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Abstract: With the global concern for carbon dioxide, the carbon emission trading market is be-
coming more and more important. An accurate forecast of carbon price plays a significant role in
understanding the dynamics of the carbon trading market and achieving national emission reduction
targets. Carbon prices are influenced by many factors, which makes carbon price forecasting a com-
plicated problem. In recent years, deep learning models are widely used in price forecasting, because
they have high forecasting accuracy when dealing with nonlinear time series data. In this paper,
Multivariate Long Short-Term Memory (LSTM) in deep learning is used to forecast carbon prices
in China, which takes into account the factors affecting the carbon price. The historical time series
data of carbon prices in Hubei (HBEA) and Guangdong (GDEA) and three traditional energy prices
affecting carbon prices from 5 May 2014 to 22 July 2021 are collected to form two data sets. To prove
the forecast effect of our model, this paper not only uses Multivariate LSTM, Multilayer Perceptron
(MLP), Support Vector Regression (SVR), and Recurrent Neural Network (RNN) to forecast the same
data, but also compares the forecast results of Multivariate LSTM with the existing research on HBEA
and GDEA forecast based on deep learning recently. The results show that the MAE, MSE, and RMSE
obtained by the Multivariate LSTM are all smaller than other prediction models, which proves that
the model is more suitable for carbon price forecast and offers a new approach to carbon prices
forecast. This research conclusion also provides some policy implications.

Keywords: multivariate long short-term memory; multilayer perceptron; support vector regression;
recurrent neural network; carbon price forecasting

1. Introduction

With the rapid economic growth of all countries, the greenhouse gases such as carbon
dioxide produced by human beings in the process of production and living have increased
dramatically, resulting in sustained global warming. Global warming has affected all
aspects of human activities to varying degrees. In order to cope with global warming
effectively, the Kyoto Protocol adopted in 1997 regards the carbon emission trading market
as a new pathway to control greenhouse gas emissions. As the largest developing country
in the world, China’s rapid economic growth is accompanied by huge energy consumption,
resulting in China’s greenhouse gas emissions accounting for a large proportion of the
global total. Therefore, China has great potential for carbon emission reduction, and it is
extremely urgent to establish a carbon emission trading market. Since 2013, China has
carried out seven carbon emission trading pilots in two provinces and five cities, namely
Hubei, Guangdong, Shenzhen, Shanghai, Beijing, Tianjin, and Chongqing, which kicked
off China’s carbon emissions trading market from scratch. With the acceleration of carbon
emission reduction, China’s carbon trading market is becoming more and more mature.
The national unified carbon emission trading market was formally opened on 16 July 2021,
which marked that China’s carbon trading market moved from a decentralized pilot to
national unification. As a result, the relevant research on the domestic carbon emission
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trading market is of great practical significance. It is not only conducive to the in-depth
development of China’s low-carbon economy but also provides reference suggestions for
the construction and improvement of carbon trading markets around the world.

With the continuous in-depth growth of the carbon trading market, the financial trend
of the market is becoming increasingly significant. The carbon market not only has the
general attributes of other financial markets but also has certain particularities and exter-
nalities. In the carbon trading market, carbon prices are the most concerned core element,
because the level and fluctuation of carbon prices can directly reflect the market perfor-
mance. Accurate forecasting of carbon prices is not only beneficial to the comprehensive,
sustainable and healthy development of the carbon market but also conducive to better
planning and decision-making by the government and market participants [1]. Although
scholars have made some achievements in the research of carbon price prediction, there
are still some problems to be solved. Meanwhile, as the carbon emission trading market in
China started relatively late, the research on carbon price prediction is still very limited.
Therefore, the effective method to predict carbon price in China deserves further study.

In the existing literature, most carbon price prediction is mainly based on the time
series data of carbon price itself. However, a large number of studies have proved that
carbon price is influenced by many factors, such as policy factors [2], weather conditions [3],
and the energy market [4]. It is worth noting that the main cause of greenhouse gas
production is still the burning of fossil energy. Among many influencing factors, energy
price is regarded as the core determinant of carbon price [5]. Hao and Tian [6] pointed out
that the carbon price forecast based on multi-factors can provide more valuable information
for the carbon trading market because it considers and analyzes the influence of exogenous
variables. However, Zhu et al. [7] believed that although the multi-factor carbon price
prediction model could consider the influence of exogenous variables, there might be
accumulated errors in the prediction process, which would lead to the failure of carbon
price prediction. Therefore, it is a challenging task to predict carbon prices by multi-factors.
To solve this challenging task, this paper introduces the Multivariate Long Short-Term
Memory (LSTM) model in deep learning into carbon price prediction and takes both energy
price and carbon price as the input characteristics of the prediction model. The reasons for
choosing LSTM are as follows: On the one hand, LSTM does not need feature engineering
in the construction process, and can well mine the time correlation between nonlinear and
non-stationary time series data. On the other hand, LSTM has been used in electricity price
forecast [8], crude oil price forecast [9], stock price forecast [10], and other aspects that have
achieved good prediction results.

