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Abstract 

Background: Coronaviruses (CoVs) are major human and animal pathogens and antiviral drugs are pursued as 
a complementary strategy, chiefly if vaccines are not available. Feline infectious peritonitis (FIP) is a fatal systemic 
disease of felids caused by FIP virus (FIPV), a virulent pathotype of feline enteric coronavirus (FeCoV). Some antiviral 
drugs active on FIPV have been identified, but they are not available in veterinary medicine. ERDRP-0519 (ERDRP) is a 
non-nucleoside inhibitor, targeting viral RNA polymerase, effective against morbilliviruses in vitro and in vivo.

Results: The antiviral efficacy of ERDRP against a type II FIPV was evaluated in vitro in Crandell Reese Feline Kid-
ney (CRFK) cells. ERDRP significantly inhibited replication of FIPV in a dose-dependent manner. Viral infectivity was 
decreased by up to 3.00 logarithms in cell cultures whilst viral load, estimated by quantification of nucleic acids, was 
reduced by nearly 3.11 logaritms.

Conclusions: These findings confirm that ERDRP is highly effective against a CoV. Experiments will be necessary to 
assess whether ERDRP is suitable for treatment of FIPV in vivo.
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Background
Coronaviruses (CoVs) (family Coronaviridae) are envel-
oped, single-stranded, positive-sense RNA viruses infect-
ing a large variety of animal hosts. CoVs are currently 
classified within four genera, Alphacoronavirus, Betac-
oronavirus, Gammacoronavirus and Deltacoronavirus. 
CoVs are responsible for diarrhea in cattle and pigs and 
upper respiratory diseases in chickens [1]. In humans, 
CoVs cause mainly respiratory tract infections, with mild 
clinical signs (i.e. the common cold) with exception of 
hypervirulent CoVs, i.e. Severe Acute Respiratory Syn-
drome (SARS) CoV-1, Middle East Respiratory Syndrome 
(MERS) CoV and SARS CoV-2 infectious agent of Coro-
navirus Disease 2019 (COVID-19), that may cause severe 

pneumonia requiring hospitalisation and admission to 
intermediate or intensive care units.

A member of the genus Alphacoronavirus, Feline CoV 
(FCoV), infects cats worldwide. There are two distinct 
types of FCoV, namely type I FCoV (FCoV-I) and type II 
FCoVs (FCoV-II), with the latter being derived by recom-
bination between FCoV-I and canine CoV (CCoV) [2]. 
FCoV exists as two different biotypes, i.e. feline enteric 
CoV (FeCoV) and feline infectious peritonitis virus 
(FIPV) [3]. FeCoV causes mild enteritis (usually subclini-
cal infection) whilst FIPV causes a highly lethal systemic 
disease, due to mutations of the FeCoV pathotype. Sev-
eral serological and genetic investigations reported that 
FCoV-I is more prevalent than FCoV-II, and therefore 
most FIP cases are caused by FCoV-I infection [4, 5]. The 
disease occurs most commonly in young cats, often less 
than 1 year of age. FIP is usually diagnosed clinically after 
the development of effusion in the abdominal and, less 
frequently, in the pleural cavity and/or the formation of 

Open Access

*Correspondence:  gianvito.lanave@uniba.it
1 Department of Veterinary Medicine, University of Bari, Valenzano, Italy
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12917-022-03153-3&domain=pdf


Page 2 of 8Camero et al. BMC Veterinary Research           (2022) 18:55 

granulomas. Granulomatous lesions are often observed 
on the surface of numerous organs, including the omen-
tum, intestine, liver, kidney, spleen and lungs [6]. The 
mortality rate of cats exhibiting these symptoms is high, 
although some cats can live with the disease for weeks, 
months or, rarely, years [7].

Since FIP is common in cats, with limited therapeutic 
and prevention strategies, there is an increasing demand 
for therapies from veterinary practitioners and cat own-
ers. Likewise, the emergence of hypervirulent human 
CoVs in the last two decades has prompted the research 
of antivirals and vaccines against CoVs in human medi-
cine [8, 9].

