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Abstract

In some species, meiotic recombination is concentrated in small genomic regions. These “recombination hotspots” leave
signatures in fine-scale patterns of linkage disequilibrium, raising the prospect that the genomic landscape of hotspots
can be characterized from sequence variation. This approach has led to the inference that hotspots evolve rapidly in
some species, but are conserved in others. Historic demographic events, such as population bottlenecks, are known to
affect patterns of linkage disequilibrium across the genome, violating population genetic assumptions of this approach.
Although such events are prevalent, demographic history is generally ignored when making inferences about the evo-
lution of recombination hotspots. To determine the effect of demography on the detection of recombination hotspots,
we use the coalescent to simulate haplotypes with a known recombination landscape. We measure the ability of popular
linkage disequilibrium-based programs to detect hotspots across a range of demographic histories, including population
bottlenecks, hidden population structure, population expansions, and population contractions. We find that demo-
graphic events have the potential to greatly reduce the power and increase the false positive rate of hotspot discovery.
Neither the power nor the false positive rate of hotspot detection can be predicted without also knowing the demo-
graphic history of the sample. Our results suggest that ignoring demographic history likely overestimates the power to
detect hotspots and therefore underestimates the degree of hotspot sharing between species. We suggest strategies for
incorporating demographic history into population genetic inferences about recombination hotspots.
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Introduction

The rate of meiotic recombination shapes major features
of the genomic landscape and influences the efficacy of se-
lection (Hill and Robertson 1966; Felsenstein 1974; Begun and
Aquadro 1992; Charlesworth et al. 1993, 1994; Comeron et al.
1999; Duret and Arndt 2008). Recombination rate varies be-
tween species (Burt and Bell 1987; Dumont and Payseur 2011;
Smukowski and Noor 2011), between populations (Koehler
et al. 2002; Kong et al. 2010; Comeron et al. 2012), within
populations (Broman et al. 1998; Cullen et al. 2002; Jeffreys
and Neumann 2005), and between the sexes (Burt et al. 1991;
Ma et al. 2015; Johnston et al. 2016). The recombination rate
also varies along the genome (Kong et al. 2002; Cox et al. 2009;
Rockman and Kruglyak 2009; Comeron et al. 2012; Kawakami
et al. 2014). In some species, crossovers are finely localized into
short stretches of sequence (1–2 kb) with highly elevated re-
combination rates termed “hotspots” (Steinmetz et al. 1982;
Chakravarti et al. 1984; Lichten and Goldman 1995; Petes
2001; Kelmenson et al. 2005; Myers et al. 2005; Auton et al.
2012; Singhal et al. 2015; Stevison et al. 2016). For example, an
estimated 80% of all recombination events in humans are
concentrated in <15% of the genome (The International
HapMap Consortium 2005; Myers et al. 2006). In contrast,
other species, including the model genetic organisms

Drosophila melanogaster and Caenorhabditis elegans, show
heterogeneity in recombination rate across chromosomes,
but lack punctate hotspots (Chan et al. 2012; Kaur and
Rockman 2014; Smukowski-Heil et al. 2015).

The characterization of fine-scale heterogeneity in recom-
bination rate—including the detection of hotspots—requires
that a reasonable number of crossovers be mapped to the
genome with high precision. Because crossovers are rare, large
sample sizes are needed. The most direct method converts
haplotype frequencies estimated in large numbers of sperm
into recombination rates for short genomic intervals (Li et al.
1988; Cui et al. 1989; Hubert et al. 1994; Jeffreys et al. 2000;
Tiemann-Boege et al. 2006; Clark et al. 2007). This approach
currently does not scale up with high enough precision to
identify hotspots on the genomic level, and it ignores recom-
bination occurring in females. Transmission patterns in
crosses or pedigrees can locate hotspots (Coop et al. 2008;
Kong et al. 2010; Ma et al. 2015), but only with very large
sample sizes that are impractical in most species. Although
double-strand break (DSB) hotspots can be detected using
chromatin immunoprecipitation–sequencing (ChIP-Seq)
(Pan et al. 2011; Smagulova et al. 2011; Brick et al. 2012;
Pratto et al. 2014; Lam and Keeney 2015), only a fraction of
DSBs are resolved as crossover events and as a result, the
relationship between these genomic locations and
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recombination hotspots remain poorly understood. These
challenges motivate the use of an indirect, population genet-
ics approach to characterizing recombination hotspots.

Historical recombination occurring at high levels in hot-
spots erodes associations among nearby polymorphisms, lead-
ing to localized decays in linkage disequilibrium (LD) in
samples of unrelated individuals. Building on the demonstra-
tion that the population recombination rate can be estimated
from the composite likelihood of pairwise combinations of
polymorphic sites (Hudson 2001), this signature formed the
foundation for statistical methods that detect hotspots and
measure their recombination rates (Fearnhead and Donnelly
2001; McVean et al. 2002, 2004; Li and Stephens 2003; Stumpf
and McVean 2003; Fearnhead and Smith 2005; Fearnhead
2006; Auton and McVean 2007, 2012; Wang and Rannala
2009; Auton et al. 2014). These approaches easily scale to
the whole genome and take advantage of the increasing avail-
ability of population genomic data sets. As a result, current
knowledge about the genomic distribution of hotspots comes
disproportionately from the LD-based strategy, which has
been applied to a variety of species (Myers et al. 2005; 1000
Genomes Project Consortium 2010; Auton et al. 2012, 2013;
Axelsson et al. 2012; Brunschwig et al. 2012; Chan et al. 2012;
Horton et al. 2012; Paape et al. 2012; Singhal et al. 2015;
Wallberg et al. 2015; Stevison et al. 2016).

Genomic maps of recombination hotspots inferred from
LD in different populations and species can be compared to
understand how hotspots evolve. LD-based hotspot locations
show little overlap between closely related species of primates
(Ptak et al. 2005; Winckler et al. 2005; Auton et al. 2012;
Stevison et al. 2016), with an estimated 10% shared between
humans and chimpanzees, suggesting rapid evolution of hot-
spot location (Auton et al. 2012). Interestingly, the rate of
hotspot turnover itself appears to evolve. For example, hotspot
turnover in chimpanzees has been estimated to be 2–3 times
faster than hotspot turnover within populations of hominids
(1–2 My vs.�3 My, respectively) (Lesecque et al. 2014; Stevison
et al. 2016). In contrast, the majority of LD-based hotspot
locations appear to be conserved across species of canids
and across species of birds over long times scales (up to 10–
20 My) (Axelsson et al. 2012; Singhal et al. 2015). Two finch
species with a similar divergence time to humans and chim-
panzees share>70% of their LD-based hotspots (Singhal et al.
2015). Experimentally inferred double-strand break hotspots
are also conserved between highly diverged species of yeast
(Lam and Keeney 2015). These variable evolutionary patterns
motivate the application of LD-based approaches to compare
genomic hotspot maps across a range of species groups.

Conclusions about the abundance and intensity of recom-
bination hotspots drawn from patterns of LD must be tempered
by the challenges inherent in this indirect strategy. LD-based
methods estimate a historical recombination rate that is aver-
aged over time and over individuals in a population. Hence,
these estimates ignore changes in recombination rate during
the history of the sample as well as rate variation among indi-
viduals, including often-observed differences between females
and males (Burt et al. 1991; Kong et al. 2010). Furthermore,
recombination hotspots first detected as local maxima in

LD-based recombination maps must be statistically validated.
The performance of these statistical methods is largely unknown
and is likely sensitive to variation in its implementation, such as
the size of the genomic window used to estimate the back-
ground recombination rate (Wall and Stevison 2016). As a result,
it has been suggested that previous applications to empirical
data may have been underpowered (Wall and Stevison 2016).

