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Background: Early detection of influenza activity followed by timely response is a critical component of prepared-
ness for seasonal influenza epidemic and influenza pandemic. However,most relevant studieswere conducted at
the regional or national level with regular seasonal influenza trends. There are few feasible strategies to forecast
influenza activity at the local level with irregular trends.
Methods: Multi-source electronic data, including historical percentage of influenza-like illness (ILI%), weather
data, Baidu search index and Sina Weibo data of Chongqing, China, were collected and integrated into an inno-
vative Self-adaptive AIModel (SAAIM),whichwas constructed by integrating Seasonal Autoregressive Integrated
Moving Average model and XGBoost model using a self-adaptive weight adjustment mechanism. SAAIM was
applied to ILI% forecast in Chongqing from2017 to 2018, ofwhich the performancewas comparedwith three pre-
viously available models on forecasting.
Findings: ILI% showed an irregular seasonal trend from 2012 to 2018 in Chongqing. Compared with three refer-
encemodels, SAAIMachieved thebest performance on forecasting ILI% of Chongqingwith themean absolute per-
centage error (MAPE) of 11·9%, 7·5%, and 11·9% during the periods of the year 2014–2016, 2017, and 2018
respectively. Among the three categories of source data, historical influenza activity contributed the most to
the forecast accuracy by decreasing the MAPE by 19·6%, 43·1%, and 11·1%, followed by weather information
(MAPE reduced by 3·3%, 17·1%, and 2·2%), and Internet-related public sentiment data (MAPE reduced by
1·1%, 0·9%, and 1·3%).
Interpretation: Accurate influenza forecast in areas with irregular seasonal influenza trends can be made by
SAAIM with multi-source electronic data.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Influenza
Influenza-like illness
Forecast
AI
Multi-source electronic data
iology, College of Preventive
edical University), Chongqing

Shenzhen) Co., Ltd, Shenzhen

search Center and Collaborative
us Diseases, School of Medicine,

Zhang),
il.com,

he corresponding authorship.

. This is an open access article under
1. Introduction
Influenza epidemic is a persistent threat to global public health
[1–3]. Seasonal influenza epidemic results in millions of respiratory
illness and 290,000–650,000 deaths worldwide each year [3,4]. In addi-
tion, the risk of influenza pandemic persists because the constant ge-
netic mutating may produce new strains of influenza virus against
which no previous immunity exists in the population [2,4]. Therefore,
surveillance and early detection of influenza activity followed by timely
response are essential for preparedness for seasonal influenza epidemic
and influenza pandemic [5–9]. However, owing to the time needed for
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Influenza is an acute respiratory infection caused by influenza vi-
ruses circulating in the world, which poses a significant threat to
public health and causes around 290,000–650,000 deathsworld-
wide each year. There is an urgent need for accurate and prompt
forecasts of an impending influenza emergency. Traditionally, in
epidemiology, influenza prediction is conducted through transmis-
sion mechanismmodels. The generation and collection of big data
fromdifferent sources provide new features and approaches for in-
fluenza prediction. We searched Web of Science, PubMed, and
IEEE Xplore Digital Library with the combination of terms: “influ-
enza OR flu”, “predictionOR forecast”, “epidemicOR infectious dis-
ease”, “AI OR artificial intelligence”, and “big data”, in English and
Chinese. To summarize the evidence, different sources of data
have been collected and diverse algorithms have been utilized for
tracking influenza activities and predicting the outbreak. Ginsberg
et al. first used Google search queries to detect influenza epi-
demics in the United States from 2007 to 2008. Since then, vari-
ous sources of electronic data, especially the Internet-based data,
have been harnessed to track illness activities. Paul et al. devel-
oped an influenza forecast model by combining ILI data with Twit-
ter data, and a reduction of 17–30% in forecast errors was
observed when compared to the baseline model with historical
ILI data solely. Wikipedia access logs are another tentative data
source for optimizing influenza predictions. Electronic health re-
cord data and participatory disease reports are also utilized to
broaden the range and depth of surveillance information. A variety
of machine learning algorithms have also been applied to ILI esti-
mation, including the autoregressive integrated moving average
(ARIMA), Lasso, Support Vector Regression (SVR), AdaBoost,
and deep learning techniques. However, only limited methods
adaptive to influenza forecast could capture both the seasonal pat-
tern and the irregular variations of ILI efficiently. Additionally, few
studies have focused on improving influenza forecast accuracy by
taking advantage of multi-source data.

