation with DDAV. Further, the
fluorescence signal could be significantly suppressed by b-lapa-
chone, which fully verified that the conspicuous fluorescence
signal was originated from the specific metabolism of DDAV by
Vanin-1.
3.5. Visualization of Vanin-1 in vivo and screening of intestinal
bacteria with high Vanin-1 expression

Encouraged by the evident “light-up” NIR fluorescence signal and
prominent performance in cellular fluorescence imaging, we
further evaluated the in vivo imaging of DDAV in living mice. As
depicted in Fig. 5A, after intraperitoneal administration of DDAV,
a distinct fluorescence signal was clearly detected in the intestine
region of mice. Next, after the clearance of DDAV in vivo, the
inhibition experiments were performed in the same mouse by co-
administration of b-lapachone and DDAV, as shown in Fig. 5A,
the fluorescence intensity of inhibition group exhibited a signifi-
cant decrease compared with the mouse without treatment of b-
lapachone. These results fully indicated that the fluorescence
signal in intestine was mediated by the endogenous Vanin-1 in
mouse, and further confirmed the capability of DDAV in imaging
Vanin-1 in vivo.

Additionally, the activity of Vanin-1 in feces was also
determined using DDAV. As shown in Fig. 5B, all feces S9
samples originated from different mice could trigger an
evidently fluorescence enhancement at 670 nm, indicating a high
level of Vanin-1 in feces. Interestingly, after administration of
antibiotic, the activity of Vanin-1 exhibited a significant reduce,
along with the conspicuous decrease of intestinal bacteria
(Fig. 5C and D), which results suggested that the Vanin-1 level
in feces predominantly depended on intestinal bacteria and
further implied that intestinal bacteria possessed high Vanin-1
expression.



Figure 3 The level of (A) BUN and (B) sCr in the urine of control and cisplatin-treated C57BL/6 mice. (C, D) The H&E staining of kidney

tissues for control group and cisplatin treated group, respectively. The scale bar is 100 mm. (E) The Western blot assay for the albumin in urine for

control group and cisplatin treated group, respectively. (F) The activity of Vanin-1 in the urine of control and cisplatin-treated C57BL/6 mice. (G)

The activity of Vanin-1 in urine during the C57 BL/6 mice treated with cisplatin in different time (24, 48, and 72 h).
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Considering that intestinal bacteria had an abundant expression
of Vanin-1 which was potentially related to the nonsteroidal anti-
inflammatory drugs (NSAIDs) induced intestinal injury14, the
discovery of key bacteria in the intestine was invaluable in the
Figure 4 Fluorescence imaging of Vanin-1 in MCT cells. (AeC) MCT

pre-treated with b-lapachone before incubated with DDAV. The scale bar
forecast and prevention of relevant intestinal injury. Thereafter,
using DDAV, we screened various common intestinal bacteria
(Supporting Information Table S1). After incubating with DDAV,
only bacteria 34A (Enterococcus faecalis 20247) displayed a
cells only. (DeF) MCT cells incubated with DDAV. (GeI) MCT cells

is 50 mm.



Figure 5 (A) The in vivo imaging of Vanin-1 in living mice, normal group: mouse was intraperitoneal injected of DDAV, inhibition

group: mouse was treated with b-lapachone and DDAV. (B) The activity of Vanin-1 in feces S9 in the mice before and after treated with mixed

antibiotic. (C, D) The plate cultivation for the intestinal bacteria before (C) and after (D) treated with mixed antibiotic. (EeG) The fluorescence

imaging of Vanin-1 in E. faecalis 20247 after incubated with DDAV. (HeJ) The fluorescence imaging of E. faecalis 20247 after pre-treated with

b-lapachone.
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remarkable fluorescence signal at 645e690 nm channel (Fig. 5E‒
G), and the fluorescence signal could be evidently suppressed by
pretreated with Vanin-1 selective inhibitor b-lapachone, all the
above results indicated that E. faecalis 20247 had an extensive
expression of Vanin-1.

