22596 measured reflections

 $R_{\rm int} = 0.025$

5349 independent reflections

3665 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-[4-(benzyloxy)anilino]-4-oxo-4,5dihydrofuran-3-carboxylate

S. Nirmala,^a R. Murugan,^b E. Theboral Sugi Kamala,^a L. Sudha^{c*} and S. Sriman Narayanan^b

^aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, ^bDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India Correspondence e-mail: sudharose18@gmail.com

Received 19 October 2008; accepted 3 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.163; data-to-parameter ratio = 22.8.

In the title compound, $C_{20}H_{19}NO_5$, the dihydrofuran ring is almost planar [maximum deviation of 0.021 (2)°] and makes dihedral angles of 28.1 (7) and 54.5 (5)° with the benzyl and phenylamino rings, respectively. The molecular packing is stabilized by intramolecular $N-H\cdots O$ hydrogen bonds and intermolecular $C-H\cdots O$ interactions.

Related literature

For background on the development of effective and tolerable therapeutic options for cervical cancer, see: Huang *et al.* (2007); Lu *et al.* (2008). For the analysis of apoptosis induced by dihydrofuran carboxylate compounds, see: Chen *et al.* (2006); Lin *et al.* (2006); Zhang & Wei (2007). For bond-length data, see: Allen *et al.* (1987). For a related structure, see: Erdsack *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{19}NO_5\\ M_r = 353.36\\ \text{Triclinic, } P\overline{1}\\ a = 9.1315 \ (3) \ \text{\AA}\\ b = 10.4040 \ (3) \ \text{\AA}\\ c = 11.1162 \ (4) \ \text{\AA}\\ \alpha = 84.848 \ (2)^\circ\\ \beta = 66.436 \ (2)^\circ \end{array}$

 $\gamma = 64.121 (2)^{\circ}$ $V = 866.34 (5) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K $0.25 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker Kappa APEXII

diffractometer Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.976, T_{\max} = 0.981$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	235 parameters
$wR(F^2) = 0.163$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
5349 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

N (

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{l} \mathbf{W1} - \mathbf{H1} \cdots \mathbf{O4} \\ \mathbf{C6} - \mathbf{H6} \cdots \mathbf{O3}^{i} \\ \mathbf{C17} - \mathbf{H17} \cdots \mathbf{O4}^{ii} \end{array}$	0.86	2.12	2.7485 (15)	129
	0.93	2.51	3.3951 (18)	160
	0.93	2.58	3.465 (2)	160

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions, and also the Management of SRM, India, for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2103).

References

- Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (2004). APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, T. G., Chen, T. L., Chang, H. C., Tai, Y. T., Cherng, Y. G., Chang, Y. T. & Chen, R. M. (2006). *Toxicol. Appl. Pharmacol.* 219, 42–53.
- Erdsack, J., Schürmann, M., Preut, H. & Krause, N. (2007). Acta Cryst. E63, 0664–0665.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Huang, A. C., Lin, T. P., Weng, Y. S., Ho, Y. T., Lin, H. J., Huang, L. J., Kuo, S. C. & Chung, J. G. (2007). *Anticancer Res.* **27**, 2505–2514.
- Lin, J. G., Chen, G. W., Li, T. M., Chouh, S. T., Tan, T. W. & Chung, J. G. (2006). J. Urol. 175, 343–347.
- Lu, K. W., Tsai, M. L., Chen, J. C., Hsu, S. C., Hsia, T. C., Lin, M. W., Huang, A. C., Chang, Y. H., Ip, S. W., Lu, H. F. & Chung, J. G. (2008). *Anticancer Res.* 28, 1093–1099.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zhang, L. & Wei, L. J. (2007). Life Sci. 80, 1189-1197.

Acta Cryst. (2008). E64, o2315 [doi:10.1107/S1600536808035988]

Ethyl 2-[4-(benzyloxy)anilino]-4-oxo-4,5-dihydrofuran-3-carboxylate

S. Nirmala, R. Murugan, E. T. S. Kamala, L. Sudha and S. S. Narayanan

Comment

Human cervical cancer is potentially lethal, and therefore the development of effective and tolerable therapeutic options is vital (Huang *et al.*, 2007; Lu *et al.*, 2008). Dihydrofuran carboxylate compounds induced morphological changes and cytotoxicity in a dose - dependent manner. Dihydrofuran carboxylate compounds induced apoptosis which was analyzed by flow cytometric methods and confirmed by DAPI staining and DNA fragmentation analyzed by DNA gel electrophoresis (Chen *et al.*, 2006; Lin *et al.*, 2006; Zhang & Wei, 2007). In view of this medicinal importance, an X-ray study of the title compound, (I), was carried out.

