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Bioinformatics and genomic signal processing use computational techniques to solve various biological problems.They aim to study
the information alliedwith geneticmaterials such as the deoxyribonucleic acid (DNA), the ribonucleic acid (RNA), and the proteins.
Fast and precise identification of the protein coding regions inDNA sequence is one of themost important tasks in analysis. Existing
digital signal processing (DSP)methods provide less accurate and computationally complex solutionwith greater backgroundnoise.
Hence, improvements in accuracy, computational complexity, and reduction in background noise are essential in identification of
the protein coding regions in the DNA sequences. In this paper, a new DSP based method is introduced to detect the protein
coding regions in DNA sequences. Here, the DNA sequences are converted into numeric sequences using electron ion interaction
potential (EIIP) representation. Then discrete wavelet transformation is taken. Absolute value of the energy is found followed by
proper threshold.The test is conducted using the data bases available in the National Centre for Biotechnology Information (NCBI)
site. The comparative analysis is done and it ensures the efficiency of the proposed system.

1. Introduction

The biological macromolecule, deoxyribonucleic acid
(DNA), was discovered at the outset by Frederich Miescher
in 1869 and the double helix structure of DNA was
recommended in 1953 [1]. Owing to the sequencing of
Bacterium [2], the genomes of a number of organisms
have been fully sequenced. The sequence data of the DNA
of organisms is accessible in databanks such as GenBank
at the National Centre for Biotechnology Information
(NCBI), DNA Database of Japan (DDBJ), and the European
Bioinformatics Institute (EBI) [3–6]. Bioinformatics makes
good judgement of the enormous amount of biological
information produced by the human genome project. It uses
computational techniques to comprehend the information
allied with genetic materials such as deoxyribonucleic acid
(DNA), ribonucleic acid (RNA), and proteins. This requires
competent techniques to investigate and also to infer the
outcome in a biologically significant manner [7].

Digital signal processing (DSP) is the mathematical oper-
ation on an information signal to alter or improve it using

digital signal processors. It is characterized by the illustration
of signals in discrete domain and the processing of these
signals [8]. Since biological sequences are alphabetical in
nature, they can be converted into numerical sequences and
then DSP techniques can be applied for their investigation.
Nowadays, computer algorithms based on digital signal pro-
cessing are admired for understanding the characteristics of
DNA, RNA, and protein sequences. Powerful signal process-
ing techniques, for instance, transform methods and digital
filters, are nowadays fruitfully applied to predict biologically
noteworthy information on genomic sequences.

The genes in eukaryotic DNA have an alternating
arrangement of protein coding regions (exons) and the
noncoding regions (introns) of a gene. The identification of
protein coding regions has helped genetic engineers to isolate
proteins. This can also help in scheming personalized drugs
for various diseases. Hence, the prediction of protein coding
regions in DNA sequences is a key step in understanding
genetic processes [9]. On the other hand, in eukaryotic DNA,
the presence of protein coding regions andnoncoding regions
alternatively with uneven lengths is a hurdle in providing
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an accurate solution. It has been experimentally studied
that the DNA segments related to protein coding regions
have a tendency to display a strong spectral component
at the frequency of 2𝜋/3 called period-3 property [10–12].
Additionally, a long-range correlation exists in the genome
sequence contributing background noise. This makes the job
more complex [13]. It is important to note that the period-
3 property is recognized by scientists and researchers as a
good quality preliminary indicator of protein coding regions.
In this paper, we discuss a method to locate protein coding
regions by analyzing DNA sequences using digital signal
processing.

The significant contributions of the paper are

(i) the paper discusses a method using genomic signal
processing (GSP) to locate protein coding regions in
DNA sequences;

(ii) proposed method uses a joint time-frequency anal-
ysis, to analyze the spectrum obtained, and then it
locates the protein coding regions;

(iii) adaptive filtering is used to reduce the noise;
(iv) compared with existing methods, our scheme is

found to be efficient, reduced in noise, and better in
detection of short exons.