The most commonly available antiviral drug for the 
treatment of FIP is feline recombinant interferon omega 
(Virbagen Omega, Virbac), although the efficacy of inter-
feron has not been demonstrated firmly [10]. Moreover, 
chloroquine has been shown to inhibit FIPV replication 
in  vitro although it was associated with an untoward 
toxic effect [11]. Some antivirals, such as the nucleoside 
analogue GS-441524 (active forms of remdesivir triphos-
phate, GS) and GC-364 (3C-like protease inhibitor, GC) 
[12, 13] have been shown to be effective in treating cats 
with FIP. However, many of them are expensive and/or 
not available in veterinary medicine [14].

ERDRP-0519 (ERDRP) is a non-nucleoside inhibitor 
of the RNA-dependent of RNA polymerase (RdRp), an 
enzyme essential for viral replication. ERDRP has been 
shown to be effective in both in vitro and in vivo studies. 
This compound showed promising results in vitro against 
measles virus (MeV) and canine distemper virus (CDV) 
and in  vivo in CDV-infected ferrets [15, 16]. Although 
the RdRp gene of CoVs (RNA+) and paramyxoviruses 
(RNA-) shows extensive sequence divergence with dif-
ferent evolutionary patterns [17], the RdRps share several 
conserved motifs required for polymerase functional-
ity [18]. Accordingly, it is possible that molecule able to 
interfere with the RdRp activity of RNA- viruses could 
also affect the RdRp of RNA+ viruses, interacting with 
highly conserved residues in linear or structural active 
sites. Other non-nucleoside RDRP inhibitors tested 
in  vitro against coronaviruses have shown promising 
results [19, 20]. Therefore we hypothesized that ERDRP 
could exert antiviral activity against CoVs and we evalu-
ated in  vitro the antiviral effects using FIPV as virus 
model.

Results
Cytotoxicity assay
Cytotoxicity was evaluated by the In  vitro Toxicology 
Assay Kit (Sigma–Aldrich Srl, Milan, Italy), based on 
3-(4,5-dimethylthiazol-2 yl) -2,5-diphenyl tetrazolium 
bromide (XTT) after exposing Crandell Reese Feline 

Kidney (CRFK) cells to ERDRP at various concentrations 
(10, 20, 30, 40, 45, 60 and 70 μM) for 72 h. The intensity 
and variety of the cellular morphological changes (loss 
of cell monolayer, granulation, vacuolization in the cyto-
plasm, stretching and narrowing of cell extensions and 
darkening of the cell borders) were dose-dependent and 
cytotoxicity was assessed by measuring spectrophoto-
metrically the absorbance signal. Based on fitted dose–
response curves, the  CC20 of ERDRP was set at 50 μM. In 
all the experiments, dimethyl sulfoxide (DMSO), used as 
vehicle control, did not show any cpe on cells.

When comparing the cytotoxicity on the treated cells 
of the compound at concentrations below  CC20 (45, 
40, 30, 20 and 10 μM), the one-way Analysis of Vari-
ance (ANOVA) model showed a statistically significant 
decrease in cytotoxicity (F  =  201.2, p  <  0.0001). By a 
two-by-two comparison of individual ERDRP concentra-
tions (45, 40, 30, 20 and 10 μM) statistically significant 
decreases in cytotoxicity were observed (p < 0.0001) and 
only the comparison between the concentrations 40 μM 
and 30 μM was not statistically significant (p =  0.9340) 
(Supplementary Table 1). Consequently, the experiments 
to assess the antiviral activity were carried out using 
concentrations of drugs below the cytotoxic threshold, 
starting from 50 μM. Untreated cells were used in each 
experiment as negative control and considered as 0% 
cytotoxicity. Cytotoxicity, expressed as a percentage, was 
calculated based on cytotoxicity of ERDRP on the CRFK 
cells and plotted against the drug concentrations (Fig. 1). 
Cytotoxicity of the CRFK cells treated with ERDRP at the 
higher concentrations (70, 60 μM) ranged from 44.67 to 
37.96%, and decreased from 16.67 to 3.32% at the lower 
concentrations (45, 40, 30, 20 and 10 μM) (Supplemen-
tary Table 1).