An *ORTEP* (Farrugia,1997) plot of the molecule is shown in Fig. 1. The bond lengths in (I) show normal values (Allen *et al.*, 1987) and are comparable to the related structure (Erdsack *et al.*, 2007). The dihydrofuran ring (O2/C1—C4) is planar with a maximum deviation of -0.021 (2)° for C3 from the least square plane defined by all non hydrogen atoms in the molecule. The dihydrofuran ring makes dihedral angles of 28.1 (7)° and 54.5 (5)°, respectively, with the benzyl ring (C12—C17) and phenylamino ring (C5—C10), whereas the benzyl and phenylamino rings are oriented at an angle of 78.6 (6)° with respect to each other.

The crystal structure is stabilized by intramolecular N—H···O interactions. In addition to the van der Waals interactions, the molecular packing in the crystal is also stabilized by intermolecular C—H···O interactions (Table 1, Fig. 2).

Experimental

1.0 mol of 4-(benzyloxy) aniline (1.0 g) and 1.0 mol of ethyl 2-chloro-4- oxo-4,5-dihydrofuran-3-carboxylate (0.9 g) was allowed to stir in 10 ml of dichloromethane which contains 0.5 ml of triethylamine at room temperature for about 8 hrs. The completion of the reaction was monitored by TLC. After the completion of reaction the crude solid was filtered and then recrystallized in ethanol.

Refinement

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å and methylene C—H distances of 0.97 Å, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C)$ for other H atoms.

Figures

Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. Dashed line indicates hydrogen bond.

Fig. 2. The packing of the molecules viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been omitted.

Ethyl 2-[4-(benzyloxy)anilino]-4-oxo-4,5-dihydrofuran-3-carboxylate

Crystal data	
C ₂₀ H ₁₉ NO ₅	Z = 2
$M_r = 353.36$	$F_{000} = 372$
Triclinic, P1	$D_{\rm x} = 1.355 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 9.1315 (3) Å	Cell parameters from 6361 reflections
b = 10.4040 (3) Å	$\theta = 2.6 - 30.7^{\circ}$
c = 11.1162 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 84.848 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 66.436 \ (2)^{\circ}$	Prism, yellow
$\gamma = 64.121 \ (2)^{\circ}$	$0.25 \times 0.20 \times 0.20 \text{ mm}$
$V = 866.34 (5) \text{ Å}^3$	