The rest of this paper is organized as follows: Section 2
gives a brief description of the related works. Section 3
explains in detail about the proposed method for location of
the protein coding regions. Section 4 describes the results and
discussions. Section 5 gives a brief summary of our overall
work.

2. Review of Related Works

There have been many works in the literature associated
with genomic signal processing. Numerical mapping is the
first step in genomic analysis using digital signal processing.
Locations of the protein coding regions are important for
genome sequence analysis. Many computational approaches
have been proposed and proved successfully in the past two
decades for the detection of protein coding regions in DNA
sequences. In this section, we discuss about few numeric
representation schemes and some of themethods used for the
location of protein coding regions in literature.

2.1. Numerical Mapping of DNA Sequences. The DNA
sequence consists of four alphabets, namely, A, T, C, and
G. The alphabet “A” is representing “Adenine,” “T” is repre-
senting “Thymine,” “C” is representing “Cytosine,” and “G”
is representing “Guanine”. In order to apply suitable digital
signal processing methods to DNA sequences, the character
string of these sequences should be mapped to numerical
sequences. This is done by assigning a numeral to every
nucleotide that constitutes the DNA sequence. The objective
of this mapping is to improve the hidden information with a
view to promoting investigation. There are several mapping
schemes found in the literature and a few among them are
discussed here.

For numeric representation, a complex number mapping
[10] has been suggested in which a particular complex
number to each base is assumed given by A = 1+𝑗, T = 1−𝑗,
C = −1−𝑗, andG = −1+𝑗. Vossmapping, or binary indicator
sequences mapping [13], assigns a numeral “1” when a
particular symbol is found in the sequence or else a “0.” A real
number mapping [14] has been in use as if it is given by A =
−1.5, T = 1.5, C = 0.5, and G = −0.5. A tetrahedron mapping
[15] has been in use, in which the four alphabets are assigned
to four corners of a regular tetrahedron. A three-dimensional
curve representation called the 𝑍-curve mapping [16] has
been proposed for DNA sequences. Electron ion interaction
potential (EIIP) values [17] formappingDNA sequences have
also been in use.

2.2. Location of Exons in a DNA Sequence. There are a
number of methods found in literature for identifying exons
in the DNA sequences. Some of the techniques based on
genomic signal processing are summarized here.

An algorithm called “TESTCODE” [18] based on prob-
ability of coding has been proposed to predict protein
coding regions in DNA sequence. The method is completely
objective and does not require a computer. Based on the fact
that Fourier spectrum exhibits peaks at 𝑓 = 1/3, a computer
programme “Gene Scan” [11] has been developed to locate
coding open reading frames and protein coding regions in
DNA sequences. This is done by examining the local signal
to noise ratio of the peak within a sliding window. The
method has been proved to be independent of training set,
base compositional variations, and a priori knowledge of the
sequences. A method based on digital filter has been intro-
duced for identifying the protein coding regions [12]. The
advantage of this method is elimination of the background
1/𝑓 spectrum. In addition, it is proved thatmultistage narrow
band filters with pass band centered at 2𝜋/3 are excellent
in its action. A single digital filter followed by a quadratic
window has been proposed [19] to suppress the noncoding
regions in the DNA spectrum at 2𝜋/3 and this method
improves accuracy. Mutual information based tools [20] have
been used for the identifying fragments of DNA principally
well suited to determine short tandem repeats. An algorithm
based on individual periodicity analysis of each nucleotide
followed by their combination [21] to recognize the accurate
and inaccurate repeat patterns in DNA sequences has been
proposed. A method to identify protein coding regions in
DNA sequences using statistically optimal null filters (SONF)
[22] has been described. Voss representation is used for
binary conversion and then processed by a separate SONF
producing improved efficiency in predicting short exons.