3.6. High-throughput screening of Vanin-1 inhibitors from
herbal medicines based on DDAV

Importantly, Vanin-1 also serves as a key regulator in the pro-
gression of intestinal inflammatory reactions by producing cyste-
amine, the inhibition of Vanin-1 activity provides an attractive
therapeutic intervention for the treatment of inflammatory bowel
disease. Herein, a high-throughput screening method for Vanin-1
inhibitors was established, and 92 species of common medicinal
herbs were subsequently determined for the inhibitory effect on
Vanin-1. As shown in Fig. 6B and Supporting Information Table
S2, well G4 (Cortex Fraxini) exhibited a significant inhibition
on Vanin-1 (residual activity: 3.35%) among various herbal
medicines. Inspired by the attractive primary screening results, we
further identified the chemical constituents of Cortex Fraxini
which was responsible for the Vanin-1 inhibitory. As shown in
Fig. 6A and C, 10 fractions of Cortex Fraxini were obtained, and
fraction 8 (Fr. 8) exhibited obvious inhibitory effect on Vanin-1
activity. Then, the target compound (CFeF8) within Fr. 8 was
further purified and identified as oleuropein by NMR analysis
(Supporting Information Figs. S15 and S16)42. Furthermore, the
inhibition curve of oleuropein against Vanin-1 was performed and
the IC50 value was calculated to 0.29 mmol/L (Fig. 6E). Alto-
gether, DDAV also possessed a promising application in the
rapidly screening of Vanin-1 inhibitors.

4. Discussion

In recent years, functional studies have revealed that Vanin-1 plays
a critical role in various physiological and pathological processes.
On the one hand, Vanin-1 is regarded as a disease biomarker for its
remarkable up-regulation in the early phase of renal injury. On the
other hand, Vanin-1 proved to be a pro-inflammatory factor in
acute/chronic intestinal diseases due to its significant capacity in
regulating oxidative stress and inflammation. Therefore, devel-
oping practical tools for real-time and accurate detecting endog-
enous Vanin-1 activity in various biosystems is invaluable and
urgent, which would strongly facilitate further exploring Vanin-1’s
pathophysiology function even the diagnosis and therapies of
Vanin-1-related diseases.

In this study, we designed and developed an off-on NIR fluo-
rescent probe DDAV by conjugating pantothenic acid as a
recognition moiety with DDAN. As expected, after hydrolysis of
enzyme-triggered amide moiety mediated by Vanin-1, the bare
amino group of the fluorophore as a strong electron donor was
liberated, triggering a distinct fluorescence signal for the enhanced
intramolecular charge transfer (ICT) effect (Fig. 1A). After the
systematical evaluation, DDAV was proved to possess ultra-



Figure 6 (A) HPLC chromatogram and 10 fractions of Cortex Fraxini. (B) Inhibitory effect evaluation of 92 medicinal herbs towards Vanin-1.

(C) Inhibitory effect evaluation of 10 fractions of Cortex Fraxini towards Vanin-1. (D) Chemical structure of oleuropein. (E) Inhibition curve of

oleuropein (IC50) toward Vanin-1.
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specificity to Vanin-1 among various common enzymes in the
human body and the formation of DDAN mediated by Vanin-1
was highly time- and enzyme-dependent, which in favor of pre-
cise quantification of Vanin-1 activity in complex biosamples.
Additionally, the metabolism of DDAV by Vanin-1 followed
classical MichaeliseMenten kinetics evidencing by the Eadie‒
Hofstee plots, the ideal kinetic behaviors and good catalytic ve-
locity further ensure its practicability in quantitative detecting
Vanin-1 without substrate inhibition. At last, the applications of
DDAV for bioimaging Vanin-1 in living cells and mice were
evaluated, the results indicated that DDAV could serve as an
efficient molecular tool for in situ visualizing endogenic Vanin-1
in vitro and in vivo. All above results fully demonstrated that
DDAV could serve as practical probe for excellent specific and
accurate monitoring Vanin-1 activity in complex biological
systems.