Added value of this study

Based on the feasibility of novel Internet data and big data model-
ling techniques, we developed an approach that accurately esti-
mates the influenza activity one week ahead of official public
health reports with data frommultiple sources, and applied the de-
velopedmachine learning-basedmethodology inChongqing to val-
idate our model. Here, we provided a feasible alternative for
forecasting ILI in regions with irregular seasonal trends and
named it Self-Adaptive AI Model (SAAIM). Trained with multi-
source data, our model was able to forecast the influenza epi-
demics of Chongqing retrospectively in an out-of-sample way,
and achieved a Mean Absolute Percentage Error (MAPE) of
11·9% between 2014 and 2016. Furthermore, the model contin-
ued to perform well on the test set of the year 2017 (MAPE
7·5%). To be noted, real-time ILI forecasting was conducted in
Chongqing in 2018 and validated the accuracy and efficiency of
the model in practice (MAPE 11·9%). To our knowledge, this is
the first real-time AI-based influenza forecast model in China,
which can provide accurate real-time influenza estimates in a city
with irregular seasonal influenza trends.

Implications of the available evidence

SAAIMnot only retains the periodic pattern of the ILI% time series,
but also captures the incidental fluctuations through modelling
with exogenous multi-source predictors. Our study indicates that
the combination of XGBoost and seasonal autoregressive inte-
grated moving average (SARIMA) models with the proposed self-
adaptive method could accurately forecast influenza activities.
As indicated by the real-time application in Chongqing, our im-
proved influenza prediction model could better prepare the author-
ities and public for the upcoming influenza epidemics and limit the
catastrophic consequences of the epidemics.
Improvements on influenza forecast could arise from further anal-
ysis of influenza-related features which were identified by
SAAIM. Besides, differences in geographical patterns, the spatial
distribution of population density, and population migration may
also affect how influenza spreads in a specific region. Thus, the ac-
curacy of the forecast is expected to be improvedwith the input of
geographic and demographic data.

285K. Su et al. / EBioMedicine 47 (2019) 284–292
processing data, traditional influenza surveillance publishes influenza-
like illness (ILI) report with one to two week lag behind real time,
which is far from optimal for decision making [5,6,10].

To alleviate this information gap, lots of attempts have been made
for real-time estimation of influenza activity in the past decade. Google
Flu Trends created a new era which used Google search data to predict
ILI in the US [5,6]. Thereafter, multi-source electronic data including
Internet search data [10–12], influenza surveillance data [10],
influenza-related posts on Twitter [13–16], Wikipedia access logs [17]
and electronic health records [5,18] were integratedwithmathematical
models to track illness activities with very good predictive results.

However,most of these studieswere done at the regional or national
level with regular seasonal influenza trends, of which the estimates
were hardly translated into actionable information for local health offi-
cials to make better decisions in cities [5]. Local influenza activities are
not equivalent to those at the regional or national level, and local influ-
enza epidemics exhibit more diverse seasonal patterns [19] and are
more likely to fluctuate with local influenza-related factors, such as
weather [20,21], economic and social activity [22,23], population immu-
nity [24,25] and individual habits [26,27]. Although some studies had
constructed models to improve forecasting accuracy in cities such as
New York [28], Melbourne [29], and Hong Kong [30], efficient methods
with great accuracy are still lacking.

Chongqing is one of the leading economic centres in south-western
China, which covers approximately 82,400 km2 and has a population of
about 30 million. It is a typical city that experiences highly irregular
influenza epidemics annually, and the irregularity poses challenges for
influenza forecasts. Additionally, the public health in Chongqing has
been heavily affected by seasonal influenza A (H3N2) and A (H1N1)
pdm09 in recent years [31]. It is notable that an avian influenza A
(H7N9) virus emerged and resulted in human infections in Chongqing
in 2017 [32]. The control and prevention of influenza is of great impor-
tance to the public health. Therefore, an applicable and suitable influ-
enza forecasting method is in urgent need for real-time influenza
epidemic response.