Compared with the existing research, the main innovations and contributions of
this study are as follows: Firstly, previous studies are based on historical time-series
data of carbon price itself to forecast carbon prices, while ignoring the importance of
influencing factors in carbon price prediction. The carbon emissions trading market in
China is relatively complex, and the fluctuation of carbon prices is affected by various
factors, so the historical time series data of carbon price itself cannot summarize all the
information. Therefore, considering that carbon price is influenced by many factors, this
paper takes energy price as the most important influencing factor and carbon price as
input variables at the same time, thereby improving the authenticity and accuracy of
the forecast [11]. Secondly, to enrich the existing carbon price forecasting research and
explore the effectiveness and practicability of deep learning in carbon price forecasting,
the Multivariate LSTM is creatively introduced into carbon price forecasting. Compared
with MLP, SVR, RNN, and other existing studies, the superiority of our model in carbon
price prediction is confirmed. Finally, previous studies are mostly based on EU carbon
prices, and there are fewer studies on the carbon price in China. According to the active
degree of carbon trading, carbon markets in Hubei and Guangdong are taken as research
objects, which enriches the related research of the carbon market in China. Meanwhile,
the forecasting of carbon prices in the two pilots is of great significance for understanding
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the dynamics of the carbon market in China, further building a unified carbon market in
China, and achieving the national emission reduction targets.

The rest of this paper is structured as follows: Section 2 gives a detailed overview
of the related literature on prediction models. RNN and LSTM model is introduced in
Section 3. Data selection and preprocessing are explained in Section 4. The experimental
results are presented in Section 5. The LSTM prediction results are discussed with the
existing research in Section 6. Section 7 sums up the whole paper and proposes policy
implications.

2. Literature Review

In the existing literature, researchers have made a lot of predictions in different fields,
including finance [12], tourism demand [13], carbon price [14], and so on. Scholars have put
forward a large number of forecasting models to improve the effectiveness and accuracy of
forecasting. This section will provide a detailed literature review from the perspective of
forecasting models.

Early scholars mainly adopted autoregressive (AR), generalized autoregressive condi-
tional heteroscedasticity (GARCH), etc. Early scholars mainly used the econometric models
such as Autoregressive (AR), Generalized Autoregressive Conditional Heteroscedasticity
(GARCH), and Autoregressive Moving Average (ARMA) to make predictions. Byun and
Cho [15] used GARCH, Implied Volatility models, and the k-nearest Neighbor Algorithm
to, respectively, predict the carbon price and revealed that GARCH was the most effective
forecasting technique. Paolella and Taschini [16] demonstrated that the mixture GARCH
models were more effective than the normal GARCH models. Torres et al. [17] used the
ARMA model to predict the wind speed in five places with different topographic features.
Tang et al. [18] used two mixed models ARMA-GARCH and AR-GARCH to forecast the
stock price and the results showed that the ARMA-GARCH model had a better forecasting
effect. Although these conventional econometric models can obtain effective prediction
results, they are based on the assumption that the data is stable and linear, so they are not
capable of capturing the nonlinear characteristics of time series data [19].

For overcoming this problem, scholars have introduced machine learning technology.
There is plenty of literature to prove that machine learning models are more suitable
for dealing with non-stationary and nonlinear carbon price sequences than traditional
econometric models. Huo et al. [20] used a support vector machine (SVM) and random
forest regression (RFR) to forecast the electrical load of different cities, and the results proved
that the two machine learning models were both better choices for power load forecasting.
Wang et al. [21] predicted the price and volume of carbon trading in Beijing by using Back
Propagation (BP). Roos et al. [22] introduced the dynamic Bayesian network method into
the short-term passenger flow prediction. In addition, some scholars demonstrated that
the hybrid model combining machine learning model and econometric model can further
improve the prediction performance of the model. Shi et al. [23] put forward a hybrid
model of ARMA, backpropagation neural network (BPNN), and Markov to predict the
stock prices and achieved good prediction results. Zhu and Wei [24] used the combination
of Autoregressive Integrated Moving Average (ARIMA) and Least Squares Support Vector
Machine (LSSVM) to forecast the EU ETS carbon price and proved that the ARIMA-LSSVM
model was superior to traditional models in forecasting accuracy. Sun et al. [25] used
variational pattern decomposition (VMD) to decompose the carbon price, and then used a
spike neural network (SNN) to predict the carbon price. The experimental results show
that the VMD-SNN model has a good prediction effect. However, the above models
have not broken through their limitations. The learning ability of conventional machine
learning models with highly complex characteristics will be restricted when dealing with
multi-dimensional time series.