An algorithm using short time Fourier transform (STFT)
followed by windowing using the period-3 property [17] has
been proposed and found to be efficient in detecting exons.
An algorithm to identify protein coding regions using a
modified Gabor wavelet transform [23] has been proposed.
The method is independent of the window length and has
enhanced identification accuracy. A method for protein
coding region identification in the DNA by exploiting the
period-3 property and autoregressive (AR) modeling [24]
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has been proposed. The advantage is less computation time.
They have used S transform [25] for the same problem and
obtained increased accuracy with the advantage of model
independency. Mutual Information has been identified as
the best parameter to discriminate coding and noncoding
sequences of a DNA [26]. It has been found that for analyzing
prokaryotic genome with very short length of noncoding
sequences, probabilistic models such as Hidden Markov
Model (HMM) or Bayesian Network are successful. For
examining the position of exons in DNA strand, a new
procedure based on autoregressive spectrum analysis [27] has
been proposed. Wavelet packets are used to remove noise.
This method used standard datasets and shows improved
performance. An improved self-adaptive spectral rotation
technique [28] has been suggested to get rid of the noise.This
also visualises the triplet periodicity walks, persistency and
antipersistency, and so forth.

From the survey, it is understood that the increase of
computational techniques in finding the gene location in
literature is pretty hopeful and successful, but the proficiency
of the techniques needs to be improved. Furthermore, it is
learnt that most of the approaches used period-3 property
of the DNA sequence to detect the protein coding regions.
Majority of the authors attempted to suppress the background
noise in the DNA spectrum. In general eukaryotic DNA
is taken as test sample for performance evaluation. The
test is specifically done for the DNA sequence of gene
F56F11.4 of Caenorhabditis elegans chromosome III [Gene
bank: AF099922].

3. The Proposed Wavelet Based Analysis

3.1. Motivation. Generally, the Fourier transform is deter-
mined by finding the time average of all the spectral compo-
nents. But the spectral content of the signal varies with time.
The Fourier transform produces details about the frequency
contents, but it does not give details about the time of
occurrence of that frequency content.Hence, the time aspects
of the function disappear in the spectrum.

Gabor Transform (sliding window Fourier transform)
provides time-frequency analysis. But as frequency increases,
the temporal resolution is constant. Hence, there is a require-
ment of a signal analysis technique that could characterize
the signal in both time and frequency domains locally and
simultaneously. This type of spectrum analysis is known
as time-frequency analysis. One such method is wavelet
transform. Wavelet transform is a local transform, with
variable temporal resolution capable of describing the local
behaviour of signals on various time scales [29–32]. Hence,
it is recommended to use wavelet filtering for locating the
protein coding regions in DNA sequences. We consider the
period-3 signal in the DNA sequence to be the signal of
interest and the remaining are treated as noise. Hence, the
wavelet filtering technique is used as a competent technique
to take out the protein coding regions in the DNA segment.

3.2. Wavelet Transform. In wavelets, a family of functions
is defined by dilation in scale and translation in time.

Wavelets constitute a mathematical “zoom” making it pos-
sible simultaneously to describe the properties of signal on
several timescales. They help to invent new techniques for
signal analysis and other practical applications. Specifically,
they excel in signal and image denoising or estimation of
functions.

Denoising means recovering the useful signal from
observed signal in which the useful signal is ruined by
noise. Wavelet representations yield very simple algorithms
for denoising applications. Due to their adaptability, they are
easy to work with and are often more powerful compared
with the conventional methods. The principle consists of
wisely modifying the wavelet coefficients of observations and
using thresholds. In order to avoid the existing redundancy
in continuous wavelet transform and also to perform mul-
tiresolution analysis, discrete wavelet transform (DWT) is
preferred.

DWT is a sampled version of the continuous case with
discrete dilation and translation parameters. Filters or dif-
ferent cut-off frequencies are used to analyse the signal at
different scales or resolution. Here scaling function corre-
sponds to a low pass filter representing the approximate coef-
ficients and the wavelet function corresponds to a high pass
filter representing detail coefficients [31]. A fast algorithm
of decomposition reconstruction for the discrete wavelet
transform has been in use which is remarkably simple and
its complexity is lower than that of FFT [32].