A major assumption of LD-based approaches is that pat-
terns of variation reflect neutral, equilibrium conditions
(Hudson 2001; McVean et al. 2002). Positive selection creates
local distortions in LD that resemble hotspot signatures, in-
creasing the false positive (FP) rate associated with hotspot
inference (Reed and Tishkoff 2006). Common demographic
events, including population size change and migration, are
also expected to shape genomic patterns of linkage disequilib-
rium in complex ways (Zavattari et al. 2000; McVean 2002;
Rogers 2014), raising the prospect that unmet assumptions
about demographic history could mislead inferences about
recombination hotspots. Although it is possible to reduce
the effect of selection by avoiding genes and other functional
elements, the imprint of demography should extend across
the genome. Broadly, demography has been demonstrated to
bias estimates of the population recombination rate (q)
(Fearnhead and Donnelly 2001; McVean et al. 2002; Smith
and Fearnhead 2005). Yet, it is unclear how such biases affect
hotspot identification, which focuses on relative differences in
q within the genome. Early simulation-based analyses sug-
gested that LD-based identification of hotspots is likely robust
to demographic perturbations and that population bottle-
necks may actually increase the ability to identify hotspots
(McVean et al. 2004). In contrast, Li and Stephens (2003)
reported that population growth can reduce the power of
hotspot detection and lead to overestimation of hotspot mag-
nitude. Similarly, Chan et al. (2012) observed moderate to
strong decreases in the power of hotspot detection following
population growth and population bottlenecks, respectively.
A more recent simulation-based analysis suggested that com-
plex demographic history can also create the appearance of
hotspots in the absence of variation in recombination rate
(Johnston and Cutler 2012). Some LD-defined recombination
hotspots may simply be regions of the genome with relatively
deep genealogies, and thus, more historical recombination
events (Johnston and Cutler 2012). The broader implications
of these results are unclear because a limited range of demo-
graphic scenarios were explored and performance of current
statistical methods for hotspot identification was measured
only in the context of a constant background recombination
rate. Collectively, these studies and ideas motivate a wider
examination of how deviations from demographic equilibrium
affect the performance of LD-based methods for identifying
hotspots. In this article, we use coalescent simulations to eval-
uate the ability of LD-based methods to detect hotspots across
a wide range of common, demographic perturbations.

Results
To determine the effects of demographic events on the
power and accuracy of LD-based methods of recombination
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hotspot detection, we used coalescent-based programs to
simulate chromosomes with a known recombination map
and demographic history (Hudson 2001; Hellenthal and
Stephens 2007; McVean and Auton 2007). We then used
LDhat to measure recombination rate along the simulated
chromosomes and LDhot to identify all statistically significant
recombination hotspots in the simulated samples (McVean
and Auton 2007; Auton et al. 2014). With perfect knowledge
of the true underlying recombination map, we determined
whether significant hotspots were either true positives or FPs,
allowing us to compute two metrics of performance: power
and the frequency of FPs. For each condition, we simulated
1,000 data sets. Each data set contained 32 chromosomes
(equivalent to sampling 16 diploid individuals, assuming ran-
dom mating), a modest sample size intended to mimic ge-
nome sequencing studies of natural populations, especially in
non-model organisms. We considered four common demo-
graphic events that affect patterns of linkage disequilibrium:
population bottlenecks, hidden population structure, expo-
nential population growth, and exponential population con-
traction. Except where explicitly noted, we hold the frequency
of recombination events, r/kb, constant within and between
simulations. Accordingly, the population recombination rate,
q/kb (4Nr/kb), changes within and between simulations due
to changes in population size, N.

We identified pervasive and complex effects of demo-
graphic history on the ability of a popular program—
LDhot—to detect recombination hotspots (Auton et al.
2014). Both measures of performance, power and FP rate,
were highly sensitive to the parameters of the simulated de-
mographic scenarios. Reductions in the power to identify
hotspots were observed following all four types of demo-
graphic events simulated. The most severe reductions in
power occurred following recent, strong population bottle-
necks and old, hidden population subdivision. Furthermore,
we observed increases in the frequency of FPs following all
types of demographic events, apart from hidden population
subdivision. Most strikingly, we observed a very strong effect
of background recombination rate on the frequency of FPs,
which interacted with demographic history to produce up to
6-fold increases relative to control simulations. We also found
that certain demographic scenarios, particularly older or grad-
ual population expansions, reduced the frequency of FPs.

Control Simulations
It is likely that differences in population size (N) and by ex-
tension the population mutation rate (h¼ 4Nl, where l is
the mutation rate per base pair) may impact performance
even in equilibrium populations. To account for these effects,
we compared performance following demographic events to
control simulations featuring a constant population size that
were otherwise equivalent. Both the mutation rate, l, and the
recombination rate, r, were held constant, with reductions in
the population mutation rate, h, and the population recom-
bination rate, q, reflecting changes in population size, N.
Where applicable, we performed multiple control simulations
across the range of population sizes experienced by popula-
tions undergoing changes in population size and structure

(minimum, maximum, and intermediate population sizes). By
comparing between control simulations, we noted effects on
performance that arose due to the length of the simulated
scaffold, the number of hotspots simulated, and the popula-
tion mutation rate. The largest effects on power arose from
differences in equilibrium values of the population mutation
rate, resulting in a positive relationship. The reduction in
power when decreasing the population mutation rate from
0.0005 (N¼ 5,000) to 0.0001 (N¼ 1,000) was much greater
(loss of�45% of total hotspots) than the reduction in power
when decreasing the population mutation rate from 0.001
(N¼ 10,000) to 0.0005 (N¼ 5,000) (loss of �6–10% of total
hotspots) (supplementary table S1, Supplementary Material
online). In comparison, the effects of scaffold size on perfor-
mance were minimal (<3% difference in performance) (sup-
plementary table S1, Supplementary Material online).

Similar patterns were observed for the frequency of FPs
among control simulations. There was a strong, positive, non-
linear relationship between the population mutation rate and
the frequency of FPs (supplementary table S2, Supplementary
Material online). There was also a noticeable, but smaller
effect of scaffold size. Both power and FP frequency in the
500-kb control simulation were lower than expected, given
the other control simulations with the same population mu-
tation rate (h¼ 0.001) (supplementary tables S1 and S2,
Supplementary Material online). This simulation differed
from the other control simulations in two ways that may
contribute to this deviation: (1) eight hotspots (instead of
one) were simulated on each scaffold and (2) a different co-
alescent simulator was used to simulate the sequence data
(fin: McVean and Auton 2007 vs. msHOT: Hellenthal and
Stephens 2007). Strikingly, we found that the background
recombination rate substantially affected performance
among the control simulations, and in some cases, even re-
versed the relationship between the population mutation
rate and performance.

