

Received 8 July 2015 Accepted 12 July 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; phosphanegold() salt; pseudopolymorph; aurophilic interaction; hydrogen bonding

CCDC reference: 1412185 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of bis[μ -bis(diphenylphosphanyl)methane- $\kappa^2 P:P'$]digold(I) dichloride acetone monosolvate monohydrate

Chien Ing Yeo, Yee Seng Tan and Edward R. T. Tiekink*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Correspondence e-mail: edward.tiekink@gmail.com

In the title complex salt, $[Au_2\{(C_6H_5)_2PCH_2P(C_6H_5)_2\}]Cl_2\cdot(CH_3)_2C=O\cdot H_2O$, the dication forms an eight-membered $\{-PCPAu\}_2$ ring with a transannular aurophilic interaction $[Au \cdot \cdot \cdot Au = 2.9743 (2) \text{ Å}]$. The ring approximates a flattened boat conformation, with the two methylene C atoms lying *ca* 0.58– 0.59 Å above the least-squares plane defined by the Au_2P_4 atoms (r.m.s. deviation = 0.0849 Å). One Cl⁻ anion functions as a weak bridge between the Au^I atoms $[Au \cdot \cdot \cdot Cl = 2.9492 (13) \text{ and } 2.9776 (12) \text{ Å}]$. The second Cl⁻ anion forms two (water)O-H \cdot \cdot \cdot Cl hydrogen bonds about a centre of inversion, forming a centrosymmetric eight-membered $\{\cdot \cdot \cdot HOH \cdot \cdot \cdot Cl\}_2$ supramolecular square. Globally, the dications and loosely associated Cl⁻ anions assemble into layers lying parallel to the *ac* plane, being connected by C-H \cdot \cdot \cdot Cl, \pi(phenyl) interactions. The supramolecular squares and solvent acetone molecules are sandwiched in the inter-layer region, being connected to the layers on either side by C-H \cdot \cdot \cdot Cl,O(acetone) interactions.

1. Chemical context

Recent studies have highlighted the significant biological activity exhibited by phosphanegold(I) carbonimidothioates, *i.e.* compounds of the general formula $Ph_3PAu[SC(OR) = N(aryl)]$; R = alkyl. These compounds are cytotoxic and kill cancer cells by initiating apoptotic pathways (Yeo, Ooi *et al.*, 2013; Ooi *et al.*, 2015) and prove to be very potent to Grampositive bacteria (Yeo, Sim *et al.*, 2013). Over and above this potential, phosphanegold(I) carbonimidothioates offer opportunities in crystal engineering (Kuan *et al.*, 2008) and exhibit solid-state luminescence (Ho *et al.*, 2006).

As a part of an effort to increase the nuclearity of these phosphanegold(I) thiolates, reactions with the bipodal molecule, $\{1,4-[MeOC(=S)N(H)]_2C_6H_4\}$ (Yeo *et al.*, 2015), were performed. When the bridging phosphane ligand was bis(diphenylphosphane)methane, the title salt, $[Au_2(Ph_2PCH_2PPh_2)]Cl_2$, was isolated as an acetone monosolvate monohydrate, (I). The structure of (I) is discussed herein along with a comparison with analogous $[Au_2(Ph_2PCH_2PPh_2)]Cl_2$ salts characterized as an acetone solvate (Schmidbaur *et al.*, 1977) and as an acetonitrile solvate (Liou *et al.*, 1994), as well as related species.

Figure 1

The molecular structure of the $[Au_2(Ph_2PCH_2PPh_2)]^{2+}$ dication in (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

2. Structural commentary

The asymmetric unit of (I) comprises а $[Au_2(Ph_2PCH_2PPh_2)]^{2+}$ dication, two Cl⁻ anions, and a solvent molecule each of acetone and water; all species are in general positions. The molecular structure of the dication is shown in Fig. 1. Two Au^I atoms are bridged by two Ph₂PCH₂PPh₂ ligands, forming an eight-membered $\{-PCPAu\}_2$ ring. The ring has the form of a boat with the methylene-C1 and C2 atoms lying to one side of the ring and 0.589(5) and 0.581 (5) Å, respectively, above the least-squares plane through the Au₂P₄ atoms which have a r.m.s. deviation of 0.0849 Å. There is a transannular Au1 \cdots Au2 (aurophilic) interaction of 2.9743 (2) Å. This interaction is partly responsible for the deviations of the P1-Au1-P3 and P2-Au2-P4 angles from the ideal 180° , *i.e.* 173.24(4) and $170.04(4)^{\circ}$, respectively. The Au-P bond lengths are almost equivalent, ranging from a short Au1-P1 2.3061 (12) to a long Au2-P4 2.3130 (12) Å. The Cl1⁻ anion forms a weak bridge between the two Au^{I} atoms with $Au1 \cdots Cl1$ and $Au2 \cdots Cl2$ separations of 2.9492 (13) and 2.9776 (12) Å, respectively. The second Cl⁻ anion participates in hydrogen bonding as described below in Supramolecular features.

3. Supramolecular features

The most notable feature of the crystal packing of (I) is the formation of (water)O-H···Cl2 hydrogen bonds that lead to centrosymmetric eight-membered {···HOH···Cl}₂ supramolecular squares with edge lengths of 3.217 (5) and

Fable	1	

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1-Cg3 are the ring centroids of the C11-C16, C71-C76 and C51-C56 benzene rings, respectively.

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1W \cdot \cdot \cdot Cl2$	0.84(2)	2.39 (2)	3.217 (5)	168 (6)
$O1W - H2W \cdot \cdot \cdot Cl2^i$	0.84(3)	2.37 (3)	3.200 (5)	173 (3)
$C1-H1B\cdots O1^{ii}$	0.99	2.35	3.310(7)	164
$C2-H2B\cdots Cl2^{iii}$	0.99	2.51	3.487 (5)	168
$C12-H12\cdots O1^{ii}$	0.95	2.57	3.249 (7)	129
C22-H22···Cl1 ⁱⁱ	0.95	2.74	3.580 (6)	148
$C44 - H44 \cdots Cl2^{iv}$	0.95	2.73	3.424 (5)	130
C52−H52···Cl2 ⁱⁱⁱ	0.95	2.68	3.616 (5)	169
$C82 - H82 \cdot \cdot \cdot Cl2^{iii}$	0.95	2.81	3.723 (5)	161
$C34-H34\cdots Cg1^{v}$	0.95	2.82	3.542 (6)	133
C43 $-$ H43 \cdots Cg2 ^{vi}	0.95	2.74	3.574 (5)	147
$C75 - H75 \cdots Cg3^{v}$	0.95	2.83	3.619 (5)	142

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1; (v) x - 1, y, z; (vi) -x, -y, -z + 2.

3.200 (5) Å, Table 1 (Spek, 2009). These reside parallel to the *ac* plane, corresponding to the inter-layer region between layers of dications and Cl1⁻ anions, Fig. 2. Three independent (phenyl)C $-H\cdots\pi$ (phenyl) contacts occur between the dications. The Cl1⁻ anion forms a single (phenyl)C $-H\cdots$ Cl contact, a reduced propensity reflecting its close association with the Au^I atoms (see above). By contrast, the Cl2⁻ anion forms four independent C $-H\cdots$ Cl2 interactions, *i.e.* a

Unit-cell contents of (I) shown in projection down the *c* axis. Intramolecular aurophilic interactions are drawn as orange dashed lines and the weak Au···Cl contacts are shown as black dashed lines. Intermolecular O-H···Cl, C-H···Cl1, C-H···Cl2, C-H···O(acetone) and C-H··· π interactions are shown as blue, orange, brown, green and purple dashed lines, respectively. The acetone molecules have been highlighted in space-filling mode.