Wavelets with filters are associated with multiresolution
orthogonal or biorthogonal analysis. Discrete transform and
fast calculations using Mallat algorithm are then possible.
Such wavelets with compact support available are Haar,
Daubechies N, Symlet N, Coiflet N, which are orthogonal,
and Biorthogonal N⋅N which is biorthogonal. Coiflets are
compactly supported wavelets with highest number of van-
ishing moments for both phi and psi functions for a given
support width. Symlets are compactly supported wavelets
with low asymmetry and high number of vanishingmoments
for a given support width. Associated scaling filters for
Symlets are near linear-phase filters. Biorthogonal wavelets
are compactly supported spline wavelets for which symmetry
and exact reconstruction are possible with FIR filters.

3.3. Identification of Protein Coding Regions Using Wavelet
Based Filtering Approach. In this section, we describe the
proposed system using wavelet transformmethods. Here, we
use discrete wavelet transform to solve the problem of protein
coding region identification in DNA sequences.

The protein coding regions in DNA sequences are usually
discontinuous and random in nature. Also, it is alternating
between coding regions and noncoding regions. And, there
are many nucleotides in the DNA strand. Hence, in order
to locate the coding regions in a DNA sequence, many
nucleotides which form the DNA strand have to be analyzed.

In DNA analysis, researchers have proved that the protein
coding regions in a DNA sequence exhibit the period-3
property. But the noncoding regions do not possess this
property. Hence, this property can be used as marker to
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Table 1: EIIP values of nucleotides.

Nucleotide EIIP
A 0.1260
G 0.0806
T 0.1335
C 0.1340

determine the location of protein coding regions in a DNA
sequence.

The DNA sequences are collected from the NCBI site. In
order to apply digital signal processing techniques to DNA
sequence, it has to be converted into numeric sequences. EIIP
values as given in Table 1 have been used for the conversion. It
is known that the EIIP sequence indicators have the following
features:

(a) Average energy of delocalized electrons of the
nucleotide is called an electron ion interaction poten-
tial. Hence, the EIIP of a nucleotide is a physical
quantity.

(b) It is biologically more meaningful as it represents a
physical property when compared to the indicator
values which represent just the presence or absence
of a nucleotide.

(c) It involves only a single sequence instead of four in
the case of Voss representation thereby reducing the
computational overhead by 75%.

(d) In literature, EIIP values have been successfully
applied for analyzing DNA in numerous studies.

(e) EIIP values have been publicized to provide the
most suitable mapping for spectral analysis of DNA
sequences.

For these reasons, it has been proposed to use EIIP
representation for numerical mapping of DNA sequence in
our paper. The proposed DWT based computational process
for location of exons using DWT approach is derived as given
below.

Let the DNA string be represented by 𝐷[𝑛] of length 𝑘,
where it is made of A, T, C, and G. Consider

𝐷 [𝑛] = {A,T,C,G} . (1)

For example, consider the DNA string of length 10 as in

𝐷[𝑛] = ⋅ ⋅ ⋅TTCACTAGCA ⋅ ⋅ ⋅ . (2)

The DNA string 𝐷[𝑛] is converted into binary sequence
𝐷𝑏[𝑛] using EIIP representation as in

𝐷𝑏 [𝑛] = ⋅ ⋅ ⋅ 0.1335, 0.1335, 0.1340, 0.1260 ⋅ ⋅ ⋅ . (3)

The sequence𝐷𝑏[𝑛] obtained for (3) is shown in Figure 1.
Then the discrete wavelet transform of theDNA sequence

under test is computed. The shape or choice of the mother
wavelet depends on the properties of the signal we wish to
analyze. Comparing the magnitude variations of the input
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Figure 1: EIIP representation of a sample DNA sequence.

DNA sequences with the characteristics of wavelets, it is
concluded that Coiflet 5 (level 2) is suitable for analysis of
input DNA sequences. The choice of the wavelet is justified
with the use of wavelet tool box for a segment of DNA
sequence as shown in Figures 2 and 3. The wavelet used is
shown in Figure 4.