Instantaneous Bottleneck
To simulate the effects of an instantaneous bottleneck, we
modeled single 500-kb chromosomes with eight recombina-
tion hotspots, each 2-kb in length, evenly spaced 50-kb apart
using the coalescent simulator (fin) within the LDhat package
(McVean and Auton 2007). The intensity of each recombi-
nation hotspot is double the intensity of the preceding hot-
spot, spanning a range from 0.5 to 64 q/kb (q/kb¼ 4Nr,
where r is the rate of recombination per kb). The background
recombination rate (rate of recombination events outside of
recombination hotspots), is 0.02 q/kb. The values of q/kb are
given for the ending population size of 10,000 individuals. We
designed the scaffold to be identical to that used to test the
performance of LDhot by the authors of the program (Auton
et al. 2014). Among the demographic scenarios we examined,
population bottlenecks induced the greatest and most per-
vasive reductions in power (fig. 1 and supplementary table S3,
Supplementary Material online). Power depended upon both
the strength and the timing of the bottleneck, as well as the
magnitude of the recombination hotspot (fig. 2). In the most
extreme cases, we observed virtually no power to detect
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FIG. 1. Population bottlenecks decrease power to detect recombination hotspots. Each square in the plot represents the percent difference in
power to detect a hotspot for a population with a bottleneck of a given strength (y-axis) and recovery time (x-axis) relative to a control equilibrium
population of the same size (N0¼ 10,000). Power was calculated as the percent of measurable simulations for each condition in which the true
recombination hotspot was significantly identified by LDhot. Panels display power for hotspots with different intensities (qHSÞ.
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FIG. 2. The power to detect a hotspot is strongly affected by its intensity. Each square in the plot represents the power to detect a hotspot for a
population with a bottleneck of a given strength (y-axis) and recovery time (x-axis). Power was calculated as the percent of measurable simulations
for each condition in which the true recombination hotspot was significantly identified by LDhot. Panels display power for hotspots with different
intensities (qHSÞ.
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hotpots of any magnitude following a strong, recent bottle-
neck (fig. 2), resulting in a close to 100% decrease in power
relative to the control population (fig. 1). However, weak,
recent bottlenecks and strong, older bottlenecks also pro-
duced substantial reductions in power (30–50%) in compar-
ison to the control simulations (fig. 1). The largest relative
decreases in power were seen for hotspots of intermediate
magnitude (q/kb¼ 4–16) (fig. 1D–F). Although relative
increases in power to identify weak hotspots (q/kb¼ 0.5–2)
were observed following old and weak population bottle-
necks (fig. 1A–C), the absolute effect on performance was
limited by the very low power to statistically detect these
hotspots even under ideal conditions (fig. 2A–C).

We also identified transient increases in the frequency of
FPs per Mb (FP/Mb) following an instantaneous bottleneck
(fig. 3 and supplementary table S3, Supplementary Material
online). The frequency of FPs slightly decreased immediately
following a population bottleneck relative to the control pop-
ulation (fig. 3B). However, as populations began to return to
equilibrium, the frequency of FPs increased, peaking between
2,000–4,000 generations after the bottleneck occurred
(t¼ 0.05–0.1, t is given in coalescent units [4N0], where N0

is the current population size; N0¼ 10,000) (fig. 3A and sup-
plementary table S3, Supplementary Material online). Strong
bottlenecks produced greater transient increases in the FP
rate. In the control simulations, FPs occurred at a frequency
of 0.16 FP/Mb (�1 FP per 6.25 Mb) (supplementary table S2,
Supplementary Material online). The maximum frequency of
FPs observed following a bottleneck was 0.53 FP/Mb (1 FP per
1.89 Mb), a >3-fold increase compared with a population of
constant size (supplementary table S3, Supplementary

Material online). This maximum was reached 2,000 genera-
tions (t¼ 0.05, N0¼ 10,000) after a strong bottleneck in
which the probability of coalescence was 80%.

Exponential Population Growth
To model the consequences of exponential population
growth, we used msHOT to simulate a 450-kb scaffold with
a single, central 2-kb recombination hotspot of magnitude
16 q/kb with a background recombination rate of 0.02 q/kb
(when N¼ 10,000, the current population size) (Hellenthal
and Stephens 2007). We simulated populations that experi-
enced a 10-fold exponential increase in population size from
an ancestral size of 1,000 individuals to a current population
size of 10,000 individuals (h¼ 0.001). The values of q/kb are
given for the ending population size of 10,000 individuals, but
change during the simulations in accordance with popula-
tion size. Changes in the FP frequency and power following a
population expansion were complex and depended upon
both timing and duration of the expansion (fig. 4 and sup-
plementary table S4, Supplementary Material online). We
observed a large decrease in power (up to 50%) following
recent, rapid population expansions in comparison to con-
trol populations that maintained a constant population size
of 10,000 individuals (84.5% of hotspots detected; h¼ 0.001),
the current population size of the expanded populations (fig.
4C and supplementary tables S1 and S4, Supplementary
Material online). However, power to detect recombination
hotspots in control populations that maintained a constant
population size of 1,000 individuals, the ancestral population
size of the expanded populations, was very low (30.9% of
hotspots detected, h¼ 0.0001) (supplementary table S1,

FIG. 3. Population bottlenecks transiently increase the frequency of false positives per Mb. (A) Each square represents the frequency of false
positives observed per Mb following a bottleneck of a given strength (y-axis) and recovery time (x-axis). The false positive frequency was calculated
as the total number of false positives identified per condition divided by the sum of the measurable length per condition. (B) Each square
represents the percent difference in frequency of false positives observed per Mb following a population bottleneck relative to a control,
equilibrium population of the same size (N0¼ 10,000). The color of each square represents increased (blue) or decreased (red) false positive
frequency following a population bottleneck relative to a control population with a constant historical population size.
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Supplementary Material online). The reduction in power fol-
lowing population expansions did not exceed this lower
bound in any of the expansion scenarios we simulated
(fig. 4A).

Unlike power, the range of FP frequencies following pop-
ulation expansions (0.008–0.57 FP/Mb) exceeded the range
among control populations of equivalent, constant popula-
tion size (0.15–0.33 FP/Mb) (fig. 4A and supplementary table

S2, Supplementary Material online). The direction and mag-
nitude of the change in the frequency of FPs was highly var-
iable, depending on both the duration and timing of the
population expansion (fig. 4D). In most simulated expansion
scenarios, the FP frequency was lower than that seen in equi-
librium control populations (fig. 4D). In particular, we ob-
served a large relative decrease in the frequency of FPs, as
low as 0.01 FP/Mb or 1 FP per 100 Mb, coupled with only

FIG. 4. The relationship between power and false positive frequency following a population expansion is complex and depends upon both timing
and duration. (A) Each point (circles) on the plot indicates the power (x-axis) and false positive frequency (y-axis) following a population expansion
that varies in duration and recovery time. The power, but not the false positive frequency, fell within the range observed among the equilibrium,
control populations (triangles). The shading of the points represents the average number of SNPs per simulation, which directly corresponds to the
values on the x-axis of (B). (B) Following an equilibrium demographic history, there is a constant linear expectation for the relationship between the
number of SNPs and the number of singletons (triangles). Population expansions result in the observation of more singletons than expected given
the number of SNPs (circles). The shading of the points corresponds to the average number of SNPs per simulation plotted on the x-axis. (C) Each
square in the plot represents the relative power to detect a hotspot for a population with a population expansion of a given duration (y-axis) and
recovery time (x-axis) compared with a control equilibrium population of the same ending size (N0¼ 10,000). Power was calculated as the percent
of measurable simulations for each condition in which the true recombination hotspot was significantly identified by LDhot. (D) Each square
represents the percent difference in frequency of false positives observed per Mb following a population expansion relative to a control, equi-
librium population of the same ending size (N0¼ 10,000). The false positive frequency was calculated as the total number of false positives
identified per condition divided by the sum of the measurable length per condition.
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moderated reductions in power following older and more
gradual population expansions (fig. 4C and D; supplementary
table S4, Supplementary Material online). For example, fol-
lowing an expansion that occurred over 2,000 generations
(t¼ 0.05, N0¼ 10,000) and ended 10,000 generations in the
past (t¼ 0.25, N0¼ 10,000), there was only a minimal de-
crease in power (75.3% of hotspots discovered) and a large
decrease in the frequency of FPs (0.008 FP/Mb) (supplemen-
tary table S4, Supplementary Material online). In contrast,
large increases in the frequency of FPs relative to the controls
occurred following intense, recent population expansions (fig.
4D). For example, following expansions that occurred over
100 generations (t¼ 0.0025, N0¼ 10,000) and ended only 40
generations in the past (t¼ 0.001, N0¼ 10,000), we detected
1 FP per 1.75 Mb (0.57 FP/Mb) (supplementary table S4,
Supplementary Material online).