Anion	solvent	symmetry	Au···Au	Au-P	P-Au-P	CCDC REFCODE	Reference
Cl-	Me ₂ C=O	ī	2.962 (1)	2.327 (3), 2.288 (3)	155.9 (1)	PPEAUC	Schmidbaur et al. (1977)
Cl-	MeCN	ī	2.9941 (8)	2.333 (3), 2.299 (3)	164.90 (9)	LEKGAJ	Liou et al. (1994)
Cl ⁻	Me ₂ C=O, H ₂ O	1	2.9743 (2)	2.3061 (12), 2.3102 (12);	173.24 (4); 170.04 (4)	-	this work
	2 . 2			2.3082 (12), 2.3130 (12)			
BH_4^-	-	$\overline{1}$	2.931 (1)	2.311 (3), 2.310 (3)	177.28 (12)	JAMKAJ	Porter et al. (1989)
ClO_4^-	-	$\overline{1}$	2.9258 (10)	2.3118 (15), 2.3139 (15)	177.15 (5)	NEQNIH	Cao et al. (2006)
PF_6^{-1}	CH_2Cl_2	2	2.9792 (10)	2.314 (3), 2.318 (3)	177.85 (13)	MUVVEE	Wu et al. (2003)
H ₃ BCN ⁻	CH_2Cl_2	1	2.982 (3)	2.311 (6), 2.329 (6)	175.2 (2)	SAVRAI	Khan et al. (1989)

 Table 2

 Summary of [Au₂(Ph₂PCH₂PPh₂)]²⁺ dication structures.

Note: (a) Groom & Allen (2014).

(methylene)C-H···Cl2 and three (phenyl)C-H···Cl2 interactions, providing links between the {···HOH···Cl}₂ rings and the cations. The acetone solvent molecule accepts a (methylene)- and a (phenyl)C-H···O contact.

4. Database survey

The $[Au_2(Ph_2PCH_2PPh_2)]Cl_2$ salt has been characterized twice previously, originally as an acetone solvate (Schmidbaur *et al.*, 1977) and subsequently as an acetonitrile solvate (Liou *et al.*, 1994). Geometric data characterizing the eight-membered rings are summarized in Table 2. The most notable difference between the structure of (I) and the dications is that the latter are disposed about a centre of inversion and the eightmembered {-PCPAu}₂ rings have flattened chair conformations, with the methylene-C atoms lying to either side of the eight-membered ring. The similarity between the literature

Figure 3

Overlay diagram of the $[Au_2(Ph_2PCH_2PPh_2)]^{2+}$ dications in (I) (red image), LEKGAJ (green) and PPEAUC (blue), overlapped so that the one methylene C and the two Au^I atoms are coincident.

structures and the difference between these and the dication in (I) are highlighted in the overlay diagram shown in Fig. 3. The other remarkable difference between the three structurally characterized [Au₂(Ph₂PCH₂PPh₂)]Cl₂ salts relates to the mode of association between the complex Au cations and Cl⁻ anions. As noted above and shown in Fig. 4a, the Cl1⁻ anion in (I) forms a weak bridge between the two Au^I atoms. In the acetone solvate (Schmidbaur et al., 1977), each Cl- anion associates with one Au^I atom at a distance of 2.771 (4) Å. A similar pattern is noted in the acetonitrile solvate (Liou et al., 1994), but the distances are significantly longer at 2.951 (4) Å. The close Au···Cl contacts appear to influence the P-Au-P angles in that those in the [Au₂(Ph₂PCH₂PPh₂)]Cl₂ salts with loosely associated Cl⁻ anions having greater distortions from linearity, in particular for the acetone solvate (Schmidbaur et al., 1977), compared with dications characterized with noncoordinating counter-anions, namely BH₄⁻ (Porter et al., 1989), ClO_4^- (Cao *et al.*, 2006), PF_6^- (Wu *et al.*, 2003) and [H₃BCN]⁻ (Khan et al., 1989), Table 2.

5. Synthesis and crystallization

The title compound is an unexpected product from the reaction of bis[chloridogold(I)] bis(diphenylphosphane)methane with an equimolar amount of $\{1,4-[MeOC(=S)N(H)]_2C_6H_4\}$ (Yeo *et al.*, 2015). The preparation was as follows. To the gold precursor, (Ph_2PCH_2PPh_2)(AuCl)_2 (0.5 mmol, 0.42 g) in acetonitrile (50 ml) was added NaOH (1.0 mmol, 0.04 g in 20 ml H₂O) and $\{1,4-[MeOC(=S)N(H)]_2C_6H_4\}$ (0.5 mmol, 0.13 g) in acetonitrile (50 ml). The resulting mixture was

Figure 4

Details of the weak Au···Cl interactions, shown as dashed black lines, in the dications of (a) (I), (b) LEKGAJ and (c) PPEAUC. For clarity, all H atoms have been removed and only the *ipso*-C atoms shown.

research communications

Table 3	
Experimental details.	

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å)

 $egin{aligned} &lpha,\,eta,\,\gamma\,(^\circ)\ V\,(\mbox{\AA}^3)\ Z \end{aligned}$

Radiation type $\mu \text{ (mm}^{-1}\text{)}$ Crystal size (mm)

Data collection Diffractometer

detector
Multi-scan (CrysAlis PRO;
Agilent, 2013)
0.544, 1.000
56582, 11486, 9744
0.069
0.650
0.037, 0.104, 1.10
11486
576
9
H atoms treated by a mixture of independent and constrained refinement
3.50, -1.82

 $[Au_2(C_{25}H_{22}P_2)_2]Cl_2 \cdot C_3H_6O \cdot H_2O$

94.056 (2), 92.059 (2), 97.882 (2)

11.7708 (3), 13.3657 (3),

1309.66

100

2

Μο Κα

6.13

Triclinic, $P\overline{1}$

16.1209 (4)

 $0.22 \times 0.12 \times 0.07$

Agilent SuperNova Dual

2503.29 (11)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

stirred at 323 K for 2 h. The final product was extracted with dichloromethane (100 ml) and the solution was left for evaporation at room temperature. After 3 weeks a slurry formed. This was redissolved in a solvent mixture of acetone/ acetonitrile (1:1 ν/ν , 100 ml) and left for slow evaporation. Colourless crystals were obtained after 10 days. Yield: 0.213 g (43%). M.p. 477–479 K. ¹H NMR (400 MHz, acetone-*d*6, 298 K): δ 7.96 (*d*, 8H, *o*-Ph-H, *J* = 6.20 Hz), 7.49 (*t*, 4H, *p*-Ph-H, *J* = 7.32 Hz), 7.41 (*t*, 8H, *m*-Ph-H, *J* = 7.82 Hz), 4.84 (*s*, *br*, 2H, CH₂), 2.82 (*s*, *br*, 1H, H₂O). Analysis calculated for C₅₃H₅₂Au₂Cl₂O₂P₄: C, 48.61; H, 4.00. Found: C, 48.64; H, 3.99. IR (cm⁻¹): 3044 (*m*) ν (C–H), 1484 (*s*) ν (C–C).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H-atoms were placed in calculated positions (C-H = 0.95-0.99 Å) and were

included in the refinement in the riding-model approximation, with $U_{iso}(H)$ set to $1.2-1.5U_{equiv}(C)$. The water-bound H atoms were refined with $O-H = 0.84\pm0.01$ Å, and with $U_{iso}(H) =$ $1.5U_{equiv}(O)$. The U_{33} parameter was elongated for the C93 atom. In the final refinement this was restrained to be nearly isotropic using the ISOR command in *SHELXL* (Sheldrick, 2015). The maximum and minimum residual electron density peaks of 3.50 and 1.82 eÅ⁻³, respectively, were located 0.90 Å and 0.78 Å from the Au1 and Au2 atoms, respectively.