Antiviral activity assay
For the replication inhibition assays, CRFK cells were 
infected with 20 Tissue Culture Infectious Dose  (TCID50) 
of FCoV-II strain 25/92. Antiviral activity of ERDRP 
against the virus was tested at different concentrations 
chosen based on the cytotoxicity assay results, starting 
from 50 μM  (CC20) down to 45, 40, 30, 20 and 10 μM. 
Viral titres, were evaluated by endpoint dilution method 
(observation of cpe in cell monolayers) and viral nucleic 
acid (NA) copies/10 μl were calculated by NA quantifica-
tion using reverse-transcriptase (RT) quantitative PCR 
(RT-qPCR).

Viral titres of the cells treated with the compound 
were expressed as log10  TCID50/50 μl and plot-
ted against the non-cytotoxic drug concentrations 
(Fig.  2A). Comparisons between untreated (mean  =  5 
log10  TCID50/50 μl,  standard deviation (SD)  =  0.25 
log10  TCID50/50  μl) and ERDRP treated infected cells 
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revealed a statistically significant average decrease of 
0.75 log10  TCID50/50 μl at 30 μM (p = 0.0314, 95% con-
fidence interval (95% CI)  =  [0.053; 1.447]), 1.75 log10 
 TCID50/50 μl at 40 μM (p  <  0.0001, 95% CI  =  [1.053; 
2.447]), 2.25 log10  TCID50/50 μl at 45 μM (p  <  0.0001, 

95% CI = [1.553; 2.947]) and of 3.00 log10  TCID50/50 μl 
at 50 μM (p <  0.0001, 95% CI =  [2.303; 3.697]). ERDRP 
at 10 and 20  μM also determined an average decrease 
in the viral titre of 0.25 (p = 0.8733, 95%CI =  [− 0.447; 
0.947]) and 0.50 (p =  0.2486, 95%CI =  [− 0,197; 1197]) 

Fig. 1 Cytotoxicity of the CRFK cells treated with ERDRP-0519 (ERDRP) and calculated after 72 h post treatment by XTT assay. The value was 
calculated setting as 0% the cytotoxicity untreated cells. Cytotoxicity is plotted against different concentrations (μM) of ERDRP. Bars in figures 
indicate the means. Error bars indicate the standard deviation

Fig. 2 Viral titres of the supernatants collected at 72 h post infection of FCoV-infected CRFK cells untreated and treated with ERDRP-0519 (ERDRP). 
The viral titers, expressed as log10  TCID50/50 μl, were plotted against various non-cytotoxic concentrations (10 to 50 μM) of ERDRP. A. Viral nucleic 
acids (NA) copies measured in 10 μl of the supernatants collected at 72 h post infection from CRFK cells infected with FCoV, either untreated or 
treated with ERDRP. The viral NA copies, expressed as log10 viral NA/10 μl were plotted against various non-cytotoxic concentrations (10 to 50 μM) 
of ERDRP (B). Bars in the figures indicate the means. Error bars indicate the standard deviation
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log10  TCID50/50 μl compared to untreated infected cells 
although without any statistical significance (Fig.  2A) 
(Supplementary Table 2).

Viral NAs were expressed as log10 viral NA cop-
ies/10 μl of infected cells treated with the compound and 
of untreated infected cells and plotted against the non-
cytotoxic drug concentrations (Fig. 2B).