Exponential Population Contraction
To model the consequences of an exponential population
contraction, we used msHOT to simulate a 600-kb scaffold
with a single, central 2-kb recombination hotspot of magni-
tude 16 q/kb with a background recombination rate of
0.02 q/kb (Hellenthal and Stephens 2007). We simulated
populations that experienced a 10-fold exponential decrease
in population size from an ancestral size of 10,000 individuals
to a current population size of 1,000 individuals (h¼ 0.0001).
The values of q/kb are given for the starting population size of
10,000 individuals, but change during the simulations in ac-
cordance with decreasing population size. As observed fol-
lowing population expansions, changes in the FP frequency
and power following a population contraction were complex
and depended upon both the timing and duration of the
event (fig. 5A and supplementary table S5, Supplementary
Material online). Although power varied greatly among con-
traction scenarios, this variation did not exceed the range of
power observed among the equilibrium, control populations
(27.7–83.4%) (supplementary table S1, Supplementary
Material online). In contrast with the observation that power
was the highest following older, gradual population expan-
sions, for population contractions power was the highest fol-
lowing recent, rapid events (figs. 4A and 5A).

Population contractions resulted in pervasive, but moder-
ate increases in the frequency of FPs (fig. 6B). The frequency of
FPs was highest following the oldest, intense contractions and
most recent, intense contractions, exceeding the upper range
observed in the control simulations (0.19–0.32 FP/Mb) (fig.
5A and supplementary table S5, Supplementary Material on-
line). The maximum frequency of FPs, 1 FP per 2.44 Mb
(0.41 FP/Mb), was seen following a contraction that occurred
over 20 generations (t¼ 0.005, N0¼ 1,000) and ended 10
generations before the end of the simulation (t¼ 0.0025,
N0¼ 1,000) (supplementary table S5, Supplementary
Material online).

Background Recombination Rate
Hotspots are detected as local decays in LD compared with
the surrounding sequence, raising the prospect that assump-
tions about the background recombination rate could

influence the effects of demography on method performance.
To further investigate interactions between the background
recombination rate and hotspot detection, we ran additional
sets of simulations, focusing on population contractions.
Using the same set of demographic scenarios, we increased
the background recombination rate 10-fold (0.02–0.2 q/kb).
We then measured performance under this higher back-
ground rate when either the absolute (80�, 16 q/kb) or rel-
ative magnitude (800�, 160 q/kb) of the hotspot was
maintained. The values of q/kb are given for the starting
population size of 10,000 individuals, but change during the
simulations in accordance with decreasing population size.
This allowed us to parse the effects of raising the background
recombination rate and increasing the intensity of the recom-
bination hotspot.

We observed complex interactions between demographic
history, background recombination rate, and hotspot magni-
tude related to performance (fig. 5C and E). Surprisingly, when
the background recombination rate was increased, the cor-
relation between the population mutation rate (h) and
power reversed, even in the control simulations (fig. 5C and
E). The power to detect hotspots was highest in historically
smaller populations and lowest in historically larger popula-
tions. When the absolute magnitude of the hotspot was held
constant (16 q/kb), the relative magnitude of the hotspot in
comparison to the background recombination rate decreased
(80�). As expected, there was a large corresponding reduc-
tion in power (fig. 5C). We ascribe this reduction in power to
changes in the magnitude of the recombination hotspot rel-
ative to the background recombination rate. The power to
detect the hotspot remained largely within the range of the
equilibrium, control populations (fig. 6C). When the relative
magnitude of the hotspot was held constant (800�), the
absolute magnitude of the hotspot was necessarily increased
(160 q/kb). The overall range of power observed was not
reduced compared with our original simulations
(hotspot¼ 16 q/kb, background¼ 0.02 q/kb). However, the
range of power greatly exceeded the range observed in the
equivalent equilibrium, control populations (fig. 5E).
Following recent, rapid population contractions, power de-
creased by�20% in comparison to control, equilibrium pop-
ulations that maintained a constant, historical population size
of 10,000 individuals (�55%) (figs. 5E and 6E). On the other
hand, following old, gradual contractions power increased by
�10% in comparison to control, equilibrium populations that
maintained a constant, historical population size of 1,000
individuals (�68%) (figs. 5E and 6E).

Most strikingly, under certain contraction scenarios, the
frequency of FPs increased many-fold relative to both the
simulations run with a lower background recombination
rate, and to the relevant control simulations (figs. 5C–E and
6C–E). Following older, intense population contractions, the
FP frequency exceeded 1.6 FP/Mb (1 FP per 0.625 Mb) (fig. 5C
and E). The magnitude of the increase in FP frequency was
observed independently of the magnitude of the hotpot
(16 q/kb vs. 160 q/kb) (fig. 5C and E). Thus, we can attribute
the rise in the frequency of FPs to the increase in background
recombination rate.
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FIG. 5. The relationship between power and false positive frequency following a population contraction is complex and depends on timing, duration, and
background recombination rate. (A, C, E) Each point (circles) on the plot indicates the power (x-axis) and false positive frequency (y-axis) following a
population contraction that varies in duration and recovery time. Performance for three control, equilibrium populations (N¼ 1,000, 5,000, 10,000) are also
shown (triangles). The second two rows of plots show the change in performance with the background recombination rate is increased (10�) and the
absolute (C) or relative (E) magnitude of the hotspot is held constant. The shading of the points represents the average number of SNPs per simulation, which
directly corresponds to the values on the x-axis of (B, D, F). (B, D, F) Following an equilibrium demographic history, there is a constant linear expectation for
the relationship between the number of SNPs and the number of singletons (triangles). Population contractions result in the observation of less singletons
than expected given the number of SNPs (circles). The relationship between the average number of SNPs and singletons remains constant, as expected, when
only the recombination rate is modified (D, F). The shading of the points represents the average number of SNPs per simulation plotted on the x-axis.
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FIG. 6. The relationship between demographic history and performance is sensitive to the background recombination rate (A, C, E). Each square in the plot
represents the relative power to detect a hotspot for a population with a population expansion of a given duration (y-axis) and recovery time (x-axis)
compared with a control equilibrium population of the same ending size (N0¼ 1,000). Power was calculated as the percent of measurable simulations for
each condition in which the true recombination hotspot was significantly identified by LDhot. The relationship between demographic history and
performance changes when the background recombination rate is increased (10�) and the absolute (C) or relative (E) magnitude of the hotspot is held
constant. (B, D, F) Each square represents the percent difference in frequency of false positives observed per Mb following a population contraction relative to a
control, equilibrium population of the same ending size (N0¼ 1,000). The false positive frequency was calculated as the total number of false positives identified
per condition divided by the sum of the measurable length per condition. The frequency of false positives following certain demographic histories increased
dramatically when the background recombination rate was increased (10�) and the absolute (D) or relative (F) magnitude of the hotspot was held constant.
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Hidden Population Structure
To replicate the consequences of sampling with hidden popu-
lation structure, we modeled demographic histories in which a
population of 10,000 individuals (h¼ 0.001) split at time t into
two subpopulations of equal size (h¼ 0.0005). Hidden
population structure greatly reduced power to detect recom-
bination hotspots in certain scenarios. Reductions in power
were sensitive to the split time between the two sampled
populations (fig. 7). Recent population splits that occurred be-
tween 20–2,000 generations in the past (t¼ 0.001–0.1,
N0¼ 5,000) had little to no effect on power (fig. 7). In each of
these cases, power ranged between 80% and 85%—similar to
that observed in an equivalent control, panmictic population
(80.4%) (supplementary table S6, Supplementary Material on-
line). However, a precipitous drop-off in power was observed as
the timing of the split increased past 2,000 generations (t¼ 0.1,
N0¼ 5,000) (fig. 7 and supplementary table S6, Supplementary
Material online). In the case of the oldest split simulated (t¼ 1,
N0¼ 5,000), the power dropped from �80% to only 13.6%
(supplementary table S6, Supplementary Material online).