Acknowledgements

This research was supported by the Trans-disciplinary Research Grant Scheme (TR002-2014A) provided by the Ministry of Education, Malaysia.

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Cao, Q.-Y., Yin, B. & Liu, J.-H. (2006). Acta Cryst. E62, m2730– m2731.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.
- Khan, M. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr & Porter, L. C. (1989). *Inorg. Chem.* 28, 2150–2154.
- Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
- Liou, L.-S., Liu, C.-P. & Wang, J.-C. (1994). Acta Cryst. C50, 538-540.
- Ooi, K. K., Yeo, C. I., Ang, K.-P., Akim, A. Md, Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Biol. Inorg. Chem. 20, 855–873.
- Porter, L. C., Khan, Md. N. I., King, C. & Fackler, J. P. (1989). Acta Cryst. C45, 947–949.
- Schmidbaur, H., Wohlleben, A., Schubert, U., Frank, A. & Huttner, G. (1977). *Chem. Ber.* **110**, 2751–2757.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, M., Zhang, L. & Chen, Z. (2003). Acta Cryst. E59, m72-m73.
- Yeo, C. I., Khoo, C.-H., Chu, W.-C., Chen, B.-J., Chu, P.-L., Sim, J.-H., Cheah, Y.-K., Ahmad, J., Halim, S. N. A., Seng, H.-L., Ng, S., Oterode-la-Roza, A. & Tiekink, E. R. T. (2015). *RSC Adv.* 5, 41401– 41411.
- Yeo, C. I., Ooi, K. K., Akim, A. Md., Ang, K. P., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). J. Inorg. Biochem. 127, 24–38.
- Yeo, C. I., Sim, J.-H., Khoo, C.-H., Goh, Z.-J., Ang, K.-P., Cheah, Y.-K., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. & Tiekink, E. R. T. (2013). *Gold Bull.* 46, 145–152.

Acta Cryst. (2015). E71, 937-940 [doi:10.1107/S2056989015013341]

Crystal structure of bis[μ -bis(diphenylphosphanyl)methane- $\kappa^2 P:P'$]digold(I) dichloride acetone monosolvate monohydrate

Chien Ing Yeo, Yee Seng Tan and Edward R. T. Tiekink

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *QMol* (Gans & Shalloway, 2001) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

$Bis[\mu-bis(diphenylphosphanyl)$ methane- $\kappa^2 P: P'$]digold(I) dichloride acetone monosolvate monohydrate

 $[Au_{2}(C_{25}H_{22}P_{2})_{2}]Cl_{2}\cdot C_{3}H_{6}O\cdot H_{2}O$ $M_{r} = 1309.66$ Triclinic, $P\overline{1}$ a = 11.7708 (3) Å b = 13.3657 (3) Å c = 16.1209 (4) Å a = 94.056 (2)° $\beta = 92.059$ (2)° $\gamma = 97.882$ (2)° V = 2503.29 (11) Å³

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: Agilent SuperNova (Mo) Xray Source Mirror monochromator Detector resolution: 10.4041 pixels mm⁻¹ ω scan Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.104$ S = 1.1011486 reflections Z = 2 F(000) = 1276 $D_x = 1.737 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 22677 reflections $\theta = 3.0-30.2^{\circ}$ $\mu = 6.13 \text{ mm}^{-1}$ T = 100 K Prism, colourless $0.22 \times 0.12 \times 0.07 \text{ mm}$

 $T_{\min} = 0.544, T_{\max} = 1.000$ 56582 measured reflections 11486 independent reflections 9744 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{\max} = 27.5^{\circ}, \theta_{\min} = 2.9^{\circ}$ $h = -15 \rightarrow 15$ $k = -17 \rightarrow 17$ $l = -20 \rightarrow 20$

576 parameters9 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0555P)^{2} + 0.3597P] \qquad \Delta \rho_{max} = 3.50 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -1.81 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.003$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. The maximum and minimum residual electron density peaks of 3.50 and 1.82 e Å⁻³, respectively, were located 0.90 Å and 0.78 Å from the Au1 and Au2 atoms, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Au1	0.28677 (2)	0.04681 (2)	0.68901 (2)	0.01293 (6)	
Au2	0.06008 (2)	0.03012 (2)	0.76651 (2)	0.01298 (6)	
Cl1	0.09244 (11)	0.12210 (10)	0.60460 (7)	0.0240 (3)	
Cl2	0.66940 (11)	0.51164 (9)	0.08410 (8)	0.0240 (3)	
P1	0.24235 (10)	-0.11146 (9)	0.61967 (7)	0.0113 (2)	
P2	0.01377 (10)	-0.13401 (9)	0.70857 (7)	0.0122 (2)	
P3	0.35008 (10)	0.19848 (9)	0.76508 (7)	0.0120 (2)	
P4	0.11500 (10)	0.18167 (9)	0.84524 (7)	0.0117 (2)	
01	-0.0662 (4)	0.3808 (3)	0.4856 (3)	0.0386 (10)	
O1W	0.3973 (4)	0.4688 (3)	0.1077 (3)	0.0345 (9)	
H1W	0.4694 (10)	0.477 (5)	0.109 (4)	0.052*	
H2W	0.375 (5)	0.469 (5)	0.0576 (14)	0.052*	
C1	0.0875 (4)	-0.1522 (4)	0.6120 (3)	0.0146 (9)	
H1A	0.0531	-0.1149	0.5689	0.017*	
H1B	0.0736	-0.2251	0.5930	0.017*	
C2	0.2293 (4)	0.2626 (4)	0.7984 (3)	0.0147 (10)	
H2A	0.1961	0.2910	0.7494	0.018*	
H2B	0.2590	0.3200	0.8391	0.018*	
C11	0.3081 (4)	-0.2114 (3)	0.6638 (3)	0.0140 (9)	
C12	0.3073 (4)	-0.3048 (4)	0.6191 (3)	0.0188 (10)	
H12	0.2748	-0.3154	0.5639	0.023*	
C13	0.3539 (4)	-0.3820 (4)	0.6548 (3)	0.0224 (11)	
H13	0.3527	-0.4455	0.6242	0.027*	
C14	0.4020 (5)	-0.3671 (4)	0.7348 (3)	0.0254 (12)	
H14	0.4326	-0.4208	0.7593	0.031*	
C15	0.4058 (5)	-0.2736 (4)	0.7799 (3)	0.0268 (12)	
H15	0.4404	-0.2628	0.8346	0.032*	
C16	0.3588 (4)	-0.1968 (4)	0.7442 (3)	0.0199 (10)	
H16	0.3610	-0.1331	0.7747	0.024*	
C21	0.2820 (4)	-0.1187 (3)	0.5120 (3)	0.0133 (9)	
C22	0.2038 (5)	-0.1342 (4)	0.4457 (3)	0.0224 (11)	
H22	0.1239	-0.1416	0.4549	0.027*	
C23	0.2417 (5)	-0.1391 (4)	0.3650 (3)	0.0294 (13)	
H23	0.1871	-0.1499	0.3192	0.035*	