Data collection

Bruker Kappa APEXII diffractometer	5349 independent reflections
Radiation source: fine-focus sealed tube	3665 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 293(2) K	$\theta_{\text{max}} = 30.7^{\circ}$
Bruker axs (kappa apex2) scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -13 \rightarrow 13$
$T_{\min} = 0.976, \ T_{\max} = 0.981$	$k = -14 \rightarrow 14$
22596 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.163$	$w = 1/[\sigma^2(F_o^2) + (0.0812P)^2 + 0.1488P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} < 0.001$
5349 reflections	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
235 parameters	$\Delta \rho_{\text{min}} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.26357 (19)	0.57501 (15)	0.0775 (2)	0.0570 (4)
H1A	1.3252	0.5714	0.1323	0.068*
H1B	1.3224	0.6003	-0.0086	0.068*
C2	1.26228 (18)	0.43137 (14)	0.06491 (15)	0.0437 (3)
C3	1.07887 (17)	0.46034 (12)	0.12356 (14)	0.0386 (3)
C4	0.98080 (17)	0.60818 (13)	0.15886 (14)	0.0396 (3)
C5	0.71086 (17)	0.83503 (13)	0.24252 (14)	0.0421 (3)
C6	0.58376 (19)	0.91391 (14)	0.19371 (16)	0.0496 (3)
H6	0.5628	0.8684	0.1383	0.060*
C7	0.4878 (2)	1.06059 (15)	0.22738 (17)	0.0517 (4)
H7	0.4011	1.1138	0.1956	0.062*
C8	0.52074 (18)	1.12851 (14)	0.30861 (15)	0.0447 (3)
С9	0.6476 (2)	1.04905 (15)	0.35756 (16)	0.0515 (4)
Н9	0.6699	1.0941	0.4122	0.062*
C10	0.7412 (2)	0.90186 (15)	0.32472 (16)	0.0513 (4)
H10	0.8253	0.8479	0.3587	0.062*
C11	0.4551 (2)	1.34824 (16)	0.41338 (19)	0.0572 (4)
H11A	0.5762	1.3371	0.3698	0.069*
H11B	0.4396	1.3104	0.4983	0.069*
C12	0.3260 (2)	1.50396 (14)	0.43163 (15)	0.0464 (3)
C13	0.1520 (2)	1.54983 (19)	0.51716 (18)	0.0639 (4)
H13	0.1136	1.4836	0.5635	0.077*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C14	0.0329 (3)	1.6920 (2)	0.5359 (2)	0.0798 (6)
H14	-0.0853	1.7216	0.5940	0.096*
C15	0.0884 (3)	1.78924 (19)	0.4692 (3)	0.0816 (7)
H15	0.0083	1.8858	0.4818	0.098*
C16	0.2604 (4)	1.7455 (2)	0.3842 (3)	0.0888 (7)
H16	0.2983	1.8124	0.3390	0.107*
C17	0.3794 (3)	1.6028 (2)	0.3642 (2)	0.0678 (5)
H17	0.4968	1.5734	0.3045	0.081*
C18	0.99189 (18)	0.36906 (13)	0.14162 (14)	0.0416 (3)
C19	1.0226 (3)	0.13250 (17)	0.1330 (3)	0.0729 (6)
H19A	0.9252	0.1571	0.2193	0.088*
H19B	0.9755	0.1409	0.0669	0.088*
C20	1.1542 (3)	-0.01258 (19)	0.1230 (3)	0.0969 (8)
H20A	1.1010	-0.0772	0.1362	0.145*
H20B	1.1996	-0.0205	0.1892	0.145*
H20C	1.2498	-0.0367	0.0372	0.145*
N1	0.80732 (15)	0.68332 (11)	0.20754 (13)	0.0465 (3)
H1	0.7456	0.6366	0.2196	0.056*
O1	0.42051 (15)	1.27356 (10)	0.33465 (12)	0.0582 (3)
O2	1.07889 (13)	0.67841 (9)	0.13778 (12)	0.0516 (3)
O3	1.39676 (13)	0.32190 (11)	0.01100 (13)	0.0599 (3)
O4	0.83217 (13)	0.41370 (11)	0.18030 (13)	0.0568 (3)
O5	1.10361 (13)	0.22984 (10)	0.11310 (12)	0.0522 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0359 (7)	0.0384 (7)	0.0945 (12)	-0.0144 (6)	-0.0230 (7)	-0.0096 (7)
C2	0.0369 (6)	0.0328 (6)	0.0618 (8)	-0.0125 (5)	-0.0221 (6)	-0.0017 (5)
C3	0.0350 (6)	0.0269 (5)	0.0514 (7)	-0.0118 (4)	-0.0164 (5)	0.0010 (5)
C4	0.0365 (6)	0.0293 (5)	0.0512 (7)	-0.0138 (5)	-0.0161 (5)	0.0010 (5)
C5	0.0329 (6)	0.0283 (5)	0.0550 (8)	-0.0099 (5)	-0.0111 (5)	-0.0017 (5)
C6	0.0440 (7)	0.0350 (6)	0.0669 (9)	-0.0108 (6)	-0.0241 (7)	-0.0080 (6)
C7	0.0477 (8)	0.0345 (6)	0.0683 (10)	-0.0062 (6)	-0.0297 (7)	-0.0062 (6)
C8	0.0396 (7)	0.0313 (6)	0.0531 (8)	-0.0074 (5)	-0.0159 (6)	-0.0064 (5)
C9	0.0499 (8)	0.0383 (7)	0.0627 (9)	-0.0108 (6)	-0.0261 (7)	-0.0081 (6)
C10	0.0473 (8)	0.0365 (7)	0.0638 (9)	-0.0073 (6)	-0.0275 (7)	-0.0013 (6)
C11	0.0551 (9)	0.0374 (7)	0.0748 (11)	-0.0102 (6)	-0.0299 (8)	-0.0108 (7)
C12	0.0490 (8)	0.0342 (6)	0.0518 (8)	-0.0126 (6)	-0.0204 (6)	-0.0068 (5)
C13	0.0594 (10)	0.0494 (9)	0.0610 (10)	-0.0147 (8)	-0.0135 (8)	0.0040 (7)
C14	0.0601 (11)	0.0616 (11)	0.0776 (13)	0.0030 (9)	-0.0178 (10)	-0.0184 (10)
C15	0.0951 (16)	0.0345 (8)	0.1246 (18)	-0.0077 (9)	-0.0732 (15)	-0.0061 (10)
C16	0.1034 (18)	0.0548 (11)	0.144 (2)	-0.0476 (12)	-0.0750 (17)	0.0374 (12)
C17	0.0592 (10)	0.0604 (10)	0.0887 (13)	-0.0320 (9)	-0.0288 (10)	0.0112 (9)
C18	0.0398 (7)	0.0289 (5)	0.0547 (8)	-0.0148 (5)	-0.0179 (6)	0.0041 (5)
C19	0.0681 (11)	0.0381 (8)	0.1251 (17)	-0.0328 (8)	-0.0411 (11)	0.0130 (9)
C20	0.0866 (15)	0.0382 (9)	0.163 (3)	-0.0326 (10)	-0.0444 (16)	0.0207 (12)
N1	0.0357 (6)	0.0280 (5)	0.0686 (8)	-0.0124 (4)	-0.0146 (5)	-0.0015 (5)