Hidden population structure did not increase the frequency
of FPs. As observed with power, recent population splits that
occurred between 20–2,000 generations in the past
(t¼ 0.001–0.1, N0¼ 5,000) had little to no effect on the fre-
quency of FPs (fig. 7C and D). The frequency of FPs ranged
between 0.27–0.37 per Mb among these cases, which was
again consistent with a FP rate of 0.26 FP/Mb observed in
the control population (fig. 7C and D). However, the frequency
of FPs decreased, as power did, when the split occurred>2,000
generations in the past, to as low as 0.044 FP/Mb. Thus, old,
hidden population subdivision resulted in the detection of
many fewer recombination hotspots, both true and false.

To identify the effect of migration between the two hidden
subpopulations, we focused upon the case of a population
split occurring 10,000 generations in the past (t¼ 0.5,
N0¼ 5,000) for which we observed intermediate power
(44.3%) and FP frequency (0.17 FP/Mb) (supplementary table
S6, Supplementary Material online). As the migration rate
between the two populations increased, power and the FP
frequency rapidly increased (fig. 7 and supplementary table
S6, Supplementary Material online). One migrant every other
generation (m¼ 2, m is given in units of 4N0M, where M is the
fraction of the population made up of migrants each gener-
ation) between subpopulations was enough to recover the
power observed in the control population (fig. 7). To gauge
the effect of unequally sampling individuals from two hidden
subpopulations, we again focused upon simulations of a pop-
ulation split occurring 10,000 generations in the past (t¼ 0.5,
N0¼ 5,000). As the sampling became less equal, with >75%
of the individuals sampled arising from one of the two sub-
populations, the power and FP frequency rapidly increased
(fig. 7). As expected, when all individuals were sampled from a
single subpopulation, the power and FP frequency were not
distinguishable from performance in the control simulations.

Singletons
Even though singletons are non-informative for measure-
ment of linkage disequilibrium and were excluded prior to

calculating linkage disequilibrium in our reported analyses, we
found that their inclusion does not generally affect the ability
to identify recombination hotspots (supplementary figs. S1–
S4, Supplementary Material online). One important excep-
tion involved population expansions, which increase the pro-
portion of singletons (Tajima 1989a,b; Slatkin and Hudson
1991). In this case, the inclusion of singletons reduced power
by up to 20% (supplementary fig. S2, Supplementary Material
online).

Other Measures of Sequence Variation
Non-equilibrium demographic histories alter patterns of se-
quence variation beyond linkage disequilibrium. To address
the possibility that patterns of sequence variation could be
used to account for the effects of demographic history on
hotspot detection, we analyzed the relationship between per-
formance and four summary statistics of sequence variation
known to be affected by demography: the number of segre-
gating sites (S), the average number of pairwise differences (p)
(Nei and Li 1979), Tajima’s D (Tajima 1989a), and the number
of singletons.

None of the summary statistics exhibited a consistent re-
lationship with performance across the entire range of demo-
graphic conditions simulated. The relationship between
sequence variation and performance varied within and across
demographic conditions (supplementary figs. S6–S9,
Supplementary Material online). For example, the average
number of segregating sites (S) was a decent predictor of
power within the expansion or contraction scenarios simu-
lated, when the background recombination rate was
0.02 q/kb (supplementary fig. S6A, Supplementary Material
online). However, S was a relatively poor predictor of power
within bottleneck scenarios simulated, as well as across all
conditions (supplementary fig. S6A, Supplementary Material
online). Interestingly, one of the best predictors of power
within and across demographic conditions was the average
number of singletons (supplementary fig. S6D,
Supplementary Material online). However, this relationship
did not extend to hidden population subdivisions and was
inconsistent across population contractions that varied in
background recombination rate (supplementary figs. S6A
and S8A, Supplementary Material online). It is important to
note that all singletons were removed prior to analysis in
LDhat/LDhot. Thus, this correlation arises due to features of
the demographic history captures by the number of single-
tons in the sample, not the effect of singletons themselves on
the performance of these programs. None of the summary
statistics were correlated with the frequency of FPs, indicating
that FPs may be a much more difficult problem to address
(fig. 7).

Correlations between sequence variation and performance
appeared to be highly sensitive to the background recombi-
nation rate (supplementary fig. S8A–D, Supplementary
Material online). As expected, the magnitude of the recom-
bination hotspot relative to the background recombination
rate strongly influences power (yellow vs. teal, supplementary
fig. S8A–D, Supplementary Material online). However, unex-
pectedly, the background recombination rate has a strong
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effect on the direction of the relationship between sequence
variation and performance. For example, among simulations
with the same relative magnitude of recombination hotspots,
correlations between the performance and the number of
segregating sites, the average number of pairwise differences,
and the number of singletons were almost completely

reversed (yellow vs. red, supplementary fig. S8A–D,
Supplementary Material online).

Window Size
LDhot statistically validates potential hotspots by comparing
localized maxima to the surrounding genomic region

FIG. 7. Hidden population structure decreases power to detect hotspots and the frequency of false positives relative to control, equilibrium
populations. Each horizontal line indicates the power (blue) and the frequency of false positives per Mb (red) for each demographic scenario: (A)
Population subdivision with unequal sampling and no migration (tsplit¼ 0.5). (B) Population subdivision with equal sampling and migration
(tsplit¼ 0.5). Migration (y-axis) is measured in units 4N0m, where m is the proportion of migrants per generation. (C) Population subdivision with
equal sampling and no migration (tsplit¼ 0.001–1, y-axis), and (D) Control, equilibrium populations (h¼ 0.001, total population size; and
h¼ 0.0005, subpopulation size).
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(Auton et al. 2014). By default, LDhot (2014) compares each
local maxima to a 100-kb background window. However, the
size of the background window specified has been shown to
alter performace of LD-based programs (Wall and Stevison
2016). To determine how background window size may affect
performace of LDhot in cases of non-equilibrium demo-
graphic histories, we chose a subset of demographic condi-
tions and re-ran LDhot analyses with two additional
background window sizes (50 and 200 kb). Specifically, we
chose to further analyze two conditions with low power:
(1) instantaneous bottlenecks (hotspot¼ 16 q/kb,
background¼ 0.02 q/kb) and (2) population contractions
with elevated background recombination rates
(hotspot¼ 16 q/kb, background¼ 0.2 q/kb). The population
contraction simulations also exhibited elevated frequencies of
FPs. Consistent with previous results (Wall and Stevison
2016), we observed higher power using a smaller background
window size (supplementary figs. S10–S13, Supplementary
Material online). Following population contractions, this in-
crease in power was also associated with an increase in FPs
with smaller background window sizes. We observed minor
attenuation or exaggeration of the effects of window size
across the nonequilibrium demographic histories examined
(supplementary figs. S10–S13, Supplementary Material
online).

Discussion
We observed widespread and complex effects of demo-
graphic history on the performance of LD-based methods
for detecting recombination hotspots. Depending on the de-
mographic scenario, these effects included both loss of power
and increase in the frequency of FPs.