In recent years, deep learning models have become the most popular research method
because of their better prediction accuracy and reliability, and to a certain extent, it solves
the limitations of conventional machine learning. Wang et al. [26] used traditional machine
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learning and deep learning to predict four different data sets which showed that deep
learning had better prediction ability. The deep learning method has been successfully
applied in many forecasting fields, such as wind power forecasting [27], power load
forecasting [28], and carbon price forecasting [29]. In addition, the recurrent neural network
model (RNN) in deep learning is very effective in fitting time-series data. As a special RNN
model, LSTM is widely used in various fields. For example, Nelson et al. [30] constructed
the LSTM model to predict the future trend of stock price based on the historical time series
data of stock price, which confirmed the effectiveness of the LSTM model in stock price
prediction. Altché and de La Fortelle [31] used LSTM in highway trajectory prediction and
proved that this model can accurately predict the future trajectory of vehicles on highways.
Cen and Wang [32] predicted the prices of West Texas Intermediate crude oil and Brent
crude oil by LSTM, and the results showed that the model had better prediction accuracy.
By combing the literature, it can be found that the research on carbon price prediction based
on deep learning is still very limited. Therefore, applying LSTM to carbon price prediction
can not only enrich the existing research on carbon price prediction but also verify the
effectiveness of deep learning in the field of the carbon price.

3. Methodology
3.1. RNN and LSTM Model

RNN is a mainstream deep learning algorithm, which was proposed by Rumelhart et al.
as early as 1986 [33]. Compared with the conventional neural network models, RNN has
special memory functions, which is suitable for dealing with sequence-related problems
such as various time-series learning, language modeling, image processing, etc. RNN
through the mutual communication between hidden layers stores the previous output
results and takes them to the next hidden layer for training. A fundamental structure of
RNN is depicted in Figure 1 Theoretically, the parameter sharing mechanism and cyclic
feedback mechanism can enable RNN to process arbitrary time series data. However,
in the actual training process, the conventional RNN usually faces the problems of gradient
disappearance and explosion, and cannot obtain long-term dependency information, so it
cannot process long time series data. Therefore, to solve the long-term dependence of RNN,
many scholars have proposed some improved methods, such as Gated Recurrent Units
(GRU) and LSTM, etc.
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Figure 1. Structure of Recurrent neural network. ht and xt represent the output and input at time t,
respectively.

Among them, LSTM was proposed by Hochreiter and Schmidhuber in 1997 [34] and
improved and extended by Alex Graves in 2010. LSTM, as a variant of RNN, introduces
addition operation into the network through gate control, thus solving the problems
of gradient disappearance and explosion. In other words, LSTM can learn long-term
dependency information more effectively than RNN. Therefore, LSTM with long-term
memory capability has a strong advantage in processing and predicting highly correlated
time series data. The structure of LSTM mainly adds three control gates based on RNN:



Int. J. Environ. Res. Public Health 2022, 19, 6217 5 of 16

input gate, output gate, and forgetting gate. A fundamental structure of LSTM is depicted
in Figure 2.
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The LSTM operation process needs the following four steps:
Step 1: To decide which information in the previous cell state Ct−1 should be removed

or retained. This task is realized by the forget gate, it takes input as the previous output
ht−1 and the present input vector xt, and then applies the sigmoid function to the forget
gate. The forget gate output is ft, which is assigned to Ct−1. The computation equation is
as follows:

ft = σ
(

W f [ht−1, xt

]
+ b f ) (1)

Step 2: To decide which information in the present cell state Ct should be stored. This
task is accomplished in two steps, first through the input gate to decide what information
should be updated and then through the tanh layer to obtain a candidate vector value C1

t
to the state. The computation equations are as follows:

it = σ(Wi[ht−1, xt] + bi) (2)