It is known that the protein coding regions in a DNA
sequence exhibit period-3 property producing larger ampli-
tude coefficients for protein coding regions in transformed
domain. Hence, the transform provides distinct energy
concentrated areas in the time-frequency plane. The whole
process of discrete wavelet transform based protein coding
region identification scheme is shown in Figure 5.

The step-by-step process of our scheme for identification
of exons is described as follows:

Step 1. The input sequence data are collected from the NCBI
website.

Step 2. The DNA character sequences are converted into
numeric sequences using EIIP representation.

Step 3. The numeric sequences are preprocessed using band
pass filter to enhance the period-3 property of exons.

Step 4. Discrete wavelet transform is applied on the prepro-
cessed signal to locate the protein coding regions.

Step 5. Adaptive filtering is done to remove the unwanted
noise.

Step 6. The peaks of the filtered signal indicate the locations
of the protein coding regions.

Step 7. Suitable thresholding is applied to locate the position
of the protein coding regions.

4. Experimental Setup and Simulation Results

4.1. Experimental Studies. The proposed scheme based on
discrete wavelet transformation is implemented in MATLAB
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Figure 2: Approximate and detail coefficients for Coiflet 5 (level 2) using wavelet tool box.

Version 2013.The system onwhich themethodwas simulated
was having 8GBRAMwith 64-bit operating system having i7
Processor. EukaryoticDNA sequences are analysed to explain
the performance of proposed system. For evaluation, gene
F56F11.4 of Caenorhabditis elegans chromosome III [Gene
bank: AF099922] has been used since this has been used
as a benchmark in literature. The approximate coefficients
and detail coefficients of the wavelet transform are shown
in Figures 6 and 7, respectively. The output obtained after
filtering is shown in Figure 8.The peaks present in the output
represent the protein coding regions.

4.2. Performance Evaluation. In this section, a detailed anal-
ysis of the protein coding region identification scheme has
been done. The evaluation is carried out using the following
metrics:

Sensitivity = TP
(TP + FN)

,

Specificity = TN
(TN + FP)

,

Accuracy = (TN + TP)
(TN + TP + FN + FP)

,

Positive Precision = TP
(TP + FP)

,

Negative Precision = TN
(TN + FN)

,

Error Rate = (FP + FN)
(TP + TN + FP + FN)

,

False Discovery Rate = FP
(TP + FP)

,

False Omission Rate = FN
(TN + FN)

,

(4)

where TP stands for True Positive, TN stands for True
Negative, FN stands for False Negative, and FP stands for
False Positive. These terms are defined in Table 2 and the
values obtained in our experiment are summarized inTable 3.
Table 4 shows the comparison of evaluation metrics, sensi-
tivity, specificity, and accuracy for various thresholds. Table 5
shows the comparison of evaluation metrics for Error Rate,
False Discovery Rate, and False Omission Rate for various
thresholds.
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Table 2: Definition of the terms.

Experimental
outcome

Condition as determined by the Standard of
Truth

Positive Negative
Positive TP FP
Negative FN TN

Calculating the area under the ROC curve (AUC) can be a
better option for evaluating the performance of the method.

Preprocessing
EIIP 

values

DWT

Input 
DNA

Threshold Adaptive 
filter

Locate 
exons

Figure 5: Block diagram for location of protein coding region using
DWT.

ROC curves define the variations of True Positive rate with
respect to False Positive rate under varying thresholds and the
curve obtained for the proposedmethod is shown in Figure 9.
If the AUC calculated is closer to 1.0, it is the effectivemethod
and if the AUC obtained is closer to 0.5 it is the least effective
method. It is found that the AUC for the proposed method is
0.98. From this, the superiority of themethod can be assessed.

It is customary to repeat the experiment for a number of
samples for statistical analysis and validation of the scheme.
It is learnt that the HMR 195 data set is the standard data
set used for inputs in the problem of protein coding region
identification and the same is taken as input in our experi-
ment. This data set consists of 195 sequences comprising of
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Table 3: Evaluation metrics of the gene F56F11.4.