Demographic processes can reduce the power to identify
hotspots by decoupling measures of linkage disequilibrium
from recombination rate heterogeneity. Large reductions in
power in populations that have experienced a historical bot-
tleneck may provide an additional explanation as to why
some recombination hotspots discovered via sperm-typing
in humans were not identified using LD-based approaches
(figs. 1 and 2) (Jeffreys et al. 2005). Among the demographic
events we simulated, two distinct processes resulted in ele-
vated measures of linkage disequilibrium and reduced power
to observe recombination hotspots. First, population subsam-
pling that occurs in certain demographic events can erase the
historical record of recombination rate. This phenomenon is
most extreme following a population bottleneck in which a
small sample of haplotypes disproportionately contributes to
subsequent generations. In this scenario, linkage disequilib-
rium is elevated because ancestrally recombined haplotypes
were lost and the current population has yet to return to
equilibrium. Conversely, it is also possible that demograph-
ically reduced linkage disequilibrium could decrease statistical
power by reducing the difference between estimates of the
background recombination rate and the hotspot recombina-
tion rate (Zavattari et al. 2000; McVean 2002; Rogers 2014).
Second, hidden population subdivision can inflate linkage
disequilibrium due to sampling artifacts. When haplotypes

are fixed in separate subpopulations, but are assumed to be
drawn from a panmictic population, the result is an elevated
estimate of linkage disequilibrium and a loss of power to
detect recombination events.

Demographic processes also affect the power to detect
hotspots by changing the density of informative SNPs (sup-
plementary tables S3–S6, Supplementary Material online). For
example, population samples with fewer common SNPs con-
tain less information about fine-scale heterogeneity in linkage
disequilibrium. Nevertheless, two lines of evidence suggest
that the distortions in performance we found do not simply
reflect changes in SNP number. First, reductions in power in
non-equilibrium populations often exceeded those observed
in control populations that featured similar SNP densities
(e.g., see, figs. 4A and 5A, C, and E). Second, we did not observe
consistent relationships between the number of segregating
sites or the average number of pairwise differences and power
(supplementary figs. S6A and B and S8A and B,
Supplementary Material online). In the most extreme case,
the direction of the relationship was reversed when the back-
ground recombination rate was elevated (supplementary fig.
S8A and B, Supplementary Material online). However, even
when the direction of the relationship between power and
SNP density was the same, it was not possible to predict
performance based upon SNP density without also incorpo-
rating information about the demographic history of the
population (supplementary figs. S6 and S8, Supplementary
Material online). These results suggest that there is not an
easy way to predict performance of LD-based methods for
hotspot detection without estimating both the demographic
history and the background recombination rate.

All four types of demographic processes we simulated
proved capable of elevating the frequency of FPs beyond
the range seen in relevant control simulations (e.g., see, figs.
4A and 5A, C, and E). It has been proposed that demographic
events that expand the interlocus variance in the time to the
most recent common ancestor (TMRCA)—thereby elevating
interlocus heterogeneity in linkage disequilibrium—can lead
to FP inference of hotspots when equilibrium conditions are
assumed (Johnston and Cutler 2012). Our results are consis-
tent with this explanation: we discovered the highest fre-
quency of FPs following older population contractions with
high background recombination rate, conditions that in-
crease fine-scale variance in the TMRCA (fig. 5C and E). The
same effect would be predicted for recent population bottle-
necks and contractions; reductions in SNP density might have
obscured its signal.

We measured the frequency of FPs in units of physical
genomic distance (FP/Mb). In practice, the measurement of
interest is the false discovery rate, which indicates the likeli-
hood that an inferred hotspot is false. To compare the rate of
true and FPs directly, one must know the length of the ge-
nome in question and have an estimate of the true number of
hotspots identified in the genome. For example, if we assume
a genome is 3,200 Mb in size and contains 30,000 hotspots,
similar to the human genome (McVean et al. 2004; The
International HapMap Consortium 2005; Myers et al. 2005;
Winckler et al. 2005), a FP rate of 0.53 FP/Mb translates to
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1,696 FPs, resulting in a ratio of 1 FP per 16.69 true positives or
a false discovery rate of 5.7%. Thus, in the human genome, FP
rates below roughly 0.50 FP/Mb would likely be deemed ac-
ceptable because >95% of hotspots identified would be true
positives. Most (though not all) FP rates observed under non-
equilibrium scenarios fell below this threshold. Alternatively,
considering a genome of the same size that contained only
5,000 hotspots, similar to the chimpanzee genome (Auton
et al. 2012; Stevison et al. 2016), a FP rate of 0.16 FP/Mb would
result in a false discovery rate of 10.2% and a FP rate of
0.53 FP/Mb would result in a false discovery rate of 33.9%.
The importance of the frequency of FPs under different de-
mographic scenarios therefore depends on the genome in
question.

The frequency of FPs was also shaped by the background
recombination rate (figs. 5 and 6). When this parameter was
increased by 10-fold, the frequency of FPs under certain con-
traction scenarios rose to as high as 1.6 FP/Mb. Notably, this
elevation in FPs was only observed in the context of popula-
tion contractions and not in the control simulations, suggest-
ing an interaction between background recombination rate
and demographic history. For the human genome, a FP fre-
quency of 1.6 FP/Mb could translate to 5,120 FPs, resulting in
a ratio of 1 FP per 4.9 true positives or a false discovery rate of
17%. Because the background rate of recombination shows
considerable within-genome variation in many species (Kong
et al. 2002; Cox et al. 2009; Rockman and Kruglyak 2009;
Comeron et al. 2012; Kawakami et al. 2014), our findings
suggest that the frequency of FP hotspots will vary among
genomic regions.

As observed in other demographic simulation-based anal-
yses (Li and Stephens 2003; McVean et al. 2004), LD-based
methods actually performed better under certain non-
equilibrium conditions than in control populations of con-
stant size. Of note, older and more gradual population
expansions resulted in a highly reduced frequency of FPs
and only minor reductions in power (fig. 4). Thus, considering
both the type and the intensity of the demographic scenario
is vital to understanding its effects on the inference of
hotspots.

Natural populations often undergo population size
changes and exhibit hidden population structure, making
our results relevant to empirical attempts to characterize
hotspots from linkage disequilibrium. Three limitations of
our study should be considered when applying our findings
to empirical studies. First, we assumed an intermediate sam-
ple size of 16 diploid individuals (n¼ 32 phased haploid
genomes), with the motivation that this number is practical
for individual labs to achieve through whole genome se-
quencing or SNP genotyping. However, LD-based methods
have been used to identify recombination hotspots with
much larger sample sizes, especially in humans (The
International HapMap Consortium 2005, 2010). Previous
analyses indicate that the performance of LD-based methods
improves with increasing sample size (Wall and Stevison
2016). Including more individuals could partially ameliorate
some of the challenges we observed. Second, we focused on
the most popular LD-based approach for identifying hotspots

(LDhot), but other methods exist and there is evidence that
they vary in performance (Li and Stephens 2003; Fearnhead
2006; Chan et al. 2012; Yang et al. 2014). Third, the demo-
graphic history of a real population is likely to be more com-
plicated than the scenarios we examined.

Overall, our results demonstrate that non-equilibrium de-
mographic histories frequently interfere with the ability to
detect hotspots from LD-based methods, suggesting that
inferences about the genomic landscape of hotspots that
assume equilibrium could be misleading. If we assume that
the effects of demography on patterns of linkage disequilib-
rium are independent among species, reduced performance is
expected to artificially decrease the proportion of hotspots
inferred to be shared. Further investigation of this bias will be
needed to accurately quantify the rapid rate of hotspot evo-
lution in primates and mice (Ptak et al. 2005; Winckler et al.
2005; Auton and McVean 2012; Brunschwig et al. 2012;
Stevison et al. 2016).