C1
t = tan h(Wc[ht−1, xt] + bc) (3)

Step 3: To convert the previous cell state Ct−1 into the present cell state Ct. The
information that was previously decided to be removed is discarded by multiplying Ct−1
by the forget gate output ft, and then the candidate vector value C1

t is added which needs
to be scaled according to the input gate output it. The computation equation is as follows:

Ct = ft ∗ Ct−1 + it ∗ C1
t (4)

Step 4: To decide the output values through the output gate. The sigmoid layer
determines which information of Ct needs to be output. In the last stage, the result of the
processing cell state of the tanh layer is multiplied by the output of the Sigmoid layer. The
computation equations are as follows:

Ot = σ(WO[ht−1, xt] + bO) (5)

ht = Ot ∗ tan h(Ct) (6)

In these equations, σ is the activation function named Sigmoid, t is the present time
state, W f , Wi, Wc and Wo represent the corresponding weight vectors, and b f , bi, bc and bo
represent the corresponding deviation vectors.
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3.2. Model Evaluation Index

In order to assess the forecast accuracy of the model, according to the actual prices
and the predicted prices of the carbon emission trading market, this paper selects Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root-Mean-Square Error (RMSE) as
the evaluation indexes of the model. MAE refers to the average value of absolute deviations
among predicted and actual values, which can well reflect the real error of the predicted
value. MSE refers to the average value of square deviation between the predicted values
and the actual values, which can be used to evaluate the change of the function. RMSE
refers to the square root of MSE, which is used to calculate the deviation between the
predicted value and the actual value. The computation equations are as follows:

MAE =
1
N ∑N

i=1|yi − pi| (7)

MSE =
1
N

N

∑
i=1

(yi − pi)
2 (8)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − pi)
2 (9)

In these equations, yi is the predicted value, pi is the actual value, and N is the sample
quantity. Generally, the smaller the values of MAE, MSE, and RMSE, the smaller the
error between the predicted carbon price and the actual carbon price, indicating that the
prediction performance of the model is better.

4. Data Description

The carbon price is impacted by many factors, which makes carbon price forecasting a
very complicated problem. The main source of carbon emissions is still the combustion
of fossil energy, so this paper considers the energy price that affects the carbon price.
Meanwhile, the time-series data of carbon prices have autocorrelation, when forecasting
the carbon price, we can predict its future price according to the historical time series data
of carbon price itself. As a result, this paper takes carbon price and energy price as input
features to predict future carbon prices.

4.1. Carbon Emission Trading Price Data

Carbon emission trading pilots in China started late, and there are some differences
among these carbon trading pilots. Table 1 shows the trading situation of seven carbon
trading pilots—Hubei, Shenzhen, Guangdong, Beijing, Shanghai, Tianjin, and Chongqing,
from 5 May 2014 to 22 July 2021. In Table 1, the carbon trading markets in Hubei, Shenzhen,
and Guangdong are the most active, and their trading days have reached more than
1500 days in the selected time range. The Hubei carbon trading market is the only carbon
trading market located in the middle of China. The Hubei carbon trading market has been
widely concerned since its opening in 2014, and the industrial development level of Hubei
province is close to the national average level. As a result, there has always been a saying
in the industry that “When Hubei becomes successful, China becomes successful”. The
Guangdong carbon market is the first provincial carbon trading market in China, and it
is developing steadily. Guangdong province is the largest production and trade province
with the highest GDP in China, and its economic development is in a leading position in
China. Therefore, the experience of Guangdong province can be used as a development
sample for other regions or provinces. However, the Shenzhen carbon market will propose
a new trading product with a year every year and implement differential pricing for them.
The new trading product involves transactions in the corresponding year and subsequent
years, which leads to several different products in the Shenzhen carbon market at the same
time. Therefore, it is difficult to determine the time series data of carbon prices in Shenzhen.
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Table 1. The trading situation of the carbon trading markets from 5 May 2014 to 22 July 2021.

Region Abbreviation Time Span Trading Days

Hubei HBEA 5 May 2014–22 July 2021 1704
Shenzhen SZA 5 May 2014–22 July 2021 1606

Guangdong GDEA 5 May 2014–22 July 2021 1520
Beijing BEA 5 May 2014–22 July 2021 1093

Shanghai SHEA 6 May 2014–22 July 2021 986
Tianjin TJEA 5 May 2014–30 June 2021 668

Chongqing CQEA 19 June 2014–21 July 2021 655

To sum up, this paper takes the Hubei carbon market (abbreviation: HBEA) and the
Guangdong carbon market (abbreviation: GDEA) as research objects. The daily closing
prices of HBEA and GDEA are selected as experimental data, the period of which is from
5 May 2014 to 22 July 2021, excluding the daily data with the trading volume of 0. All data
used are gathered from the Wind database.