Recent studies have verified that urinary Vanin-1, derived from
damaged tubular kidney cells, can consequently serve as an earlier
and sensitive biomarker for kidney injury. We subsequently
evaluated the application of DDAV for renal injury diagnosis.
Herein, a cisplatin-induced kidney injury model was successfully
established, then the urinary Vanin-1 was evaluated using DDAV,
it was found that the cisplatin-induced mice urinary Vanin-1 level
displayed a remarkable increase than control group, which were
further verified by Western blot and highly consistent with tradi-
tional detection methods (BUN and sCr) for kidney injury.
Significantly, the kidney injury could be detected by DDAVat 24 h
(Fig. 3G) which showed more sensitive than BUN and sCr testing
method. Further, the Vanin-1 level in urine of the control group
was close to zero, implying that slight increase of urinary Vanin-1
could directly indicate the impairment of kidney, which was
pivotal for diagnosis renal injury at a very early stage. Above all,
these results verified that DDAV could serve as a practical tool for
the earlier diagnosis of kidney injury with a high degree of
sensitivity.

Notably, due to the strongly inhibition of g-GCS (g-gluta-
mylcysteine synthetase) by the metabolite (cysteamine) of Vanin-
1, intestinal Vanin-1 was regarded as a major pro-inflammatory
mediator in varied intestine inflammation, including the com-
mon NSAIDs-induced intestinal injury. In this work, we investi-
gated Vanin-1 level in feces samples, it was found that the Vanin-1
vitality in feces predominantly depended on intestinal bacteria.
Next, E. faecalis 20247 was screened out which had an extensive
expression of Vanin-1 from 27 species common intestinal bacteria
using DDAV, the results indicated that E. faecalis 20247 as a vital
bacterium, should be serious tested before administration of
NSAIDs in clinic.

As mentioned above, Vanin-1 serve as a vital regulator of in-
testinal inflammation, and the manipulation of Vanin-1 activity
with the aid of selective inhibitor may prove to be a new thera-
peutic strategy for inflammatory bowel disease. We subsequently
established a high-throughput screening assay for Vanin-1 in-
hibitors discovery based on DDAV. Then, 92 species of common
medicinal herbs were selected for assessment and Cortex Fraxini
was eventually found that exhibited a strongly inhibitory effect on
Vanin-1. Further, after a series of separation and analysis experi-
ments, the key chemical component which responsible for the
Vanin-1 inhibitory in Cortex Fraxini was isolated and identified as
oleuropein, which exhibited remarkable inhibitory effect (IC50

value: 0.29 mmol/L) on Vanin-1 and held great promise as novel
agent for the potential application in intestinal inflammation
therapy. In one word, all our findings provided useful information
for the physiological function of Vanin-1 in human and its rela-
tionship with various diseases.
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5. Conclusions

In summary, an enzyme-activated NIR fluorescent probe DDAV
has been developed for ultra-sensitive and high specific sensing
Vanin-1 activity in various complex biosystems. DDAV could be
applied to the early diagnosis of kidney injury by assaying the
urinary Vanin-1 activity. Additionally, DDAV could realize the
real-time imaging of Vanin-1 in vitro and in vivo. Furthermore, E.
faecalis 20247, a general intestinal bacterium, with high expres-
sion of Vanin-1 was successfully screened out based on the DDAV
imaging. Finally, oleuropein as a novel potent inhibitor was
discovered from natural herbal medicines by high-throughput
screening method using DDAV. In one word, DDAV was proved
to be a novel promising tool for detecting Vanin-1 levels in vitro
and in vivo, which could be further used for the early diagnosis of
kidney injury, discovery of functional microorganisms, as well as
the development of novel Vanin-1 inhibitors for therapy of in-
flammatory bowel disease in clinic.
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