Additionally, while our study focuses specifically on the
identification of recombination hotspots, the underlying
mechanism is that demography alters linkage disequilibrium.
LDhot statistically validates local maxima in recombination
rate to identify recombination hotspots (Auton et al. 2014).
However, these local maxima must first be estimated from
linkage disequilibrium data using programs such as LDhat
(McVean and Auton 2007). Non-equilibrium history likely
contributes to error in both the estimation of fine-scale re-
combination rate, via over- or underestimation of the true
recombination rate (Zavattari et al. 2000; McVean 2002;
Rogers 2014), and the identification of recombination hot-
spots, via increases in the variance in estimated recombina-
tion rate (Johnston and Cutler 2012). Thus, our results
reinforce the notion that attempts to estimate recombina-
tion rate throughout the genome are also susceptible to the
effects of demographic history (Stumpf and McVean 2003;
Clark et al. 2010).

More generally, our findings emphasize the need to explic-
itly account for demographic history when using linkage dis-
equilibrium to locate and characterize hotspots. We
recommend the following strategy for empirical studies.
First, major aspects of demographic history that are expected
to interfere with hotspot inference can be reconstructed us-
ing population genomic approaches (Beaumont et al. 2002;
Gutenkunst et al. 2009; Excoffier et al. 2013; Terhorst et al.
2017). For most studies of the hotspot landscape—which
sample variation across large fractions of the genome—the
data to infer demographic history will already be in hand.
Second, the ability of LD-based methods to detect hotspots
can be measured by simulating under the estimated history.
Finally, the effects of demographic history should be incorpo-
rated into the inference of hotspots. One promising approach
along these lines is to compute look-up tables of two-locus
likelihoods under the reconstructed history of population size
change (Kamm et al. 2016) and use these tables in LDhot or a
related program. We expect this strategy will improve our
understanding of hotspot landscapes in natural populations.
When building knowledge of demographic history into the
inference procedure is not feasible, investigators could either
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avoid populations that show signs of departing from demo-
graphic equilibrium, such as a skew in the genome-wide site
frequency spectrum, or use an alternative approach, such as
one that directly measures recombination rate.

Methods

Simulations
We used two coalescent-based programs to simulate chro-
mosomes with a known recombination map and demo-
graphic history: (1) fin, included in LDhat2.1 (McVean and
Auton 2007) to simulate instanteous bottlenecks and (2)
msHOT (Hellenthal and Stephens 2007), an extension of ms
(Hudson 2001) to simulate all other demographic histories.
We then used LDhat (McVean and Auton 2007) to measure
recombination rate along the simulated chromosomes and
LDhot (Auton et al. 2014) to identify all statistically significant
recombination hotspots in the simulated samples. With per-
fect knowledge of the true underlying recombination map,
we determined whether significant hotspots were either true
positives or FPs, allowing us to compute two metrics of per-
formance: power and the frequency of FPs. For each condi-
tion, we simulated 1,000 data sets. Each data set contained 32
chromosomes (equivalent to sampling 16 diploid individuals,
assuming random mating), a modest sample size intended to
mimic genome sequencing studies of natural populations,
especially in non-model organisms. We considered four com-
mon demographic events that affect patterns of linkage dis-
equilibrium: population bottlenecks, hidden population
structure, exponential population growth, and exponential
population contraction. Except where explicitly noted, we
hold the frequency of recombination events, r/kb, constant
within and between simulations. Accordingly, the population
recombination rate, q/kb (4Nr/kb), changes within and be-
tween simulations due to changes in population size, N.

Instantaneous Bottlenecks
To simulate the effects of an instantaneous bottleneck, we
modeled single 500-kb chromosomes with eight recombina-
tion hotspots, each 2-kb in length, evenly spaced 50-kb apart
using fin, the coalescent simulator within the LDhat2.1 pack-
age (McVean and Auton 2007). We included an additional
75 kb between the distal hotspots and the ends of the scaffold
to reduce edge effects. We assumed a current effective pop-
ulation size of 10,000 and a mutation rate of 2.5�10�8, such
that the population mutation rate (h) is equal to 0.001. The
background recombination rate between the hotspots was
0.02 q/kb, which is equivalent to 0.05 cM/Mb and consistent
with the background recombination rate observed via sperm
typing in humans (Jeffreys et al. 2005; Auton et al. 2014). The
hotspots doubled in magnitude from a minimum 0.5 q/kb
(25� the background rate) to a maximum of 64 q/kb
(3,200� the background rate) (q/kb¼ 0.5, 1, 2, 4, 8, 16, 32,
and 64). We designed the scaffold to be identical to that used
to test the performance of LDhot by the authors of the pro-
gram (Auton et al. 2014) and used the default program
parameters except where specifically indicated. The timing
of the single instantaneous bottleneck spanned from 40

(0.001 4N0) to 40,000 (4N0) generations in the past
(t¼ 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1).
We varied the strength of a bottleneck by changing the prob-
ability that a given lineage coalesces during the bottleneck
from 10% to 98% (s¼ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98).
We simulated every pairwise combination of strength and
time of bottleneck for a total 100 different bottlenecks varying
from very recent and very strong (98% of lineages coalesce 40
generations in the past: t¼ 0.001, s¼ 0.98) to very old, and
very weak (10% of lineages coalesce 40,000 generations in the
past: t¼ 1, s¼ 0.1). We compared performance to a popula-
tion that maintained a constant population size of 10,000
(h¼ 0.001).

Hidden Population Structure
To simulate more complicated demographic histories, we
used the coalescent simulator msHOT, shifting attention to
a single hotspot (Hudson 2001; Hellenthal and Stephens
2007). This change was a pragmatic decision based upon
the increased time required to simulate complex recombina-
tion landscapes in msHOT. We simulated 300-kb chromo-
somes with one 2-kb hotspot directly in the center with
the magnitude of 16 q/kb, equivalent to 40 cM/Mb. This
value was chosen because it is similar to the observed average
magnitude of recombination hotspots in humans (17.2 q/kb
or 43 cM/Mb) (The International HapMap Consortium
2007). We again assumed a current total effective population
size of 10,000 and a mutation rate of 2.5�10�8, such that the
population mutation rate (h) is equal to 0.001. Likewise, the
values of q/kb are given for the total population size of 10,000
individuals. To replicate the consequences of sampling with
hidden population structure, we modeled demographic his-
tories in which the population split at time t (units 4N0, where
N0 is the present population size of the subpopulations) into
two subpopulations of equal size (N0¼ 5,000). We assumed
no migration between the two demes following the split.
Additionally, we assumed each “hidden” population was sam-
pled equally (16 chromosome/pop.) and that there was no
change in population growth before or after the split. We
varied the timing of the split using the same ten time points
as above (t¼ 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5,
1). We compared performance to two control conditions: (1)
a population that maintained a constant population size of
10,000 (h¼ 0.001), the combined size of the two subpopula-
tions and (2) a population that maintained a constant pop-
ulation size of 5,000 (h¼ 0.0005), the size of a single
subpopulation.

We also explored the consequences of two assumptions:
(1) no migration between subpopulations and (2) equal sam-
pling of the two subpopulations. Migration between demes is
expected to reduce the effects of hidden population structure
on patterns of linkage disequilibrium. To determine the
effects of migration between the subpopulations on perfor-
mance of LD-based programs, we introduced migration be-
tween the two populations after the split. We varied the
migration rate from one individual every 1,000 generations
(4N0m¼ 0.004, where m is the fraction of the population
made up of migrants each generation) to 100 individuals
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every generation (4N0m¼ 400) between two subpopulations
that split 20,000 generations ago (t¼ 0.5; 4N0m¼ 0, 0.004,
0.04, 0.4, 2, 4, 8, 20, 40, 400). Additionally, we examined the
effect of unequal sampling between subpopulations by vary-
ing the proportion of individuals sampled from each popu-
lation, from equal sampling of each subpopulation (n1/
n2¼ 16/16) to all of the samples originating in one of the
two populations (n1/n2¼ 32/0) (t¼ 0.5; n1/n2¼ 16/16, 18/
14, 20/12, 22/10, 24/8, 26/6, 28/4, 30/2, 31/1, 32/0).