The comparison between untreated infected cells 
(mean  =  8.00 log10 viral NA copies/10 μl, SD  =  0.25 
log10 viral NA copies/10 μl) with cells treated with 
ERDRP at 20 μM (mean  =  7.29 log10 viral NA cop-
ies/10 μl, SD = 0.18 log10 viral NA copies/10 μl), at 30 μM 
(mean  =  6.91 log10 viral NA copies/10 μl, SD  =  0.40 
log10 viral NA copies/10 μl), at 40 μM (mean  =  6.05 
log10 viral NA copies/10 μl, SD  =  0.22 log10 viral NA 
copies/10 μl), at 45 μM (mean  =  5.83 log10 viral NA 
copies/10 μl, SD  =  0.22 log10 viral NA copies/10 μl) 
and at 50 μM (mean = 4.89 log10 viral NA copies/10 μl, 
SD = 0.14 log10 viral NA copies/10 μl), revealed statisti-
cally significant average decreases in viral load of 0.7133 
(p = 0.0087, 95% CI = [0.1568; 1.270], 1.097 (p = 0.0002, 
95% CI  =  [0.5401; 1.653], 1.96 (p  <  0.0001, 95% 
CI =  [1.403; 2517], 2.177 (p < 0.0001, 95% CI =  [1.620; 
2.733] and 3.113 (p  <  0.0001, 95% CI  =  [2.557; 3.670] 
log10 viral NA copies/10 μl, respectively. ERDRP 
at 10 μM (mean  =  7.48 log10 viral NA copies/10 μl, 
SD  =  0.23 log10 viral NA copies/10 μl,) determined a 
slight decrease of 0.5267 log10 viral NA copies/10 μl 
(p =  0.0691, 95% CI =  [− 0.02987; 1.083) compared to 
untreated infected cells, although without any statistical 
significance (Fig. 2B) (Supplementary Table 1).

The ANOVA model showed a statistically significant 
effect of treatment in the comparison based on the viral 
titration (F =  61.43, p < 0.0001) and in the comparison 
based on viral NA quantification (F = 89.49, p < 0.0001). 
Virus growth in CRFK cells was affected to various 
extents by the concentrations of the molecule tested in 
this study.

Based on viral titration, the Selectivity index (SI) of 
ERDRP on CRFK cells after 72 h of exposure was assessed 
at 0.75 and calculated as  CC20/IC80 (50.00/66.08  μM). 
Based on viral DNA quantification, the SI of ERDRP on 
CRFK cells after 72  h of exposure was assessed at 0.64 
and calculated as  CC20/IC80 (50.00/77.41 μM).

Discussion
RNA viruses greately differ in terms of virion structure 
and genome organization, mechanisms of entry and 
assembly during cell replication. However, fundamen-
tal features in their genome replication and transcrip-
tion are shared across different RNA viruses, with the 
virally encoded RdRp processing the biosynthesis of an 
RNA product directed by an RNA template. Viral RdRps 

greatly vary in size and structural organization [21–25]. 
However, all RdRPs share a 50- to 70-kDa polymerase 
core that forms a unique encircled right-hand structure 
with palm, fingers, and thumb domains. The RdRP cata-
lytic motifs are located within the most conserved palm 
domain and in the fingers, arranged around the active site 
[26–29], including the RdRp of CoVs [30] and the RdRp 
domain of mononegaviruses [31]. The structural conser-
vation of the RdRP polymerase core and the active motifs 
form the basis for understanding the common features 
in viral RdRP catalytic mechanisms and for developing 
strategies targeting the RdRp with possible broad-spec-
trum potential.

Based on this assumption, we tested ERDRP, a non-
nucleoside inhibitor of viral RdRp, against FIPV in vitro. 
ERDRP targets morbillivirus L protein, the catalyti-
cally active subunit of the polymerase complex, inhib-
ing all phosphodiester bond formation in both de novo 
initiation of RNA synthesis at the promoter and RNA 
elongation by a committed polymerase complex [15, 
32]. ERDRP has shown inhibitory activity on measles 
virus and canine distemper virus (CDV) but not against 
respiratory scincizial virus, a non-morbillivirus para-
myxovirus [15], and therefore it was believed to have 
morbillivirus-specific spectrum. In our study, however, 
ERDRP was able to inhibit replication of the feline CoV 
FIPV in a dose-dependent fashion, reducing viral titer by 
up to 3 log10 and viral load by up to 3.11 log10 viral NA 
copies/10 μl at 50 μM (Fig. 2). These findings extend the 
spectrum of activity of this class of RdRp inhibitors to a 
phylogenetically unrelated RNA virus. Likewise, it could 
be interesting to test also the activity for CoVs of other 
classes of non-nucleside inhibitors.

