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A B S T R A C T

Kinases are signalling proteins which have proven to be successful targets for the treatment of a variety of
diseases, predominantly in cancers. However, only a small proportion of kinases (< 20%) have been investigated
for their therapeutic viability, likely due to the lack of available chemical tools across the kinome. In this work
we describe initial efforts in the development of a selective chemical tool for protein kinase N2 (PKN2), a
relatively unexplored kinase of interest in several types of cancer. The most successful compound, 5, has a
measured IC50 of 0.064 μM against PKN2, with ca. 17-fold selectivity over close homologue, PKN1.

Chemical tools/probes are drug-like compounds used to answer
biological questions. They need not possess all the properties of a drug
candidate, which can be dialled in at a later point in the drug devel-
opment process. These compounds only need to be sufficiently stable,
potent and selective towards their particular target.1,2

Historically, the approval of imatinib3 as an effective Abl kinase
inhibitor for treating chronic myeloid leukaemia stimulated efforts to
better understand the 518 human protein kinases and their role in
disease. Trends in research4 suggest that less than 20% of the human

kinome has been well-studied,5 and selective inhibitors are only
available for an even smaller fraction of those kinases.

Protein kinase N2 (PKN2) (Fig. 1) is one of these understudied ki-
nases. It is an AGC-type serine/threonine protein kinase. There are
more than 60 AGC protein kinases in the human genome with 14 fur-
ther classifications. PKN2 falls into the PKN sub-family, closely related
to the PKC sub-family, and is one of three homologues (PKN1/2/3). It
has a number of pseudonyms which include protein kinase C-related
kinase 2 (PRK2), PKNγ, PAK2, PRO2, and STK7.6
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PKNs have a fairly conserved primary sequence and they share the
same architecture. The catalytic domain of PKN2 has 87% percent
identity with PKN1; 70% with PKN3; and 50% with PKC kinases, while
the N-termini regions are less conserved, sharing only 48% and 40%
between PKN1/2 and PKN2/3, respectively.7,8

PKNs have been linked to various cellular roles, including cytoske-
leton regulation,9 transport,10 cell adhesion,11 nutrient signalling,12

and cell cycle,13 as well as being a target of interest in colon,14 breast,15

renal,16 head,17 neck,17 and prostate cancers.18 They are also reportedly
involved in inflammation19,20 and heart failure.21 So far, there is one X-
ray crystal structure of PKN2 publicly available in the Protein Data
Bank (PDB ID: 4CRS) (Fig. 2).

These previous studies have elucidated functions for PKN2 using
molecular and cell biology techniques, and the conclusions would be
greatly supported by validation through the use of small molecule in-
hibitors, especially to evaluate PKN2′s potential as a cancer drug target.
Potent inhibitors are known for several AGC kinase family members,
including ROCK22–25 and PKC,26 but currently there are no sufficiently
selective inhibitors for PKN2.12

This work describes an initial effort to develop such compounds
based around a benzimidazole core. Compound 5 was previously de-
veloped as a PARP inhibitor27–29 but exhibited higher potency towards
PKN2 than its desired target. Benzimidazoles are N-containing hetero-
cycles that are prevalent in medicinal chemistry.30 The compound was
found as part of a screen of the Abbott chemical library31 via the
ChEMBL database when searching for PKN2 inhibitors. It had a re-
ported Ki of 0.040 μM against PKN2 while only inhibiting two out of
137 other kinases (PKN1 and CLK4) with potencies lower than
0.100 μM.31 This was deemed a good starting point for repurposing the
compound as a PKN2 inhibitor. We report the synthesis of that com-
pound and subsequent SAR studies to determine its viability as a che-
mical tool for establishing the potential of PKN2 as a therapeutic target.