To address this critical public health issue, we developed a new Self-
Adaptive AI Model (SAAIM) by integrating a time-series model and a
nonlinear model through a self-adaptive AI weight adjustment mecha-
nism. SAAIM can track seasonal patterns and irregular variations of ILI
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activity in Chongqing with local multi-source data including official in-
fluenza surveillance reports, weather information and Internet-based
data. To our knowledge, this is the first real-time AI-based influenza
forecast model in China, which can provide accurate real-time influenza
estimates in a city with irregular seasonal influenza trends.

2. Materials and methods

2.1. Multi-source data collection

In this study, the forecasting target is the real-time weekly percent-
age of influenza-like illness (ILI%) in Chongqing, which is defined as the
percentage of outpatients diagnosed with influenza-like illnesses
among all outpatients each week. Based on literature review
[5,6,10–12,14,17–21,29,30,33–35] and expert consultant, we collected
multi-source data including historical ILI%, weather data, Baidu search
index, and Sina Weibo data of Chongqing for model construction.

The ILI data of Chongqing was collected from Chinese surveillance
system for influenza. ILI surveillance has been conducted in seven senti-
nel hospitals since October 2009, which were selected based on accessi-
bility to patients, qualifications of medical staff, adequate specimen
storage capacity, and thewillingness of the physicians and nurses to par-
ticipate voluntarily in the surveillance program. The hospitals included
two urban comprehensive medical institutions (The First Affiliated Hos-
pital of Chongqing Medical University and Banan Central Hospital), one
urban paediatric hospital (Children's Hospital of ChongqingMedical Uni-
versity) and four rural comprehensive medical institutions (Qianjiang
CentralHospital, ChongqingThreeGorgesCentralHospital, FulingCentral
Hospital and Yongchuan Hospital of Chongqing Medical University). ILI
surveillance methods were described in a previous study [31].

Real-time weather and weather forecast data were collected from
China Meteorological Administration (https://tianqi.911cha.com/). The
Baidu Index is a statistical indicator that represents the search volume
of demanding keywords or phrases based on Baidu's search query logs
(https://index.baidu.com), which is the largest search engine in China.
We summarized 81 influenza-related keywords that might correlate
with the trend of influenza epidemics (Appendix Table S1). The key-
words include early influenza symptoms, such as ‘sore throat’ and
‘dizzy’, relevant diagnoses, medicines, disease prevention and treat-
ment, as well as phrases closely related to influenza, such as ‘immunity’
and ‘body temperature’. The Baidu Indexes used in this study were re-
stricted to Chongqing municipality.

Sina Weibo is one of the most popular microblogging services in
China. We tracked the number of daily tweets containing influenza-
related keywords (63 in total) published from Chongqing municipality
on Sina Weibo. The keywords were adapted from those we developed
for Baidu Index, with some phrases infrequently seen on Weibo
removed.

All the exogenous data were collected on a daily basis from 2012 to
2018 and included as input data. ILI% values of the previous threeweeks,
their averages, standard deviations, as well as the ILI% values in corre-
sponding historical weeks of the past three years were also included
in our model. Each kind of input data was converted to features for ILI
forecasts (Appendix Table S1). We calculated the weekly maximums,
minimums, averages, and variations for every numeric weather vari-
able, and comparatively counted theweekly frequency of every categor-
ical weather variable as weather features. In addition, we included the
difference of weather features between the real-time week and previ-
ous weeks. For Baidu Index and Sina Weibo tweet counts, the weekly
aggregate for each keyword was considered respectively. Moreover,
the feature list included the year, month andweek of the forecast week.

2.2. Model construction

SAAIM was constructed by integrating a time-series model and a
nonlinear model. The time-series model is the SARIMA model, and the
non-linear model is an optimized tree model called XGBoost. The final
output of SAAIM is the self-adaptive weighted sum of base model re-
sults, and the weights were updated dynamically in the light of their
historical forecast performance with the concept of Kalman Filter [36],
as shown in Eq. (1). Thus, the output of SAAIM, or the posteriori
estimate of the process state, was inclined to the base model that is cur-
rently more accurate.

y ¼ yx þ Kk yA−Hyxð Þ ð1Þ

In the equation, yA is the prediction of the SARIMA model at the
week k, which is considered as ameasurement of the state; yx is the pre-
diction of XGBoost model at the week k, which is thought to be a prior
estimate of the state; H represents themeasurement gain in the Kalman
Filter. The noisy measurement, i.e. the prediction of SARIMA in our
study, is of the state itself, so H equals one [36]. Kk is the Kalman gain,
which determines the weights of SARIMA and XGBoost in SAAIM. The
iterative formula of Kk, which minimizes the posteriori estimate error
covariance in Kalman Filter, is