In previous studies ERDRP, used at higher concen-
trations (up to 100 μM), showed a low cytotoxicity in 
Vero (African green monkey kidney epithelial) [15, 32] 
and baby hamster kidney (BHK-21) cells and human 
peripheral blood mononuclear (PBMCs), embryonic 
kidney 293 and epithelioma-2 cells [15]. In our study, 
we assessed the maximum non cytotoxic  (CC20) con-
centration of ERDRP at 50 μM and we observed sig-
nificant antiviral activity until 30 μM. Antivirals tested 
effective at lower dosages would allow reducing possi-
ble toxic effects in prolonged therapies. Krumm et  al. 
[15] reported excellent biodisponibility of ERDRP after 
oral administration in CDV-infected ferrets, thus rep-
resenting a proof of concept of its possible therapeu-
tic development [15]. Prophylactic oral treatment with 
ERDRP of ferrets infected intranasally with a lethal 
CDV dose reduced viremia and prolonged survival of 
animals. CDV-infected ferrets receiving post-infection 
treatment with ERDRP at the onset of viremia showed 
low viral loads, remained asymptomatic and recovered 
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from infection. Recovered animals also mounted a 
robust immune response and were protected against 
re-challenge with a lethal CDV dose [15].

Analogous proof-of-concepts animal experiments 
could be proposed to assess the therapeutic potential of 
ERDRP in treatment of FIP in cats.

FIP is a frustrating disease for practitioners and rep-
resents a painful and unacceptable diagnosis for cat 
owners. Since there are no relevant antigenic differ-
ences between enteric FeCoV and hypervirulent FIP 
strains, the detection of elevated antibody titers alone is 
not a confirmatory test [33]. Cats suffering from FIP are 
known to develope a significant humoral response to 
the virus rather than a cell-mediated immune response 
which may contribute to the pathogenesis of FIP [34]. 
FIP is an example of a viral disease, in which serum 
antibodies, rather than being protective, increases 
the severity of the infection with antibody-dependent 
enhancement (ADE) mechanisms [35, 36]. Prophylaxis 
based on vaccines proved ineffective in protecting cats 
and was associated to ADE-mediated adverse effects 
[35]. A modified live intranasal vaccine authorized in 
the United States for the prevention of FIP is not rec-
ommended by the American Association of Feline 
Practitioners [37].

Overall, FIP is perceived as a real threat to feline health 
and, to date, therapy is mainly based on the control of 
clinical signs. Supportive corticosteroid treatment in cats 
is administered to suppress the inflammatory immune 
response [38]. Unfortunately, however, specific antivi-
ral molecules able to limit FeCV replication in infected 
cats, are not available, despite the relentless demand 
from veterinarians and pet owners for life-saving spe-
cific antiviral therapies. Some antivirals such as GS and 
GC [12, 13] proved to be effective in treating cats with 
FIP but they have not been licensed for use in veterinary 
medicine [14]. GS causes a rapid reversal of disease signs 
and recovery in cats infected experimentally with FIPV 
[39] and it has been evaluated experimentally in field tri-
als [13]. The lack of effective therapies for cats with FIP 
has fuelled the black market (http:// www. catvi rus. com/ 
downl oads/ Dr. Pedersen Statement on GS and GC.pdf). 
Importantly, GS has been used in COVID-19 patients 
against SARS-CoV-2 [40] whilst its development for ther-
apy in cats with FIP has been abandoned. Interstingly, 
this parallelism between FIP and COVID-19 sets cats as 
a possible model for the study of antivirals against CoVs.

CoVs are posing a number of challenges for human 
and veterinary medicine, and different strategies, even-
tually combined, are required to counteract adeg-
uately and minimize their impact on human and animal 
health. Exploring the antiviral effects of the vast reper-
toire of drugs already developed and licensed or under 

development could be helpful to obtain novel effective 
tools against CoVs.