Compound 5 was successfully synthesised via a four step synthesis
(Scheme 1). 2-Amino-3-nitro-benzoic acid (1) was treated with am-
monia and CDI-coupling conditions32 to form amide 2. The 3-nitro

group was reduced to aniline 3 with sodium dithionate,33 followed by
the coupling of isonicotinic acid to the 3-position aniline to form amide
4,34 which was then heated in acetic acid to form benzimidazole 5.35

The scope of this chemistry enabled the synthesis of 14 analogues
using commercially available nitroanilines and di-anilines. Additional
alkylation conditions allowed the capping of the benzimidazole N-H36

(6) and alternative amide coupling conditions were used for preparing
compound 1137 and the penultimate amide intermediate used to make
compound 19.38

The potencies and selectivities of these compounds were tested
using a TR-FRET binding-displacement assay in which the IC50 values
were measured (Table 1). Calculation of Ki values using the Cheng-
Prusoff equation and the KD of the tracer (previously determined) al-
lowed the affinity of the inhibitors for PKN2 and PKN1 to be compared
(Table 1).

Compound 5 was validated as a PKN2 inhibitor (Ki = 0.032 μM)
with 17-fold selectivity over PKN1 (Ki = 0.500 μM) which was not
previously included in the Abbott library screen used in the Metz et al.
study.31

The benzimidazole NeH was capped using chemistry described by
Tsukamoto et al.36 While the alkylation conditions given were said to
be applicable to methylation of the benzimidazole using the corre-
sponding methyl halide, this proved unsuccessful; a dimethylated pro-
duct formed instead, thought to be due to the susceptibility for the 4′-
pyridyl to also alkylate after the benzimidazole NeH. Repeating the
specific reaction conditions used by the authors incorporated a methyl
acetate ester at the 1-position (6) which led to loss of binding to PKN2.

Fig. 1. PKN2 and its domain organisation. The structure organisation contains three repeats of ACC domain (anti-parallel coiled-coil) in the N-termini region (pink/
orange), a C2 calcium binding-like domain and in the C-terminal, the Ser/Thr kinase domain.

Fig. 2. Crystallographic structure of PKN2 bound to ATP-γS (PDB ID: 4CRS).

Scheme 1. Preparation of Benzimidazoles 5 and 632–36
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Moving the 4′-pyridyl nitrogen in 7 and 8 resulted in loss of activity,
as did introducing an electron-donating methoxy group at the 3′-posi-
tion (9). This suggests the 4′-pyridyl ring acts as the hinge binder.
Attempts to make the 2′-pyridyl and 4′-pyrimidine analogues were
unsuccessful (Scheme 2).

Capping the amide with one (10) or two (11) methyl groups led to
increasing loss of activity respectively. Potency was lost when the
amide was moved to the 5-position of the benzimidazole ring (12),
Removing the amide completely (13) or exchanging the 4- or 5-position
for another functional group (14–18) also led to loss of activity.

Introduction of a bromine at the 6-position (19) was hoped to
provide a useful handle for incorporating various alkyl/aryl groups at

that position using Suzuki coupling chemistry.39,40 This reaction was
attempted at multiple stages of the synthetic route but was un-
successful. Compound 19 was active against PKN2 but was nearly three
times less potent than compound 5. Despite this reduction in potency,
compound 19 is 26-fold selective over PKN1.

The SAR exploration around 5 confirms that the primary amide at
the 4-position, 4'-pyridyl and free NeH at the 1-position are necessary
for the compound’s activity against PKN2. Subsequent analogues pre-
pared for this series did not improve potency for the target within the
PKN family but did result in a slight improvement in selectivity over
PKN1 in compound 19.

Chemical tools are needed to facilitate the exploration of lesser
understood kinases such as PKN2 for its roles in healthy and cancerous
cells. Benzimidazole 5 was validated as an inhibitor of PKN2 with IC50

0.064 μM and with ca. 17-fold selectivity over PKN1 with reported high
selectivity across the wider kinome31. Our efforts to develop a new
compound to inhibit PKN2 resulted in compound 19 which was 26-fold
selective for PKN2 over PKN1 despite having a near three-fold reduc-
tion in potency compared to compound 5.
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