4.2. Energy Price Data

Fossil energy prices mainly affect carbon prices through two paths. One path is that
the energy prices directly affect the carbon prices by affecting the energy consumption.
As the energy consumption depends on the energy prices to a great extent, when the energy
prices decrease, the emission control enterprises will be more inclined to use fossil energy,
which will lead to an increase in carbon emissions and eventually changes in carbon prices.
Conversely, when the energy price rises, enterprises will choose other energy sources and
reduce the use of fossil energy which will affect their carbon emissions. Another path is
that the energy prices have an indirect impact on the carbon price by influencing the energy
utilization rate. That is, when energy prices rise, in order to control the cost, enterprises will
develop new technologies to improve the utilization rate of energy, which will affect the
carbon emissions and ultimately the carbon price. Therefore, changes in crude oil, natural
gas, and coal prices will cause carbon price changes.

Firstly, the crude oil price is an important factor affecting the global macro-economy [35],
and China’s economic and social development can not be separated from the support of
crude oil. Since China relies too much on imported crude oil, Brent crude oil futures price
is selected as the representative of oil price in this paper. Currently, Brent crude oil futures
price in Beihai is one of the most important pricing benchmarks in the world. According to
the data published by London Intercontinental Exchange (ICE), this price is used as the
pricing benchmark by more than two-thirds of the world’s international oil trade. Secondly,
as a low-carbon, clean and efficient fossil energy, natural gas is considered to be the leading
force in the green transformation of energy. If the electric power industry uses natural gas
instead of coal, it can greatly reduce carbon emissions. As there is no authoritative natural
gas price index in China at present, this paper selects the New York Mercantile Exchange
(NYMEX) natural gas price as the representative of natural gas price. Since the listing of the
NYMEX natural gas futures contract in 1990, the trading volume and positions have been
increasing. NYMEX natural gas futures contract price is also widely used as the benchmark
price of natural gas. Finally, in China, a big industrial country, coal is the main primary
energy and plays a key role in the national economy. The coal price is considered the core
determinant of carbon price [36]. As China is a big importer of coal, mainly imported
from Australia [37], this paper selects the Newcastle coal spot price in Australia as the
representative of coal price. Australia’s Newcastle port is the largest coal export port in the
world while the Newcastle coal spot price is one of the important indicators to measure
the international coal price. Table 2 shows the selection of energy prices, and all data are
available from the Wind database.
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Table 2. The selection of energy prices.

Energy Feature Name Time Span

crude oil Brent crude oil 5 May 2014–22 July 2021
natural gas NYMEX natural gas 5 May 2014–22 July 2021

coal Newcastle coal 5 May 2014–22 July 2021

4.3. Data Preprocessing

In this paper, three energy prices and carbon prices are taken as explanatory variables
at the same time. Therefore, we need to sort the obtained original data and fill the missing
values with the previous day’s prices, to obtain two complete time-series data sets. Since
each time series data does not belong to the normal distribution, so it is impossible to fill
the missing value with the average value. Table 3 shows the descriptive statistical results
of two-time series data sets. It can be seen from Table 3 that the average daily prices of
HBEA and GDEA are 23.830 and 22.537, respectively, whereas the average daily price of
natural gas is less than 3, and the average daily prices of crude oil and coal are over 59,
which means that the average values of various variables are quite different. In order to
eliminate the differences among the variables, it is necessary to normalize all variables. The
computation equation is as follows:

X =
x−min

max−min
(10)

In this equation, min is the minimum value of each variable in the data set and max is
the maximum value of each variable in the data set.

Table 3. Two time-series data sets described.