Methods
Cells and virus
CRFK cells [American Type Culture Collection (ATCC) 
CCL-94TM, Manassas, Virginia, USA)] were cultured 
at 37 °C in a 5%  CO2 atmosphere in Dulbecco-MEM 
(D-MEM) supplemented with 10% foetal bovine serum, 
100 IU / ml penicillin, 0.1 mg/ml streptomycin and 
2 mM l-glutamine. The same medium was used for the 
antiviral assays. FCoV-II strain 25/92 isolated from a 
dead cat with infectious peritonitis was cultured and 
titrated in CRFK cells [41]. The virus stock with a titre of 
 105.75  TCID50/50 μl was stored at − 80 °C and used for the 
experiments.

Antiviral molecules
ERDRP (1-Methyl-N-[4-[[(2S) -2-[2-(4-mor-
pholinyl) ethyl] -1-piperidinyl] sulfonyl]phenyl]-
3-(trif luoromethyl)-1H-pyrazole-5-carboxamide) 
(Aobious Inc., Gloucester, Massachusetts, USA) was 
tested against the virus. ERDRP was initially diluted in 
DMSO (Sigma-Aldrich, St. Louis, Missouri, USA) to 
obtain a stock concentration of 9.44 mM and stored at 
− 80 °C until use.

Cytotoxicity assay
Cytotoxicity of ERDRP was assessed by XTT assay [42] 
using the In Vitro Toxicology Assay Kit (Sigma–Aldrich 
Srl, Milan, Italy), based on 3-(4,5-dimethylthiazol-2yl)-
2,5-diphenyl tetrazolium bromide (XTT). Confluent 24-h 
monolayers of CRFK cells grown in 96-well plates were 
used to assess the cytotoxicity of ERDRP at different con-
centrations (20, 30, 40, 45, 60 and 70 μM).

In all experiments, untreated cells and cells treated 
with equivalent dilutions of DMSO without ERDRP were 
used as negative control and vehicle control, respectively. 
After 72 h of incubation, XTT stock solution (70 μl, 70% 
of the total cell volume) was added to each well and the 
plates were incubated at 37 °C. After 4 h the plates were 
read in an automatic spectrophotometer (microtitre plate 
absorbance reader iMark Bio-Rad) at a test wavelength of 
450 nm  (A450) and a background wavelength of 655 nm 
 (A655). The final absorbance was calculated as  A450-  A655.

The absorbance of negative control was set as 0% cyto-
toxicity and the values for treated cells were calculated as 
follows: % cytotoxicity = [((A450 -  A655) negative control-
(A450 -  A655) treated cells) /  (A450 -  A655) negative con-
trol] × 100% [43]. The experiments were performed in 
triplicate.

Moreover to evaluat cell viability the monolayers 
treated with ERDRP at maximum concentration have 

http://www.catvirus.com/downloads/Dr
http://www.catvirus.com/downloads/Dr
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been subjected to they were trypsinized for further cel-
lular passages.

Antiviral activity assay
Based on the cytotoxicity assay results, the antiviral 
activity against the FCoV-II strain 25/92 was evaluated 
using ERDRP at  CC20 = 50 μM and below the cytotoxic 
threshold.

The antiviral activity of ERDRP against the virus was 
evaluated at different concentrations (10, 20, 30, 40, 45 
and 50 μM) in three independent experiments. Confluent 
monolayers of CRFK cells of 24 h in 24-well plates were 
infected with 100 μl of the virus containing 20  TCID50, 
with a Multiplicity of Infection (MOI) of 0.45. After virus 
adsorption for 1 h at 37 °C, the inoculum was removed, 
the monolayers were washed once with D-MEM and 
1 ml of ERDRP was added. In the untreated infected cells, 
D-MEM was used to replace the inoculum [43].

After 72  h, aliquots of supernatants from ERDRP-
treated and -untreated infected cells were collected for 
subsequent viral titration and for nucleic acids (NAs) 
detection and quantification.