C24	0.3569 (5)	-0.1286 (4)	0.3505 (3)	0.0287 (12)
H24	0.3819	-0.1322	0.2951	0.034*
C25	0.4365 (5)	-0.1126 (4)	0.4174 (3)	0.0225 (11)
H25	0.5163	-0.1049	0.4077	0.027*
C26	0.4001 (4)	-0.1079(4)	0.4978 (3)	0.0197 (10)
H26	0.4547	-0.0975	0.5435	0.024*
C31	-0.1349(4)	-0.1735(4)	0.6745 (3)	0.0154 (10)
C32	-0.1851(5)	-0.1157(4)	0.6191 (3)	0.0284(12)
H32	-0.1403	-0.0595	0 5977	0.034*
C33	-0.2992(5)	-0.1402(4)	0.5945(3)	0.0304(13)
Н33	-0.3328	-0.1008	0.5561	0.036*
C34	-0.3661(5)	-0.2226(4)	0.5501	0.030
U24	-0.4453	-0.2226 (4)	0.6255 (5)	0.0295 (12)
C25	-0.2150(5)	-0.2380	0.0093	0.035°
1125	-0.3130(3)	-0.2803 (4)	0.0798 (3)	0.0272(12)
H35 C2(-0.3398	-0.3370	0.7004	0.033*
036	-0.1999 (4)	-0.2572 (4)	0.7047 (3)	0.0198 (10)
H36	-0.1658	-0.2978	0.7419	0.024*
C41	0.0521 (4)	-0.2259 (4)	0.7777 (3)	0.0158 (10)
C42	0.0559 (4)	-0.2008 (4)	0.8632 (3)	0.0176 (10)
H42	0.0342	-0.1381	0.8836	0.021*
C43	0.0906 (5)	-0.2656 (4)	0.9184 (3)	0.0233 (11)
H43	0.0905	-0.2483	0.9766	0.028*
C44	0.1259 (4)	-0.3563 (4)	0.8895 (3)	0.0217 (11)
H44	0.1538	-0.3994	0.9275	0.026*
C45	0.1200 (4)	-0.3833 (4)	0.8043 (3)	0.0222 (11)
H45	0.1421	-0.4460	0.7842	0.027*
C46	0.0824 (4)	-0.3200 (4)	0.7489 (3)	0.0191 (10)
H46	0.0770	-0.3398	0.6910	0.023*
C51	0.4417 (4)	0.1860 (4)	0.8555 (3)	0.0165 (10)
C52	0.4751 (4)	0.2664 (4)	0.9156 (3)	0.0168 (10)
H52	0.4455	0.3285	0.9113	0.020*
C53	0.5503 (4)	0.2553 (4)	0.9814 (3)	0.0191 (10)
H53	0.5742	0.3106	1.0212	0.023*
C54	0.5908 (4)	0.1638 (4)	0.9891 (3)	0.0209 (11)
H54	0.6416	0.1561	1.0346	0.025*
C55	0.5569 (5)	0.0832 (4)	0.9300 (3)	0.0220 (11)
H55	0.5842	0.0202	0.9356	0.026*
C56	0.4834 (4)	0.0942(4)	0.8632(3)	0.0188 (10)
H56	0.4615	0.0392	0.8226	0.023*
C61	0 4295 (4)	0.2909(3)	0,7029 (3)	0.0166(10)
C62	0.5306(4)	0.3522(4)	0.7314(3)	0.0203(11)
H62	0.5591	0.3493	0.7869	0.0205 (11)
C63	0 5894 (5)	0 4169 (4)	0.6803 (3)	0.0252 (11)
H63	0.507 (5)	0.4584	0.0003 (3)	0.0202 (11)
C64	0.0302	0.7307	0.7004	0.030
H6/	0.5400 (5)	0.4213 (4)	0.5500 (5)	0.0274 (12)
C65	0.3030	0.7007	0.5051	0.035
005	0.4404 (3)	0.3024 (4)	0.3702(3)	0.0209 (12)
поз	0.4200	0.3004	0.3148	0.052**

C66	0.3879 (5)	0.2959 (4)	0.6218 (3)	0.0220 (11)
H66	0.3190	0.2547	0.6016	0.026*
C71	0.0015 (4)	0.2598 (3)	0.8562 (3)	0.0130 (9)
C72	0.0215 (4)	0.3630 (4)	0.8813 (3)	0.0197 (10)
H72	0.0979	0.3965	0.8909	0.024*
C73	-0.0707 (5)	0.4167 (4)	0.8922 (3)	0.0235 (11)
H73	-0.0567	0.4867	0.9102	0.028*
C74	-0.1822 (4)	0.3699 (4)	0.8772 (3)	0.0235 (11)
H74	-0.2445	0.4075	0.8846	0.028*
C75	-0.2031 (4)	0.2672 (4)	0.8514 (3)	0.0225 (11)
H75	-0.2797	0.2348	0.8407	0.027*
C76	-0.1127 (4)	0.2124 (4)	0.8411 (3)	0.0162 (10)
H76	-0.1276	0.1422	0.8237	0.019*
C81	0.1678 (4)	0.1642 (4)	0.9500 (3)	0.0147 (9)
C82	0.2221 (4)	0.2446 (4)	1.0032 (3)	0.0202 (11)
H82	0.2317	0.3112	0.9850	0.024*
C83	0.2624 (5)	0.2283 (4)	1.0825 (3)	0.0235 (11)
H83	0.3009	0.2831	1.1181	0.028*
C84	0.2458 (5)	0.1309 (4)	1.1091 (3)	0.0238 (11)
H84	0.2724	0.1191	1.1635	0.029*
C85	0.1914 (5)	0.0519 (4)	1.0576 (3)	0.0281 (12)
H85	0.1807	-0.0143	1.0765	0.034*
C86	0.1515 (5)	0.0671 (4)	0.9777 (3)	0.0225 (11)
H86	0.1136	0.0117	0.9424	0.027*
C91	0.0033 (6)	0.3868 (4)	0.5431 (4)	0.0430 (17)
C92	-0.0315 (11)	0.3930 (7)	0.6302 (5)	0.098 (4)
H92A	-0.1130	0.4009	0.6313	0.117*
H92B	0.0145	0.4514	0.6611	0.117*
H92C	-0.0190	0.3309	0.6559	0.117*
C93	0.1267 (7)	0.3843 (6)	0.5275 (7)	0.086 (3)
H93A	0.1430	0.4069	0.4721	0.130*
H93B	0.1443	0.3151	0.5305	0.130*
H93C	0.1742	0.4295	0.5696	0.130*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01005 (10)	0.01270 (11)	0.01551 (10)	0.00047 (7)	0.00282 (7)	-0.00157 (7)
Au2	0.01054 (10)	0.01158 (11)	0.01655 (11)	0.00107 (7)	0.00271 (7)	-0.00093 (7)
Cl1	0.0188 (6)	0.0282 (7)	0.0257 (6)	0.0037 (5)	-0.0032 (5)	0.0079 (5)
C12	0.0206 (7)	0.0165 (6)	0.0345 (7)	0.0041 (5)	-0.0052 (5)	-0.0009 (5)
P1	0.0081 (6)	0.0128 (6)	0.0130 (6)	0.0020 (5)	0.0017 (4)	-0.0010 (4)
P2	0.0093 (6)	0.0118 (6)	0.0152 (6)	0.0010 (5)	0.0028 (4)	-0.0005 (4)
Р3	0.0087 (6)	0.0117 (6)	0.0153 (6)	0.0009 (5)	0.0023 (4)	0.0000 (5)
P4	0.0103 (6)	0.0111 (6)	0.0138 (6)	0.0010 (5)	0.0026 (4)	0.0005 (4)
01	0.040 (3)	0.028 (2)	0.045 (3)	0.0041 (19)	-0.017 (2)	-0.0045 (19)
O1W	0.025 (2)	0.038 (2)	0.036 (2)	-0.004 (2)	-0.0014 (18)	-0.0037 (19)
C1	0.013 (2)	0.016 (2)	0.015 (2)	0.0026 (19)	-0.0002 (17)	0.0010 (18)