Kk ¼
P−
k HT

HP−
k HT þ R

¼ P−
k

P−
k þ R

ð2Þ

where Pk
− represents the covariance of the priori estimate calculated

from

P−
k ¼ Pk−1 þ Q ð3Þ

The historical prediction error variances of SARIMA and XGBoost
were assigned to the measurement noise variance R and the process
noise variance Q respectively. As the predictions of SARIMA performed
more stable than XGBoost on time series data in our study, the priori es-
timate error covariance at the week k Pk

− was estimated from incorpo-
rating the historical prediction error variance of XGBoost and the
covariance of posteriori estimate (i.e. the prediction of the ensemble
model SAAIM) error at previous moment Pk−1, which increased
the weight of SARIMA to allow for the recent historical performance of
the ensemble model. SAAIM iteratively updates the Kalman gain Kk

using Eq. (2) to adjust theweights of basemodels on the basis of thehis-
torical performance (Appendix Page 1).

2.3. Feature selection

Primary feature selection included two steps. Before model training,
features with only a single unique value (zero variation features) in the
training dataset were identified and removed. The correlation analysis
between individual features and ILI% was then conducted, and features
with no significant correlation were further eliminated.

After the primary screening, different strategies of feature selection
were used for XGBoost and SARIMA individually according to the prin-
ciples of the models. Given that feature subsampling was used to pre-
vent over-fitting in XGboost [37], we counted on the XGBoost model
itself to select the important features during the training process. The
importance threshold for selecting features in XGBoost was considered
as a hyper-parameter whichwas determined by cross-validation on the
training dataset.

Exogenous features were selected for SARIMA. Firstly, all retained
features were fed to a LASSO regression model, and the features with
the absolute value of average coefficients larger than 0·01 were kept.
Then, the final exogenous features used in SARIMA model were deter-
mined by stepwise regression with the evaluation metric of the Akaike
information criterion (AIC).

https://tianqi.911cha.com/
https://index.baidu.com
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2.4. Model assessment

To validate the effectiveness of SAAIM for influenza forecasting,
three additional models were constructed for comparison: (a) Lasso
(Baidu_index), a Lasso regressionmodel built with Baidu Index features
solely, whichwas inspired by the idea of Google Flu Trends [6]; (b) Lasso
(ILI + Baidu_index), a Lasso regression model that used historical ILI%
values and Baidu Index features, which was derived from ARGO [10];
(c) Long Short-termMemory (LSTM), a state-of-the-art tool for long se-
quencemodelling [38]. The relatedmodel parameterswere described in
the Appendix.

Furthermore, the estimates of SAAIM were compared with those
generated by modified SAAIM with individual feature groups left out
separately, including historical ILI% values, weather, and Internet-
based public sentiment data (Baidu Index and Sina Weibo tweets), to
validate the effectiveness of different data sources.

As for time series forecast, one-step-ahead rolling-origin-
recalibration evaluation [39]was adopted in this study, so all themodels
were dynamically retrained weekly with updated data. Data from 2012
to 2016 were used as the training set. Retrospective estimates of influ-
enza activity were performed between 2014 and 2016 in an out-of-
sample fashion. In order to determine the optimized training strategy
for each model, we tested all models with both a two-year rolling win-
dow and a fixed-origin expanding window in the light of a previous
study [10]. For each model, the predictive performance was better
when the MAPE value was smaller, and the corresponding training
strategy was adopted. Based on the test results (Appendix Table S2), it
turned out that LASSO and XGBoost models were more suitable to be
trained with a two-year rolling window (i.e. data from the most recent
104 weeks) and a step size of one week, while LSTM and SARIMA
models performed better with data from the first week of 2012 to the
previous week of estimation. All the models were tested on a holdout
validation period from 2017 to 2018. To be noted, SAAIM was applied
to real-time forecast since the 12th week of 2018.