Feature Name Mean Min Max Std Kurtosis Skewness

Hubei
HBEA 23.830 10.380 53.850 6.614 0.053 0.224

crude oil 60.253 19.330 115.060 17.087 1.375 0.923
natural gas 2.830 1.550 4.790 0.630 0.770 0.696

coal 78.062 46.590 164.750 21.705 −0.090 0.667

Guangdong
GDEA 22.537 8.100 77.000 11.154 4.471 1.853

crude oil 59.571 19.330 115.060 15.879 2.065 0.952
natural gas 2.793 1.551 4.750 0.613 1.032 0.688

coal 79.153 47.370 164.750 21.437 0.020 0.648

Figure 3 shows the comparison of normalized HBEA with crude oil, natural gas, and
coal. In Figure 3a, the fluctuations of HBEA and crude oil are very similar in the selected
time interval of the sample, which is a change process of first falling and then rising, then
falling and then rising. However, HBEA increases sharply to its peak in May to June of
2019, whereas crude oil decreases sharply to its minimum from January to April 2020 to
reach the minimum. In Figure 3b, HBEA and natural gas developed in opposite directions
from June 2016 to 2020, and the trends of HBEA and natural gas were roughly the same in
the remaining periods. In Figure 3c, from July 2018 to May 2019, the fluctuation of HBEA
is relatively stable, whereas coal is gradually decreasing. In recent years, HBEA shows a
gradual upward trend, whereas coal shows a sharp upward trend.
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Figure 4 shows the comparison of normalized GDEA with crude oil, natural gas, and
coal. At the same time, it can be seen that within the selected time range, GDEA will
gradually decrease before 2017, and then GDEA will gradually increase. In Figure 4a,
on the whole, the fluctuations of GDEA and crude oil are similar, indicating that there is an
obvious positive correlation between them. In Figure 4b, it can be observed that natural
gas has a downward trend from 2019 to 2020, whereas the values of GDEA show a gradual
upward trend. In Figure 4c, there is an opposite relationship between GDEA and coal from
2019 to 2021.
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The correlations between the four variables of the two data sets are shown in the
Pearson Heat Map in Figure 5. As can be seen from Figure 5a, HBEA is positively correlated
with crude oil, and the correlation coefficient is +0.118. While HBEA is negatively correlated
with natural gas and coal, its correlation coefficients are −0.109 and −0.081, respectively.
In Figure 5b, GDEA is positively correlated with crude oil and natural gas, and their
correlation coefficients are +0.488 and +0.260, respectively, indicating that GDEA has a
strong positive correlation with crude oil and natural gas. While GDEA is negatively
correlated with NEWC.
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5. Empirical Results

Accurately predicting the carbon price is of great significance for countries to achieve
carbon emission reduction targets. The purpose of this experiment is to forecast Hubei car-
bon emission trading price (HBEA) and Guangdong carbon emission trading price (GDEA)
by using Multivariate LSTM. The Multivariate LSTM model is trained with 300 epochs,
the batch size is 32. The time window length is 10, that is, the data of the first 10 days are
used to calculate the carbon price of the 11th day. This paper uses Multivariate LSTM, SVR,
MLP, and RNN to forecast the same data, and the results are compared and analyzed to
prove the prediction effect of our model.

5.1. Carbon Price Forecasting in Hubei Province

The four models use HBEA and three energy prices (crude oil, natural gas, and coal)
to predict HBEA values from 5 May 2014 to 22 July 2021. There are 1704 observations in the
data set, of which the previous 80% are used as the training set, and the remaining 20% are
used as the test set to evaluate the prediction performance of the model. Figure 6 depicts
the line plots of predicted HBEA values and actual HBEA values of the four models based
on the test set. In Figure 6a, the prediction effect of SVR is not good. Although the predicted
values are consistent with the situation of actual values, it only realizes the prediction of the
HBEA trend. However, there are significant differences between the predicted values and
the actual values, and the predicted values are generally lower than the real values. The
actual and predicted HBEA values obtained by the MLP model are shown in Figure 6b. The
predicted values of the MLP model are not close to the actual values in the first 180 days
whereas the model performs better in the last part. The prediction result of the RNN
model is shown in Figure 6c. The predicted values are very consistent with the actual
values of HBEA in trend, but there is always a certain error between the predicted values
and the actual values at each time point, which shows that RNN has obvious hysteresis.
In Figure 6d, the predicted value of HBEA obtained by Multivariate LSTM has a high
degree of fitting with the actual value.
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In conclusion, through the comparison of the actual values and the predicted values of
SVR, MLP, RNN, and Multivariate LSTM, it can be seen that the predicted prices obtained
by Multivariate LSTM are more consistent with the actual prices of HBEA. Especially in
the places where HBEA fluctuates drastically, the prediction effect of Multivariate LSTM is
better than other prediction models.