C2	0.010(2)	0.014 (2)	0.021 (2)	0.0006 (18)	0.0032 (17)	0.0026 (19)
C11	0.010(2)	0.013 (2)	0.019 (2)	0.0016 (18)	0.0039 (17)	0.0012 (18)
C12	0.013 (2)	0.022 (3)	0.021 (2)	0.004 (2)	0.0017 (18)	-0.003(2)
C13	0.019 (3)	0.017 (3)	0.032 (3)	0.004 (2)	0.010 (2)	0.001 (2)
C14	0.018 (3)	0.028 (3)	0.033 (3)	0.007 (2)	0.007 (2)	0.014 (2)
C15	0.024 (3)	0.039 (3)	0.020 (3)	0.006 (2)	0.001 (2)	0.008 (2)
C16	0.016 (3)	0.027 (3)	0.017 (2)	0.003 (2)	0.0044 (18)	0.005 (2)
C21	0.012 (2)	0.014 (2)	0.014 (2)	0.0021 (18)	0.0048 (17)	-0.0011 (17)
C22	0.023 (3)	0.027 (3)	0.018 (2)	0.006 (2)	0.007 (2)	0.003 (2)
C23	0.032 (3)	0.039 (3)	0.016 (3)	0.005 (3)	0.000(2)	-0.004(2)
C24	0.034(3)	0.033(3)	0.019 (3)	0.003(3)	0.012(2)	0.002(2)
C25	0.018 (3)	0.022(3)	0.028 (3)	0.002(2)	0.011(2)	0.002(2)
C26	0.019 (3)	0.023(3)	0.018 (2)	0.005(2)	0.0015 (19)	0.001(2)
C31	0.010(2)	0.017(2)	0.019(2)	0.0027(19)	0.0011(17)	-0.0055(19)
C32	0.018(3)	0.030(3)	0.039(3)	0.005(2)	0.006(2)	0.011 (2)
C33	0.010(3)	0.041(3)	0.038(3)	0.009(2)	-0.002(2)	0.011(2)
C34	0.012(3)	0.036(3)	0.039(3)	0.002(2)	0.000(2)	-0.006(3)
C35	0.012(3)	0.020(3)	0.033(3)	-0.002(2)	0.000(2)	-0.001(2)
C36	0.017(3)	0.021(3)	0.027(3)	0.002(2)	0.002(2)	0.001(2)
C41	0.009(2)	0.017(2)	0.020(2)	0.0005(19)	-0.0001(17)	0.0020(19)
C42	0.016(3)	0.015(2)	0.020(2)	0.0012(19)	0.0016(18)	-0.0006(19)
C43	0.024 (3)	0.022(3)	0.024(3)	0.004(2)	0.004 (2)	0.004 (2)
C44	0.015(3)	0.024(3)	0.028(3)	0.003(2)	0.003(2)	0.010(2)
C45	0.018(3)	0.018(3)	0.032(3)	0.002(2)	0.007(2)	0.003(2)
C46	0.017(3)	0.010(3)	0.032(3)	0.001(2)	0.007(2)	0.003(2)
C51	0.014(2)	0.017(2)	0.018(2)	-0.0003(19)	0.0034 (18)	0.0011(19)
C52	0.017(3)	0.014(2)	0.020(2)	0.0024 (19)	0.0056(18)	0.0049(19)
C53	0.022(3)	0.019(3)	0.016(2)	0.001 (2)	0.0003 (19)	0.0002 (19)
C54	0.019(3)	0.030(3)	0.015(2)	0.006(2)	-0.0024(18)	0.007(2)
C55	0.019 (3)	0.020(3)	0.028 (3)	0.006 (2)	0.000 (2)	0.008(2)
C56	0.016 (3)	0.015(2)	0.026 (3)	0.0032(19)	0.0032(19)	0.000(2)
C61	0.016 (3)	0.014(2)	0.020(2)	0.0015 (19)	0.0030(18)	-0.0011(18)
C62	0.018(3)	0.020(3)	0.022(3)	-0.001(2)	0.0010 (19)	0.002 (2)
C63	0.019 (3)	0.019(3)	0.036(3)	-0.003(2)	0.004 (2)	0.001(2)
C64	0.033 (3)	0.023 (3)	0.028 (3)	0.002 (2)	0.013 (2)	0.009 (2)
C65	0.039 (3)	0.023 (3)	0.020 (3)	0.006 (2)	0.004 (2)	0.004 (2)
C66	0.020 (3)	0.019 (3)	0.026 (3)	0.002 (2)	0.000 (2)	-0.001(2)
C71	0.013 (2)	0.017(2)	0.010 (2)	0.0044 (19)	0.0055 (16)	0.0037 (17)
C72	0.013 (2)	0.019 (3)	0.027 (3)	0.002 (2)	0.0030 (19)	-0.002(2)
C73	0.021 (3)	0.018 (3)	0.032(3)	0.004(2)	0.005 (2)	-0.001(2)
C74	0.014 (3)	0.027(3)	0.032 (3)	0.009(2)	0.007(2)	0.002 (2)
C75	0.012 (3)	0.031 (3)	0.024 (3)	0.000 (2)	0.0022 (19)	-0.001(2)
C76	0.016 (3)	0.017 (2)	0.015 (2)	0.0004 (19)	0.0009 (18)	0.0052 (18)
C81	0.012 (2)	0.018(2)	0.014 (2)	0.0036 (19)	0.0048 (17)	-0.0008(18)
C82	0.021 (3)	0.019 (3)	0.021 (3)	0.002 (2)	0.0070 (19)	0.001 (2)
C83	0.020 (3)	0.029 (3)	0.020 (3)	0.001 (2)	0.002 (2)	-0.001 (2)
C84	0.022 (3)	0.033 (3)	0.018 (3)	0.009 (2)	0.001 (2)	0.004 (2)
C85	0.032 (3)	0.026 (3)	0.027 (3)	0.006 (2)	0.000 (2)	0.006 (2)
	× /	× /	× /	× /	× /	