Four accuracy metrics were applied to evaluate the performance of
the models: root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE) and Pearson correla-
tion coefficient (CORR).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

ŷi−yið Þ2=n
vuut

MAPE ¼ 1=nð Þ
Xn
i¼1

j ŷi−yi j =yi
Fig. 1. Time series of influenza-like illness perc
MAE ¼ 1=nð Þ
Xn
i¼1

j ŷi−yi j

CORR ¼ cov Ŷ;Y
� �

= σ ŶσY
� �

In these equations, ŷi represents the estimation of the models at ith

week and yi is the true value. As RMSE, MAE and MAPE approach zero
and CORR approaches one, the result becomes more accurate.

2.5. Ethical considerations

The ILI surveillance protocol was approved by the National Health
Commission (Previously called Ministry of Health) of the People's Re-
public of China as part of the monitoring of disease with epidemics.
The studywas approved by the Ethics Committee of the ChongqingMu-
nicipal Centre for Disease Control and Prevention. No experiment was
done on humans or animals. All data was desensitized and would not
be associated with any individual.

3. Results

3.1. Influenza activity in Chongqing

During the surveillance from 2012 to 2018, a total of 17,813,114 pa-
tient visits were recorded in the selected outpatient departments of the
seven sentinel hospitals, with an average of 2,544,731 patient visits
every year. Among these visits, 189,831 (1·1%) were ILI patients. ILI
cases were reported throughout the year in Chongqing. However, ILI%
showed an irregular seasonal trend (Fig. 1). Although ILI cases fre-
quently peaked at the beginning and the middle of the year, they
might peak twice within a short period of time. Moreover, there were
shifts in peak times, outbreak intensity, duration, and time from onset
to peak from year to year.

3.2. Performance on influenza forecast by using SAAIM

Overall, SAAIM produced smaller prediction error and less lag be-
tween the prediction and the true value (Fig. 2). Moreover, the esti-
mates of SAAIM fitted the CDC-reported values better than other
currently available models during influenza epidemic periods. SAAIM
showed good approximate epidemic peak values (Fig. 2C) and the
onset and end of the epidemic period (Fig. 2D) as well as the real-time
forecasting period (Fig. 2E).
entages in Chongqing, China, 2012–2018.



Fig. 2. Estimation results of SAAIM in comparison of referencemodels. (A) The estimated ILI% values from SAAIM (thick red), comparingwith the true CDC's ILI percentages (thick black) as
well as the estimates from Lassomodelwith Baidu Index (blue), Lassomodelwith Baidu Index plus historical ILI% values(orange) and LSTMmodel (green) between thefirst week of 2014
and the last week of 2018. (B) The estimation error, defined as estimated value minus the CDC's ILI activity level. (C-E) Zoomed-in plots for estimation results in different study periods.
(C) The 2014 flu season. (D) The 2015 flu season. (E) The real-time prediction of ILI percentages 1 week before official publication from March 25th, 2018 to December 30th, 2018.
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SAAIM uniformly outperformed all other tested models in the
performance metrics consisting of RMSE, MAPE, MAE, and correlation
(Table 1). During the period from 2014 to 2018, SAAIM (RMSE =
0·175, MAPE = 0·110, MAE = 0·117) reduced 17% RMSE, 26%
MAPE, 23% MAE compared to the LASSO regression with ILI% values
and Baidu index (RMSE = 0·211, MAPE = 0·149, MAE = 0·152),



Table 1
Performance metrics of SAAIM compared to reference models.

2014–2018 2014–2016 2017–2018 2014 2015 2016 2017 2018

RMSE
SAAIM 0.175 0.183 0.161 0.221 0.188 0.130 0.083 0.212
LASSO (ILI + Baidu_index) 0.211 0.230 0.179 0.286 0.223 0.163 0.101 0.232
LASSO (Baidu_index) 0.381 0.416 0.322 0.437 0.478 0.314 0.313 0.330
LSTM 0.206 0.218 0.187 0.273 0.219 0.142 0.098 0.246

MAPE
SAAIM 0.110 0.119 0.097 0.114 0.144 0.099 0.075 0.119
LASSO (ILI + Baidu_index) 0.149 0.171 0.115 0.169 0.201 0.143 0.100 0.131
LASSO (Baidu_index) 0.340 0.375 0.288 0.283 0.508 0.331 0.351 0.225
LSTM 0.134 0.144 0.119 0.136 0.179 0.116 0.100 0.138