Threshold TP FP
0.25 100% 40%
0.3 100% 20%
0.35 100% 0
0.4 100% 0
0.45 100% 0
0.5 100% 0
0.55 80% 0
0.6 80% 0
0.65 80% 0

Table 4: Evaluation metrics of the gene F56F11.4.

Threshold Sn
(%)

Sp
(%)

Ac
(%)

PP
(%)

Np
(%)

0.25 100 60 80 71.42 100
0.3 100 80 90 83.33 100
0.35 100 100 100 100 100
0.4 100 100 100 100 100
0.45 100 100 100 100 100
0.5 100 100 100 100 100
0.55 80 100 90 100 80
0.6 80 100 90 100 80
0.65 80 100 90 100 80

103 genes of human beings, 82 genes from Mouse, and 10
genes of Rat. The experiment has been conducted for 100
sampleswith both single andmultiple exons from the data set.
Evaluation metrics in literature were calculated in order to
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Table 5: Evaluation metrics of the gene F56F11.4.

Threshold ER FDR FOR
0.25 20% 28.57% 0%
0.3 10% 16.66% 0%
0.35 0% 0% 0%
0.4 0% 0% 0%
0.45 0% 0% 0%
0.5 0% 0% 0%
0.55 10% 0% 16.66%
0.6 10% 0% 16.66%
0.65 10% 0% 16.66%

Table 6: Evaluation metrics of 100 genes from HMR 195 dataset.

Method Average
sensitivity

Average
specificity

Average
accuracy

Multiresolution 0.89 0.88 0.86
S transform 0.88 0.88 0.85
SONF 0.89 0.86 0.84
DFT 0.86 0.83 0.84
Antinotch filter 0.81 0.82 0.82
HMM 0.82 0.84 0.83

make a comparative study.The results are tabulated in Table 6
and are compared with the methods found in literature. The
proposed method shows improved performance and thereby
the superiority of the method is established.

4.3. Discussion. It is observed that, in the gene F56F11.4, it is
difficult to detect the first coding region along the positions
929–1039 properly in the DFT spectral content method and
antinotch filter. But the wavelet filtering approach detects
that region as better than these two methods. Moreover, for
100 genes from HMR 195 data set, our method produced
optimum performance. It is advantageous that the proposed
method is not affected by window length constraints. This
method provides time-frequency representation of output
spectrum. Moreover, it produces a multiresolution view of
the signal. This helps to analyse the output signal easily. This
is a model independent method. Hence, there is no need
for any training sample to predict. The proposed method is
immune to background noise producing a maximum signal
to noise ratio of 24.0839 db for the gene AF092047. This
enables better discrimination between the coding and the
noncoding regions. This also increases the accuracy.

5. Conclusion

In this paper, we discuss methods based on wavelet transfor-
mation of DNA sequences to identify protein coding regions
in DNA sequences. The main aim of this paper is to increase
the accuracy and also to reduce the noise as much as possible.
The results showed that our method has ability to detect even
the short coding region and it outperforms existing methods.
We have applied the Coiflet 5 (level 2) to our problem. We

have used the gene F56F11.4 obtained from National Centre
for Biotechnology Information and 100 genes from HMR 195
dataset as test samples. On analyzing the evaluation metrics
obtained, it is found that the wavelet transformationmethods
proved to be better compared to the methods in literature
in terms of sensitivity, specificity, and accuracy. Positive and
Negative Precision values are evaluated for wavelet method
and it is found to be good. Negative evaluation metrics such
as Error Rate, False Discovery Rate, and False Omission
Rate are evaluated and showed good performance in the
proposed method. Hence, evaluation parameters are found
to be the best and this approach provides an effective and
efficient approach to identify protein coding regions in DNA
sequences. In addition, it is independent of the window
length constraint and robust to background noise present in
the DNA sequence.
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