C86	0.025 (3)	0.022 (3)	0.020 (2)	0.003 (2)	-0.002 (2)	0.001 (2)
C91	0.059 (5)	0.014 (3)	0.053 (4)	0.002 (3)	-0.027 (3)	-0.003 (3)
C92	0.179 (13)	0.052 (5)	0.050 (5)	-0.014 (7)	-0.022 (6)	-0.007 (4)
C93	0.046 (5)	0.039 (4)	0.174 (9)	0.002 (4)	-0.038 (6)	0.031 (5)

Geometric parameters (Å, °)

Au1—P1	2.3061 (12)	C42—H42	0.9500
Au1—P3	2.3102 (12)	C43—C44	1.389 (7)
Au1—Au2	2.9743 (2)	C43—H43	0.9500
Au2—P2	2.3082 (12)	C44—C45	1.393 (7)
Au2—P4	2.3130 (12)	C44—H44	0.9500
P1-C11	1.808 (5)	C45—C46	1.374 (7)
P1-C21	1.814 (4)	C45—H45	0.9500
P1	1.826 (5)	C46—H46	0.9500
P2—C41	1.807 (5)	C51—C56	1.394 (7)
P2—C31	1.811 (5)	C51—C52	1.398 (7)
P2—C1	1.827 (5)	C52—C53	1.386 (7)
P3—C51	1.814 (5)	С52—Н52	0.9500
P3—C61	1.825 (5)	C53—C54	1.383 (7)
Р3—С2	1.835 (5)	С53—Н53	0.9500
P4—C71	1.811 (5)	C54—C55	1.392 (7)
P4—C81	1.821 (5)	C54—H54	0.9500
Р4—С2	1.828 (5)	C55—C56	1.386 (7)
O1-C91	1.205 (7)	С55—Н55	0.9500
O1W—H1W	0.840 (10)	С56—Н56	0.9500
O1W—H2W	0.841 (10)	C61—C66	1.388 (7)
C1—H1A	0.9900	C61—C62	1.392 (7)
C1—H1B	0.9900	C62—C63	1.372 (7)
C2—H2A	0.9899	С62—Н62	0.9500
C2—H2B	0.9901	C63—C64	1.393 (8)
C11—C12	1.396 (6)	С63—Н63	0.9500
C11—C16	1.396 (7)	C64—C65	1.366 (8)
C12—C13	1.383 (7)	C64—H64	0.9500
C12—H12	0.9500	C65—C66	1.402 (7)
C13—C14	1.379 (8)	С65—Н65	0.9500
С13—Н13	0.9500	C66—H66	0.9500
C14—C15	1.396 (8)	C71—C72	1.395 (7)
C14—H14	0.9500	C71—C76	1.411 (7)
C15—C16	1.381 (7)	C72—C73	1.391 (7)
С15—Н15	0.9500	С72—Н72	0.9500
C16—H16	0.9500	C73—C74	1.380 (7)
C21—C22	1.370 (7)	С73—Н73	0.9500
C21—C26	1.406 (7)	C74—C75	1.391 (7)
C22—C23	1.391 (7)	С74—Н74	0.9500
C22—H22	0.9500	C75—C76	1.381 (7)
C23—C24	1.375 (8)	С75—Н75	0.9500
С23—Н23	0.9500	C76—H76	0.9500

C24—C25	1.388 (8)	C81—C82	1.393 (7)
C24—H24	0.9500	C81—C86	1.393 (7)
C25—C26	1.381 (7)	C82—C83	1.390 (7)
С25—Н25	0.9500	С82—Н82	0.9500
C26—H26	0.9500	C83—C84	1.391 (7)
C31—C32	1.389 (7)	С83—Н83	0.9500
C31—C36	1.393 (7)	C84—C85	1.366 (7)
C32—C33	1.376 (7)	C84—H84	0.9500
С32—Н32	0.9500	C85—C86	1.393 (7)
C33—C34	1.396 (8)	С85—Н85	0.9500
С33—Н33	0.9500	C86—H86	0.9500
C34—C35	1.380 (8)	C91—C92	1.475 (11)
C34—H34	0.9500	C91—C93	1.488(12)
$C_{35} - C_{36}$	1 387 (7)	C92—H92A	0.9800
C35—H35	0.9500	C92—H92B	0.9800
C36—H36	0.9500	C92 - H92D	0.9800
C_{41} C_{42}	1 393 (6)	C93_H93A	0.9800
$C_{41} = C_{42}$	1.575(0) 1.406(7)	C03 H03B	0.9800
$C_{41} = C_{40}$	1.400(7) 1.374(7)	C03 H03C	0.9800
C42—C43	1.374(7)	C95—1195C	0.9800
P1—Au1—P3	173 24 (4)	C43—C42—H42	119.6
P1—Au1—Au2	91.96 (3)	C41 - C42 - H42	119.6
P_3 — A_{11} — A_{12}	91.83 (3)	C42-C43-C44	120.3(5)
P2	170.04 (4)	C42 - C43 - H43	119.8
P2 = Au2 = Au1	90 59 (3)	C44 - C43 - H43	119.8
P2 = Au2 = Au1	90.86 (3)	C_{43} C_{44} C_{45}	119.3 (5)
$\begin{array}{c} 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	103.6(2)	C43 - C44 - H44	120.4
$C_{11} = P_{1} = C_{21}$	105.0(2) 107.3(2)	C45 - C44 - H44	120.4
C_{21} P_1 C_1	107.3(2) 103.1(2)	$C_{45} = C_{44} = \Pi_{44}$	120.4
$\begin{array}{cccc} C_{11} & P_{1} & A_{11} \end{array}$	105.1(2) 115.57(15)	C_{46} C_{45} H_{45}	110.7
$C_{11} = P_{11} = A_{11}$	113.37(15) 114.70(15)	C44 $C45$ H45	119.7
$C_1 = P_1 = A_{11}$	114.70(15) 111.43(16)	$C_{44} = C_{45} = C_{45} = C_{45}$	119.7 120.2(4)
$C_1 = 1 = Au_1$ $C_4 = D_2 = C_2 = 1$	111.43(10) 106.7(2)	$C_{45} = C_{40} = C_{41}$	120.2 (4)
C41 = P2 = C1	100.7(2)	$C_{45} - C_{40} - 1140$	119.9
$C_{41} = F_2 = C_1$	107.0(2) 101.0(2)	$C_{41} - C_{40} - H_{40}$	119.9
C_{1} F_{2} C_{1}	101.9(2) 112.26(16)	$C_{50} = C_{51} = C_{52}$	119.4 (4)
C41 - P2 - Au2	112.20(10) 116.58(15)	$C_{50} = C_{51} = P_{5}$	116.4(4)
C_{1} P_{2} A_{2}	110.36(13)	$C_{52} = C_{51} = C_{51}$	122.1(4)
$C_1 = P_2 = Au_2$	110.82(10) 107.0(2)	$C_{52} = C_{52} = C_{51}$	120.2 (4)
$C_{51} = P_{5} = C_{01}$	107.0(2)	С53—С52—Н52	120.2
C_{1} P_{3} C_{2}	109.0 (2)	C51—C52—H52	119.6
C61 - P3 - C2	102.6 (2)	C54—C53—C52	120.2 (4)
C_{21} P_{3} A_{u1}	113./9 (16)	C54—C53—H53	119.9
Col—P3—Aul	112.42 (15)	C52—C53—H53	119.9
C2—P3—Aul	111.33 (16)	C53-C54-C55	119.8 (4)
C/1—P4—C81	106.8 (2)	C53—C54—H54	120.1
C/1—P4—C2	104.0 (2)	С55—С54—Н54	120.1
C81—P4—C2	106.6 (2)	C56—C55—C54	120.4 (5)
C71—P4—Au2	113.82 (16)	С56—С55—Н55	119.8