To further prove the prediction effect of Multivariate LSTM, the evaluation indexes
of each prediction model are calculated, and the results of the four models are shown in
Table 4. It can be found from Table 4 that the prediction indexes of Multivariate LSTM are
smaller than those of other models. From the MAE point of view, the error of LSTM is
77.77% less than SVR, 45.11% less than MLP, and 9.93% less than RNN. From the point of
MSE, the prediction performance of Multivariate LSTM is 89.8% higher than SVR, 35.9%
higher than MLP, and 14.48% higher than RNN. From the perspective of RMSE, the error of
LSTM is 68.07% lower than SVR, 19.97% lower than MLP, and 7.56% lower than RNN. In a
word, all the prediction indexes show that the prediction accuracy of Multivariate LSTM is
superior to that of other prediction models, which indicates Multivariate LSTM is fitter for
predicting the carbon emissions trading prices in Hubei.

Table 4. HBEA prediction results.

Model MAE MSE RMSE

SVR 2.776 9.381 3.063
MLP 1.124 1.493 1.222
RNN 0.685 1.119 1.058
LSTM 0.617 0.957 0.978

5.2. Carbon Price Forecasting in Guangdong Province

The four models use the time series data of GDEA, crude oil, natural gas, and coal from
5 May 2014 to 22 July 2021 to predict the GDEA values. The data set with 1520 observations
are processed in the same way as HBEA. Figure 7 depicts line graphs of actual GDEA values
and predicted GDEA values of the four models. In Figure 7a, it can be seen that the SVR
model performs worst in forecasting GDEA prices. There is an obvious difference between
the predicted values and the actual values, and the predicted values are always lower than
the actual values. In Figure 7b, it can be seen that compared with SVR, MLP has a better
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performance prediction effect which can well predict the trend of GDEA, but there is still a
big gap between the predicted values of MLP and the actual values of GDEA. The predicted
result of RNN is shown in Figure 7c. The predicted GDEA values are very consistent with
the actual GDEA values in trend. Although the predicted values are very close to the actual
GDEA values, there is always a certain error between the predicted values and the actual
values, which has a certain delay. In Figure 7d, for predicting Guangdong carbon emission
trading prices, the predicted values curve obtained by LSTM can well approach the actual
GDEA values. Similarly, compared with other models, the forecast accuracy of Multivariate
LSTM is still better.
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Table 5 shows the evaluation index values of four forecasting models, and all the in-
dexes of Multivariate LSTM are superior to other forecasting models. From the perspective
of MAE, the error obtained by LSTM is 85.23% smaller than SVR, 37.67% smaller than MLP,
and 22.77% smaller than RNN. From the MSE point of view, the prediction performance of
LSTM is 96.79% higher than SVR, 62.96% higher than MLP, and 31.38% higher than RNN.
From the perspective of RMSE, the error of LSTM is 82.09% lower than SVR, 39.15% lower
than MLP, and 17.15% lower than RNN. In a word, LSTM and RNN are better than SVR
and MLP in forecasting the carbon trading prices in Guangdong, and Multivariate LSTM
has the best prediction effect. Therefore, Multivariate LSTM is more suitable for forecasting
the carbon emissions trading price in Guangdong.

Table 5. GDEA prediction results.

Model MAE MSE RMSE

SVR 2.756 9.119 3.020
MLP 0.653 0.791 0.889
RNN 0.527 0.427 0.653
LSTM 0.407 0.293 0.541
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6. Discussion

Recently, some scholars have introduced machine learning and deep learning technol-
ogy into carbon price forecasting. In the existing research, this paper selects four models
as the benchmark models. The comparison between our model and these models based
on RMSE values is shown in Table 6. These models are briefly summarized here. Sun and
Huang [38] put forward a carbon price forecasting model based on EMD-VMD-LSTM. The
RMSE obtained by this model is 1.04 in the process of carbon price prediction in Hubei.
Wang et al. [39] used the VMD-SE-DRNN-GRU mixed model to predict the carbon price in
Hubei. The forecasting process includes three parts, namely, feature extraction, forecasting,
and integrated forecasting, and the RMSE of this model is 1.048. Xiong et al. [40] predicted
the carbon price in Guangdong by using the VMD-FMRVR-MOWOA mixed model and
proved that the model has a good prediction effect, with an RMSE of 0.57. The verification
shows that EEMD-LDWPSO-wLSSVM is an effective method to predict carbon price. Ac-
cording to the research of Wang et al. [41], CEEMDAN-SE-LSTM- RF can predict the carbon
price in Guangdong and achieve a good prediction effect, with an RMSE of 1.295. These
hybrid models have made an important contribution to the prediction of the carbon price.