01	0.0597 (7)	0.0308 (5)	0.0779 (8)	-0.0033 (4)	-0.0362 (6)	-0.0140 (5)
O2	0.0383 (5)	0.0299 (4)	0.0823 (8)	-0.0144 (4)	-0.0185 (5)	-0.0058 (4)
O3	0.0359 (5)	0.0388 (5)	0.0931 (9)	-0.0083 (4)	-0.0198 (5)	-0.0128 (5)
O4	0.0388 (5)	0.0388 (5)	0.0878 (8)	-0.0184 (4)	-0.0185 (5)	0.0037 (5)
O5	0.0450 (5)	0.0266 (4)	0.0821 (8)	-0.0160 (4)	-0.0215 (5)	0.0018 (4)
Geometric paran	neters (Å, °)					
C1—O2		1.4466 (17)	C11–	-H11A	0	.9700
C1—C2		1.5190 (19)	C11-	-H11B	0	.9700
C1—H1A		0.9700	C12-	-C17	1	.365 (2)
C1—H1B		0.9700	C12-	-C13	1	.367 (2)
C2—O3		1.2156 (16)	C13—	-C14	1	.373 (2)
C2—C3		1.4291 (19)	C13—	-H13	0	.9300
C3—C4		1.3953 (16)	C14—	-C15	1	.357 (3)
C3—C18		1.4386 (17)	C14—	-H14	0	.9300
C4—N1		1.3126 (17)	C15-	-C16	1	.354 (4)
C4—O2		1.3281 (15)	C15-	-H15	0	.9300
C5—C10		1.371 (2)	C16–	-C17	1	.376 (3)
C5—C6		1.381 (2)	C16–	-H16	0	.9300
C5—N1		1.4287 (15)	C17–	-H17	0	.9300
C6—C7		1.3820 (18)	C18–	-04	1	.2128 (17)
С6—Н6		0.9300	C18–	-05	1	.3316 (15)
С7—С8		1.387 (2)	C19–	-C20	1	.441 (3)
С7—Н7		0.9300	C19–	-05	1	.4506 (17)
C8—O1		1.3637 (15)	C19–	-H19A	0	.9700
С8—С9		1.381 (2)	C19–	-H19B	0	.9700
C9—C10		1.3847 (19)	C20–	-H20A	0	.9600
С9—Н9		0.9300	C20-	-H20B	0	.9600
С10—Н10		0.9300	C20-	-H20C	0	.9600
C11—O1		1.4238 (18)	N1—	H1	0	.8600
C11—C12		1.5022 (19)				
O2—C1—C2		105.83 (11)	C17-	-C12—C13	1	18.54 (15)
O2—C1—H1A		110.6	C17–	-C12C11	1	21.00 (15)
C2—C1—H1A		110.6	C13–	-C12C11	1	20.46 (15)
O2—C1—H1B		110.6	C12-	-C13C14	1	21.09 (18)
C2—C1—H1B		110.6	C12-	-С13—Н13	1	19.5
H1A—C1—H1B		108.7	C14—	-С13—Н13	1	19.5
O3—C2—C3		131.81 (12)	C15-	-C14—C13	1	19.7 (2)
O3—C2—C1		122.98 (13)	C15–	-C14—H14	1	20.1
C3—C2—C1		105.18 (11)	C13—	-C14—H14	1	20.1
C4—C3—C2		106.96 (11)	C16–	-C15C14	1	19.92 (17)
C4—C3—C18		121.03 (12)	C16–	-C15—H15	1	20.0
C2—C3—C18		131.90 (11)	C14-	-C15—H15	1	20.0
N1-C4-O2		117.79 (11)	C15-	-C16C17	1	20.4 (2)
N1—C4—C3		127.88 (12)	C15-	-C16—H16	1	19.8
O2—C4—C3		114.33 (11)	C17–	-C16—H16	1	19.8
C10—C5—C6		120.12 (12)	C12-	-C17C16	1	20.32 (19)
C10-C5-N1		120.95 (13)	C12-	-C17—H17	1	19.8