C81—P4—Au2	112.80 (16)	С54—С55—Н55	119.8
C2—P4—Au2	112.24 (16)	C55—C56—C51	119.9 (5)
H1W—O1W—H2W	107 (5)	С55—С56—Н56	120.0
P1—C1—P2	115.1 (3)	С51—С56—Н56	120.0
P1—C1—H1A	108.6	C66—C61—C62	119.3 (4)
P2—C1—H1A	108.6	C66—C61—P3	117.1 (4)
P1—C1—H1B	108.4	C62—C61—P3	123.5 (4)
P2—C1—H1B	108.4	C63 - C62 - C61	120.8(5)
H1A—C1—H1B	107.5	C63 - C62 - H62	119.6
P4P3	114.6 (3)	C61 - C62 - H62	119.6
$P4 = C2 = H2\Delta$	108.6	C62 - C63 - C64	119.0
$P_3 = C_2 = H_2 \Lambda$	108.5	C62 - C63 - C64	120.0
$P_{1} = C_{2} = H_{2}R$	108.5	C64 $C63$ $H63$	120.0
$P_{1} = C_{2} = H_{2} P_{1}$	108.7	C65 C64 C63	120.0
15 - C2 - H2D	107.6	C65 - C64 - U64	120.0 (3)
$H_2A = C_2 = H_2B$	107.0	C63 - C64 - H64	120.0
C12 - C11 - C10	118.8 (4)	C63—C64—H64	120.0
CI2—CII—PI	120.8 (4)	C64 - C65 - C66	120.5 (5)
CI6—CII—PI	120.3 (4)	С64—С65—Н65	119.7
C13—C12—C11	120.3 (5)	С66—С65—Н65	119.7
С13—С12—Н12	119.9	C61—C66—C65	119.5 (5)
C11—C12—H12	119.9	С61—С66—Н66	120.3
C14—C13—C12	120.3 (5)	C65—C66—H66	120.3
C14—C13—H13	119.9	C72—C71—C76	118.9 (4)
C12—C13—H13	119.9	C72—C71—P4	123.3 (4)
C13—C14—C15	120.4 (5)	C76—C71—P4	117.8 (4)
C13—C14—H14	119.8	C73—C72—C71	119.8 (5)
C15—C14—H14	119.8	С73—С72—Н72	120.1
C16—C15—C14	119.2 (5)	С71—С72—Н72	120.1
C16—C15—H15	120.4	C74—C73—C72	121.0 (5)
C14—C15—H15	120.4	С74—С73—Н73	119.5
C15—C16—C11	121.1 (5)	С72—С73—Н73	119.5
C15—C16—H16	119.5	C73—C74—C75	119.7 (5)
C11—C16—H16	119.5	С73—С74—Н74	120.2
C22—C21—C26	119.7 (4)	С75—С74—Н74	120.2
C22—C21—P1	123.6 (4)	C76—C75—C74	120.2 (5)
C26—C21—P1	116.7 (3)	С76—С75—Н75	119.9
$C_{21} - C_{22} - C_{23}$	119.8 (5)	С74—С75—Н75	119.9
$C_{21} = C_{22} = H_{22}$	120.1	C75-C76-C71	1204(5)
C_{23} C_{22} H_{22}	120.1	C75—C76—H76	119.8
C_{24} C_{23} C_{22}	120.9 (5)	C71 - C76 - H76	119.8
C_{24} C_{23} H_{23}	119.5	C_{82} C_{81} C_{86}	119.4 (4)
$C_{24} = C_{23} = H_{23}$	119.5	C82 - C81 - P4	117.4(4) 122.2(4)
$C_{22} = C_{23} = H_{23}$	119.5	$C_{82} = C_{81} = 14$	122.2(4)
$C_{23} - C_{24} - C_{23}$	120.3	C_{83} C_{82} C_{81}	120.5 (5)
$C_{23} = C_{24} = 1124$	120.3	$C_{03} = C_{02} = C_{01}$	120.0 (3)
$C_{23} = C_{24} = 1124$	120.5	$C_{03} - C_{02} - 1102$	117.7
$C_{20} - C_{23} - C_{24}$	120.2 (3)	$C_{01} = C_{02} = C_{04}$	117.7
$C_{20} = C_{23} = \Pi_{23}$	117.7	C_{02} C	119.5 (5)
U24-U23-H23	119.9	U02-U03-H03	120.3

C25—C26—C21	119.9 (5)	С84—С83—Н83	120.3
C25—C26—H26	120.1	C85—C84—C83	120.3 (5)
C21—C26—H26	120.1	C85—C84—H84	119.8
C32—C31—C36	120.0 (5)	C83—C84—H84	119.8
C32—C31—P2	118.2 (4)	C84—C85—C86	121.0 (5)
C36—C31—P2	121.8 (4)	C84—C85—H85	119.5
C33—C32—C31	120.2 (5)	C86—C85—H85	119.5
С33—С32—Н32	119.8	C85—C86—C81	119.4 (5)
С31—С32—Н32	120.0	C85—C86—H86	120.3
C32—C33—C34	120.5 (5)	C81—C86—H86	120.3
С32—С33—Н33	119.8	O1—C91—C92	121.4 (8)
С34—С33—Н33	119.8	O1—C91—C93	120.2 (8)
C35—C34—C33	118.9 (5)	C92—C91—C93	118.3 (7)
C35—C34—H34	120.6	C91—C92—H92A	109.5
C33—C34—H34	120.6	C91—C92—H92B	109.5
C34—C35—C36	121.4 (5)	H92A—C92—H92B	109.5
С34—С35—Н35	119.3	С91—С92—Н92С	109.5
С36—С35—Н35	119.3	H92A—C92—H92C	109.5
C35—C36—C31	119.0 (5)	H92B—C92—H92C	109.5
С35—С36—Н36	120.5	С91—С93—Н93А	109.5
C31—C36—H36	120.5	С91—С93—Н93В	109.5
C42—C41—C46	118.7 (4)	H93A—C93—H93B	109.5
C42—C41—P2	118.5 (4)	С91—С93—Н93С	109.5
C46—C41—P2	122.8 (4)	Н93А—С93—Н93С	109.5
C43—C42—C41	120.8 (4)	Н93В—С93—Н93С	109.5
C11—P1—C1—P2	80.8 (3)	C41—C42—C43—C44	1.9 (8)
C21—P1—C1—P2	-170.2(3)	C42—C43—C44—C45	-3.3 (8)
Au1—P1—C1—P2	-46.6 (3)	C43—C44—C45—C46	1.6 (8)
C41—P2—C1—P1	-71.9 (3)	C44—C45—C46—C41	1.5 (8)
C31—P2—C1—P1	176.0 (2)	C42—C41—C46—C45	-2.9 (7)
Au2—P2—C1—P1	51.3 (3)	P2-C41-C46-C45	174.6 (4)
C71—P4—C2—P3	-171.5 (2)	C61—P3—C51—C56	-113.0 (4)
C81—P4—C2—P3	75.9 (3)	C2—P3—C51—C56	136.7 (4)
Au2—P4—C2—P3	-48.1 (3)	Au1—P3—C51—C56	11.8 (4)
C51—P3—C2—P4	-78.5 (3)	C61—P3—C51—C52	64.5 (4)
C61—P3—C2—P4	168.3 (3)	C2—P3—C51—C52	-45.8 (5)
Au1—P3—C2—P4	47.8 (3)	Au1—P3—C51—C52	-170.7 (3)
C21—P1—C11—C12	-40.5 (4)	C56—C51—C52—C53	1.0 (7)
C1—P1—C11—C12	68.2 (4)	P3—C51—C52—C53	-176.4 (4)
Au1—P1—C11—C12	-166.8(3)	C51—C52—C53—C54	-1.5 (7)
C21—P1—C11—C16	140.7 (4)	C52—C53—C54—C55	0.8 (8)
C1—P1—C11—C16	-110.6 (4)	C53—C54—C55—C56	0.5 (8)
Au1—P1—C11—C16	14.4 (4)	C54—C55—C56—C51	-1.0 (8)
C16—C11—C12—C13	1.4 (7)	C52—C51—C56—C55	0.2 (7)
P1-C11-C12-C13	-177.4 (4)	P3—C51—C56—C55	177.8 (4)
C11—C12—C13—C14	-0.4 (7)	C51—P3—C61—C66	165.7 (4)
C12—C13—C14—C15	-1.0(8)	C2—P3—C61—C66	-79.7 (4)
	· /		× /