Exponential Population Growth
To model the consequences of exponential population
growth, we used msHOT to simulate a 450-kb scaffold with
a single, central 2-kb recombination hotspot with the mag-
nitude of 16 q/kb. We simulated populations that experi-
enced a 10-fold exponential increase in population size
from an ancestral size of 1,000 individuals to a current pop-
ulation size of 10,000 individuals (h¼ 0.001) and varied the
timing and duration of the increase. The values of q/kb are
given for the ending population size of 10,000 individuals, but
change during the simulations in accordance with population
size. We varied how long ago the population returned to
equilibrium conditions to simulate recent exponential
increases, as well as old exponential increases, in population
size (trecovery¼ 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25,
0.5, 1). We also varied the duration of the exponential increase
to simulate both gradual and sharp increases in population
size (tduration¼ 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25,
0.5, 1). We simulated every pairwise combination of timing
and duration of population expansions for a total of 100
different demographic histories varying from a very recent
and very sharp increase in population size (10-fold increase
in population size over 40 generations that ended 40 gener-
ations in the past; trecovery¼ 0.001, tduration¼ 0.001) to very
old, and very gradual population expansions (10-fold increase
in population size over 40,000 generations that ended 40,000
generations in the past; trecovery¼ 1, tduration¼ 1). We com-
pared performance to three control conditions: (1) a popu-
lation that maintained a constant population size of 10,000
(h¼ 0.001), the current size of the population, (2) a popula-
tion that maintained a constant population size of 1,000
(h¼ 0.0001), the ancestral size of the population, and (3) a
population that maintained a constant population size of
5,000 (h¼ 0.0005), an intermediate population size.

Exponential Population Contraction
To model the consequences of exponential population con-
traction, we used msHOT to simulate a 600-kb scaffold with a
single, central 2-kb recombination hotspot with the magni-
tude of 16 q/kb (Hudson 2001; Hellenthal and Stephens
2007). The increase in the number of SNPs we encountered
modeling an equivalent population contraction of 100,000 to
10,000 individuals caused significant deviations from the infi-
nite alleles model assumed by msHOT (Hudson 2001;
Hellenthal and Stephens 2007). Therefore, to conduct our
simulations in a suitable parameter space, we decreased the
population mutation rate by an order of magnitude
(h¼ 0.0001) and modeled contractions from 10,000 to

1,000 individuals. The values of q/kb are given for the starting
population size of 10,000 individuals, but change during the
simulations in accordance with decreasing population size.
The scaffold length was concomitantly increased to reduce
the number of simulated samples that did not meet the
threshold of 100 SNPs. We varied the timing and duration
of the population contraction. To determine the effect of
timing, we varied how long in the past the contraction ended
and the population returned to equilibrium conditions
(trecovery¼ 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5,
1). To determine the effect of the duration of the exponential
contraction, we varied the length of time over which the
contraction occurred (tduration¼ 0.001, 0.0025, 0.005, 0.01,
0.025, 0.05, 0.1, 0.25, 0.5, 1) and thus the intensity of the
population contraction. We simulated every pairwise combi-
nation of timing and duration for a total of 100 different
contractions varying from very recent and intense
(trecovery¼ 0.001, tduration¼ 0.001) to very old and gradual
(trecovery¼ 1, tduration¼ 1).

We also investigated the effect of background recombina-
tion rate on the incidence of FPs following population con-
tractions. To accomplish this, we varied the background
recombination rate and hotspot intensity and measured per-
formance following the same set of population contractions.
We increased the background rate 10-fold from 0.02 q/kb to
0.2 q/kb. In the first set of simulations we kept the absolute
intensity of the hotspot the same (16 q/kb), which decreased
its relative intensity (80� background rate). In the second set
of simulations we kept the relative intensity of the hotspot
constant (800� background rate), which increased the abso-
lute intensity of the hotspot (160 q/kb). Again, we compared
performance to three control conditions: (1) a population
that maintained a constant population size of 10,000
(h¼ 0.001), the ancestral size of the population, (2) a popu-
lation that maintained a constant population size of 1,000
(h¼ 0.0001), the current size of the population, and (3) a
population that maintained a constant population size of
5,000 (h¼ 0.0005), an intermediate population size.

Identification of Recombination Hotspots
We used LDhat2.1 (McVean and Auton 2007) to measure
recombination rate along the simulated chromosomes and
LDhot (Auton et al. 2014) to identify all statistically significant
recombination hotspots in the simulated samples. LDhat
determines the likelihood of recombination between pairwise
combinations of SNPs to estimate variable q/kb across a
chromosome (McVean and Auton 2007). LDhot determines
whether local maxima in the recombination rate estimates
represent significant recombination hotspots (Auton et al.
2014). To accomplish this, LDhot identifies 3-kb windows
that overlap with local maxima and asks whether they are
significantly different from a 100-kb background window
(Auton et al. 2014). If consecutive 3-kb windows are signifi-
cant they are combined into a single hotspot (Auton et al.
2014). In all cases, mutations observed once in the sample
(“singletons”) were removed prior to data analysis. These sites
were removed because they produce inherently uninforma-
tive measurements of LD. We also separately analyzed
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versions of the simulated data before the removal of single-
tons, allowing us to determine how the inclusion/exclusion of
these sites influenced performance of LD-based methods of
hotspot detection. The coalescent simulator msHOT assumes
an infinite alleles model when assigning positions to SNPs
(Hudson 2001). As such, given a finite chromosome size, it
was unavoidable, but infrequent, that two SNPs would fall
within a single base pair position. When this occurred, both
SNPs were removed prior to data analysis. Additionally, we
did not include simulated samples in measures of perfor-
mance in cases without at least 50 SNPs on either side of
the true recombination hotspot. Except where explicitly
stated, we used the default parameters (Auton et al. 2014).
The exact parameterization and command line usage for each
simulation can be found on the Open Science Framework
(DOI 10.17605/OSF.IO/JNXPV |, ARK c7605/osf.io/jnxpv).

Measures of Performance
As we have perfect knowledge of the true underlying recom-
bination map, we can determine if significant hotspots are
either true positives or FPs. We used permissive criteria to
define true positives. A significant hotspot was considered a
true positive if the local maxima in recombination rate mea-
sured in LDhat overlapped with the boundaries of the true
hotspot location. The power to discover hotspots was calcu-
lated as the proportion of the total number of measurable
true hotspots that were identified as statistically significant. A
hotspot was considered measurable if it was flanked by 50 or
more SNPs on either side. We calculated the FP frequency as
the number of significant hotspots identified that did not
overlap with the location of true hotspots per Mb. We di-
vided the total number of FPs identified in each condition by
the sum total measurable length of the simulated chromo-
somes in each condition to determine the frequency of FPs
per Mb. We examined the power and FP rate under three
different significance thresholds, p< 0.05, p< 0.005, and the
recommended threshold of p< 0.001 (Auton et al. 2014). We
used the recommended threshold of p< 0.001 for all data
reported in the results section, as well as the figures.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online. Data files are available on the Open
Science Framework (DOI 10.17605/OSF.IO/JNXPV; ARK
c7605/osf.io/jnxpv).
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