C6—C5—N1	118.92 (13)	C16—C17—H17	119.8
C5—C6—C7	119.82 (13)	O4—C18—O5	122.88 (12)
С5—С6—Н6	120.1	O4—C18—C3	123.59 (12)
С7—С6—Н6	120.1	O5—C18—C3	113.52 (11)
C6—C7—C8	120.03 (14)	C20—C19—O5	109.29 (15)
С6—С7—Н7	120.0	С20—С19—Н19А	109.8
С8—С7—Н7	120.0	O5—C19—H19A	109.8
O1—C8—C9	124.60 (13)	С20—С19—Н19В	109.8
O1—C8—C7	115.48 (13)	O5—C19—H19B	109.8
C9—C8—C7	119.92 (12)	H19A—C19—H19B	108.3
C8—C9—C10	119.57 (14)	C19—C20—H20A	109.5
С8—С9—Н9	120.2	С19—С20—Н20В	109.5
С10—С9—Н9	120.2	H20A—C20—H20B	109.5
C5-C10-C9	120.52 (14)	С19—С20—Н20С	109.5
C5-C10-H10	119.7	H20A-C20-H20C	109.5
С9—С10—Н10	119.7	H20B-C20-H20C	109.5
O1-C11-C12	107.46 (12)	C4—N1—C5	126.48 (11)
O1—C11—H11A	110.2	C4—N1—H1	116.8
C12—C11—H11A	110.2	C5—N1—H1	116.8
O1—C11—H11B	110.2	C8—O1—C11	117.26 (12)
C12—C11—H11B	110.2	C4—O2—C1	107.56 (10)
H11A—C11—H11B	108.5	C18—O5—C19	115.87 (12)
O2—C1—C2—O3	175.75 (15)	C12-C13-C14-C15	-0.4 (3)
O2—C1—C2—C3	-2.44 (18)	C13-C14-C15-C16	0.3 (3)
O3—C2—C3—C4	-174.22 (17)	C14-C15-C16-C17	0.4 (4)
C1—C2—C3—C4	3.74 (17)	C13-C12-C17-C16	1.0 (3)
O3—C2—C3—C18	1.9 (3)	C11—C12—C17—C16	-178.56 (18)
C1—C2—C3—C18	179.84 (16)	C15—C16—C17—C12	-1.1 (3)
C2—C3—C4—N1	174.99 (15)	C4—C3—C18—O4	4.4 (2)
C18—C3—C4—N1	-1.6 (2)	C2-C3-C18-O4	-171.19 (16)
C2—C3—C4—O2	-4.03 (17)	C4—C3—C18—O5	-174.86 (13)
C18—C3—C4—O2	179.36 (13)	C2-C3-C18-O5	9.5 (2)
C10—C5—C6—C7	0.3 (2)	O2—C4—N1—C5	-0.9 (2)
N1—C5—C6—C7	179.38 (14)	C3—C4—N1—C5	-179.88 (14)
C5—C6—C7—C8	0.8 (2)	C10-C5-N1-C4	-52.3 (2)
C6—C7—C8—O1	179.24 (15)	C6-C5-N1-C4	128.62 (17)
C6—C7—C8—C9	-1.1 (2)	C9—C8—O1—C11	2.8 (2)
O1—C8—C9—C10	179.81 (15)	C7—C8—O1—C11	-177.55 (15)
C7—C8—C9—C10	0.1 (3)	C12—C11—O1—C8	-178.33 (13)
C6—C5—C10—C9	-1.3 (2)	N1-C4-O2-C1	-176.74 (14)
N1-C5-C10-C9	179.71 (14)	C3—C4—O2—C1	2.39 (18)
C8—C9—C10—C5	1.0 (3)	C2—C1—O2—C4	0.15 (18)
O1—C11—C12—C17	-104.90 (19)	O4—C18—O5—C19	-0.9 (2)
O1-C11-C12-C13	75.5 (2)	C3—C18—O5—C19	178.40 (16)
C17—C12—C13—C14	-0.3 (3)	C20-C19-O5-C18	-168.96 (18)
C11 - C12 - C13 - C14	179 31 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N1—H1…O4	0.86	2.12	2.7485 (15)	129
C6—H6···O3 ⁱ	0.93	2.51	3.3951 (18)	160
C17—H17···O4 ⁱⁱ	0.93	2.58	3.465 (2)	160
Symmetry codes: (i) $-x+2, -y+1, -z$; (ii) $x, y+1, z$.				

Fig. 1

Fig. 2