C13—C14—C15—C16	1.3 (8)	Au1—P3—C61—C66	40.0 (4)
C14-C15-C16-C11	-0.2 (8)	C51—P3—C61—C62	-11.5 (5)
C12—C11—C16—C15	-1.1 (7)	C2—P3—C61—C62	103.1 (4)
P1-C11-C16-C15	177.7 (4)	Au1—P3—C61—C62	-137.2 (4)
C11—P1—C21—C22	121.8 (4)	C66—C61—C62—C63	-0.3 (7)
C1—P1—C21—C22	10.0 (5)	P3—C61—C62—C63	176.8 (4)
Au1—P1—C21—C22	-111.3 (4)	C61—C62—C63—C64	0.0 (8)
C11—P1—C21—C26	-57.9 (4)	C62—C63—C64—C65	0.6 (8)
C1—P1—C21—C26	-169.7 (4)	C63—C64—C65—C66	-0.8 (8)
Au1—P1—C21—C26	69.0 (4)	C62—C61—C66—C65	0.1 (7)
C26—C21—C22—C23	-0.1 (7)	P3-C61-C66-C65	-177.2 (4)
P1-C21-C22-C23	-179.8 (4)	C64—C65—C66—C61	0.4 (8)
C21—C22—C23—C24	0.0 (8)	C81—P4—C71—C72	72.3 (4)
C22—C23—C24—C25	-0.1 (9)	C2—P4—C71—C72	-40.1 (4)
C23—C24—C25—C26	0.4 (8)	Au2—P4—C71—C72	-162.6 (3)
C24—C25—C26—C21	-0.4 (8)	C81—P4—C71—C76	-105.6 (4)
C22—C21—C26—C25	0.3 (7)	C2—P4—C71—C76	142.0 (3)
P1-C21-C26-C25	180.0 (4)	Au2—P4—C71—C76	19.6 (4)
C41—P2—C31—C32	-178.9 (4)	C76—C71—C72—C73	1.0 (7)
C1—P2—C31—C32	-66.0 (4)	P4—C71—C72—C73	-176.8 (4)
Au2—P2—C31—C32	54.7 (4)	C71—C72—C73—C74	-1.1 (7)
C41—P2—C31—C36	3.4 (4)	C72—C73—C74—C75	0.4 (8)
C1—P2—C31—C36	116.3 (4)	C73—C74—C75—C76	0.3 (8)
Au2—P2—C31—C36	-122.9 (4)	C74—C75—C76—C71	-0.4 (7)
C36—C31—C32—C33	0.7 (8)	C72—C71—C76—C75	-0.3 (7)
P2-C31-C32-C33	-177.0 (4)	P4—C71—C76—C75	177.7 (4)
C31—C32—C33—C34	0.6 (8)	C71—P4—C81—C82	-64.7 (4)
C32—C33—C34—C35	-1.4 (8)	C2—P4—C81—C82	45.9 (4)
C33—C34—C35—C36	0.9 (8)	Au2—P4—C81—C82	169.5 (3)
C34—C35—C36—C31	0.3 (8)	C71—P4—C81—C86	114.4 (4)
C32—C31—C36—C35	-1.1 (7)	C2—P4—C81—C86	-134.9 (4)
P2-C31-C36-C35	176.5 (4)	Au2—P4—C81—C86	-11.3 (4)
C31—P2—C41—C42	-101.7 (4)	C86—C81—C82—C83	1.5 (7)
C1—P2—C41—C42	149.5 (4)	P4—C81—C82—C83	-179.3 (4)
Au2—P2—C41—C42	27.2 (4)	C81—C82—C83—C84	-1.4 (7)
C31—P2—C41—C46	80.8 (4)	C82—C83—C84—C85	0.6 (8)
C1—P2—C41—C46	-28.0 (5)	C83—C84—C85—C86	-0.1 (8)
Au2—P2—C41—C46	-150.3 (4)	C84—C85—C86—C81	0.2 (8)
C46—C41—C42—C43	1.2 (7)	C82—C81—C86—C85	-1.0 (7)
P2—C41—C42—C43	-176.4 (4)	P4—C81—C86—C85	179.9 (4)

Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the ring centroids of the C11–C16, C71–C76 and C51–C56 benzene rings, respectively.

D—H···A	D—H	H…A	D···A	D—H···A	
01 <i>W</i> —H1 <i>W</i> ···Cl2	0.84 (2)	2.39 (2)	3.217 (5)	168 (6)	
$O1W - H2W - C12^{i}$	0.84 (3)	2.37 (3)	3.200 (5)	173 (3)	
C1—H1B····O1 ⁱⁱ	0.99	2.35	3.310 (7)	164	

C2—H2 <i>B</i> ···Cl2 ⁱⁱⁱ	0.99	2.51	3.487 (5)	168	
C12—H12…O1 ⁱⁱ	0.95	2.57	3.249 (7)	129	
C22—H22…Cl1 ⁱⁱ	0.95	2.74	3.580 (6)	148	
C44—H44····Cl 2^{iv}	0.95	2.73	3.424 (5)	130	
C52—H52···Cl2 ⁱⁱⁱ	0.95	2.68	3.616 (5)	169	
C82—H82···Cl2 ⁱⁱⁱ	0.95	2.81	3.723 (5)	161	
C34—H34··· <i>Cg</i> 1 ^v	0.95	2.82	3.542 (6)	133	
C43—H43…Cg2 ^{vi}	0.95	2.74	3.574 (5)	147	
C75—H75···· $Cg3^{v}$	0.95	2.83	3.619 (5)	142	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*, -*z*+1; (v) *x*-1, *y*, *z*; (vi) -*x*, -*y*, -*z*+2.