Viral titration
Ten-fold dilutions of the supernatants of untreated 
infected cells and of cells treated with ERDRP were 
titrated in quadruplicates in 96-well plates containing 
CRFK cells. The plates were incubated for 72 h at 37 °C in 
5%  CO2 and the viral titres were determined based on the 
cytopathic effect (cpe) observation [43].

Detection of FCoV NAs
For FCoV NAs detection, 140 μl of the supernatants 
were used for RNA extraction by means of QIAamp® 
Viral RNA Mini Kit (Qiagen S.p.A., Milan, Italy), fol-
lowing the manufacturer’s protocol and the NA tem-
plates were stored at − 70 °C until their use. FCoV 
RT-qPCR was performed as previously described [44], 
with minor modifications. In brief, a one-step method 
was adopted using Platinum® Quantitative PCR Super-
Mix-UDG (Invitrogen srl, Milan, Italy) and the fol-
lowing 50-μl mixture: 25 μl of master mix, 300 nM of 
primers FcoV1128f (GAT TTG ATT TGG CAA TGC TAG 
ATT T) and FcoV1229r (AAC AAT CAC TAG ATC CAG 
ACG TTA GCT), 200 nM of probe FCoV1200p (FAM- 
TCC ATT GTT GGC TCG TCA TAG CGG A-BHQ1) and 
10 μl of template NA. The employed oligonucleotides 
bind to the 3′ untranslated region (UTR) [44]. The ther-
mal profile consisted of incubation with Uracil DNA 
glycosylase (UDG) at 50 °C for 2 min and activation of 
Platinum Taq DNA polymerase at 95 °C for 2 min, fol-
lowed by 45 cycles of denaturation at 95 °C for 15 s, 
annealing at 48 °C for 30 s and extension at 60 °C for 30s. 

Tenfold serial dilutions of the FCoV standard 3′ UTR 
NA, representing  100 to  108 copies of viral NA/10  μl 
of template, were made out in Tris–HCl, EDTA (TE) 
buffer. Aliquots of each dilution were frozen at − 80 °C 
and used only once.

Data analysis
After logarithmic conversion of ERDRP concentra-
tions, the data obtained in the cytotoxicity and antivi-
ral activity assays were analysed by a non-linear curve 
fitting procedure. The goodness of fit was tested by 
non-linear regression analysis of the dose-response 
curve. From the fitted dose–response curves obtained 
in each experiment, the non-cytotoxic concentra-
tion  (CC20) was defined as the concentration at which 
viability of the treated cells decreased to no more than 
20% compared to the control cells. The antiviral activity 
was expressed as the concentration required to reduce 
virus replication by 80%  (IC80) in the treated cells com-
pared with the untreated infected cells. The  CC20 and 
 IC80 values were calculated as the mean ± SD of three 
experiments. SI was calculated by  CC20 in CRFK cells/
IC80 against FCoV [43].

Data from cytotoxicity and antiviral activity assays were 
expressed as mean ±  standard deviation (SD). Shapiro-
Wilk test was used to assess the normality of distribution. 
Data were analysed for the effect of drug concentration 
by ANOVA using Tukey’s test as post hoc test (statistical 
significance set at 0.05) and 95% CI were calculated [43].

Statistical analyses were performed with the software 
GraphPad Prism v 8.0.0 (GraphPad Software, San Diego, 
CA, USA).
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azol-2 yl) -2,5-diphenyl tetrazolium bromide; DMSO: Dimethyl sulfoxide; TCID50: 
Tissue Culture Infection Dose; RT: Reverse-transcriptase; RT-qPCR: Reverse-
transcriptase quantitative PCR; SI: Selectivity index; SD:: Standard deviation; 
95% CI: 95% confidence interval; WHO: World Health Organisation; CMI: 
Cell-mediated immune; D-MEM: Dulbecco Minimal Essential Medium; MOI: 
Multiplicity of Infection; cpe: Cytopathic effect; UTR : Untranslated region; UDG: 
Uracil DNA glycosylase; TE: Tris–HCl, EDTA.
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