Table 6. Comparison of carbon price forecasting methods.

Paper Time Span Model Accuracy
(RMSE)

Hubei
Sun and Huang [38] 2 April 2014–31 October 2019 EMD-VMD-LSTM 1.040

Wang et al. [39] 3 March 2014–3 April 2020 VMD-SE-DRNN-GRU 1.048
Our model 5 May 2014–22 July 2021 multivariate LSTM 0.978

Guangdong

Xiong et al. [40] 1 September
2016–11 September 2018 VMD-FMRVR-MOWOA 0.570

Wang et al. [41] 20 December
2013–27 April 2020 CEEMDAN-SE-LSTM-RF 1.295

Our model 5 May 2014–22 July 2021 Multivariate LSTM 0.541

However, all the above studies have a common feature which is that the data they used
in the modeling process is only the time series of the carbon price itself, without considering
the related variables that affect the carbon price. It is the biggest difference from them
that when we select the modeling input features, we not only consider the historical time
series data of carbon prices but also the data of crude oil, natural gas, and coal prices.
By comparing the RSME of our model with the above models, it can be concluded that the
accuracy of the multivariate LSTM model considering the influencing factors in this paper
is better than the selected mixed models.

7. Conclusions and Policy Implications

Carbon trading is considered to be an important method for reducing carbon emissions,
and setting reasonable carbon prices is beneficial to the development of the carbon trading
market. Accurate forecasting of the domestic carbon price is of great significance for
enhancing China’s position in the global carbon emission trading market and promoting
China’s carbon emission reduction targets. However, the carbon price is non-stationary
and non-linearity and is affected by many factors, which make carbon price forecasting a
challenging task. In recent years, deep learning models have been successfully applied to
many complicated nonlinear sequence predictions. Therefore, the purpose of this paper
is to forecast the carbon price in China’s carbon market based on using the Multivariate
LSTM in deep learning.

Firstly, according to the active degree of carbon trading, we choose the carbon price of
Hubei (HBEA) and Guangdong (GDEA) as the research objects. Considering that carbon
price is affected by energy price, crude oil price, natural gas price, and coal price are
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identified as three important variables affecting carbon price. Five variable data from
5 May 2014 to 22 July 2021 are collected from the Wind database and processed into two
complete data sets. There are 1704 observations in the Hubei data set and 1520 observations
in the Guangdong data set.

Secondly, the carbon prices in Hubei and Guangdong were predicted by using the
Multivariate LSTM. For comparison, this paper not only uses SVR, MLP, and RNN to
forecast the same data but also compares the forecasting results of Multivariate LSTM with
the existing research. When forecasting HBEA values, the Multivariate LSTM prediction
results indicate that MAE is 0.617, MSE is 0.957, and RMSE is 0.978. Additionally, in the
forecast of GDEA values, the prediction results of Multivariate LSTM show that MAE
is 0.407, MSE is 0.293 and RMSE is 0.541. Compared with other models, the prediction
accuracy of Multivariate LSTM is still better. In general, the Multivariate LSTM model
is more suitable for carbon price prediction, which provides a new method for carbon
price prediction.

Finally, based on the research results, the policy implications are put forward as
follows: (1) Regulators of the carbon market should pay attention to the energy price
closely related to the carbon price. In the development of the carbon trading market in
China, regulators can use changes in energy prices to predict carbon price changes, assess
the risks brought by carbon price fluctuations in advance, and put forward corresponding
preventive measures. In this way, adopting appropriate risk control measures to avoid
risks can improve the stability of the carbon trading market. (2) Enterprises should take
full advantage of the relevant information of the energy market and control the carbon
emission cost of enterprises by adjusting the energy consumption structure or improving
the energy utilization rate. When the energy price changes, enterprises can predict the
carbon price. If the carbon price is on the rise, enterprises should choose more clean energy
or develop new technologies to improve the energy utilization rate, thus reducing the
demand for carbon emissions and reducing the carbon emission cost of enterprises. (3) The
government should ensure the stability of energy prices. Our research results show that
the energy price can predict the carbon price well, so the stability of the energy price helps
the government to set the carbon price reasonably. Specifically, the government should pay
attention to improving the technical level of energy exploration and exploitation in China,
increasing the domestic energy supply, and forming a more independent energy market.
This can better control the source of carbon price fluctuations and fundamentally guarantee
the stable and healthy development of the carbon trading market.
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