MAE
SAAIM 0.117 0.128 0.101 0.165 0.134 0.086 0.062 0.140
LASSO (ILI + Baidu_index) 0.152 0.175 0.117 0.224 0.179 0.122 0.081 0.152
LASSO (Baidu_index) 0.314 0.356 0.251 0.373 0.427 0.268 0.268 0.234
LSTM 0.143 0.157 0.122 0.205 0.169 0.097 0.079 0.165

Correlation
SAAIM 0.892 0.905 0.845 0.860 0.845 0.652 0.770 0.788
LASSO (ILI + Baidu_index) 0.843 0.855 0.799 0.762 0.792 0.475 0.684 0.732
LASSO (Baidu_index) 0.509 0.579 0.132 0.217 0.376 0.273 −0.075 0.245
LSTM 0.843 0.858 0.789 0.784 0.773 0.552 0.735 0.729

Boldface highlights the best performance for each metric in each study period.
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and 15% RMSE, 18% MAPE, 18% MAE compared to LSTM
model (RMSE = 0·206, MAPE = 0·134, MAE = 0·143). Meanwhile,
the influenza forecast of SAAIM achieved the highest correlation
coefficient with the reported ILI activities. It should be noted that
in the real-time influenza forecast application, SAAIM still had
good accuracy metrics and performed best among all the tested
models.

The prediction delaywas quantified by the combination of the time-
shift parameter, which describes how much the prediction curve slides
along the time axis comparing with the true value curve, and the RMSE
associated with the time-shift parameter (Appendix Page 1). LASSO
(Baidu_index) model showed less time-shift compared to SAAIM on
the training set, but a higher delay score due to the high RMSE of the
model (Appendix Table S3 and Fig. S1). Collectively, SAAIM showed
the smallest prediction delay score during the period of 2014–2016
(delay score = 0·136) and 2017–2018 (delay score = 0·052) respec-
tively, and reached the overall delay score 0·122 from 2014 to 2018
(Appendix Table S3).
Table 2
Performance metrics of prediction from SAAIM with different groups of features as input or no

2014–2018 2014–2016 2017–2018

RMSE
SAAIM 0.175 0.183 0.161
SAAIM _no_weather 0.218 0.214 0.214
SAAIM _no_sentiment 0.190 0.198 0.177
SAAIM _no_ILI 0.384 0.375 0.396

MAPE
SAAIM 0.110 0.119 0.097
SAAIM _no_weather 0.169 0.152 0.194
SAAIM _no_sentiment 0.122 0.130 0.108
SAAIM _no_ILI 0.334 0.315 0.363

MAE
SAAIM 0.117 0.128 0.101
SAAIM _no_weather 0.168 0.160 0.180
SAAIM _no_sentiment 0.130 0.141 0.112
SAAIM _no_ILI 0.316 0.309 0.326

Correlation
SAAIM 0.892 0.905 0.845
SAAIM _no_weather 0.837 0.871 0.694
SAAIM _no_sentiment 0.870 0.885 0.817
SAAIM _no_ILI 0.488 0.635 −0.063

Boldface highlights the best performance for each metric in each study period.
3.3. Contribution of different data sources to SAAIM

We evaluated the contribution of different data sources to SAAIM.
Individual features were categorised into three feature groups, includ-
ing ILI, weather, and public sentiment. Each groupwas removed respec-
tively from SAAIM and the outputs were compared to original SAAIM
(Table 2; Appendix Table S4 and Fig. S2). Time-series information (i.e.
the historical ILI data) contributed the most to the prediction. Removal
of historical ILI data resulted in a 119% increase in RMSE from 0·175 to
0·384 and 204% increase in MAPE from 0·110 to 0·334. Removal of
weather features increased 25% and 53% respectively in terms of RMSE
andMAPE, indicating that weather features, such as humidity and tem-
perature variation (Appendix Fig. S3), are essential for accurate esti-
mates of the subtle changes of influenza epidemics (Fig. 3). And a
majority of weather features have been selected by XGBoost in our
model as important features. The average temperature of the previous
week, in particular, ranked second in terms of the contribution to the
model performance (Appendix Fig. S3).
t.

2014 2015 2016 2017 2018

0.221 0.188 0.130 0.083 0.212
0.260 0.214 0.154 0.213 0.236
0.250 0.191 0.138 0.086 0.236
0.378 0.423 0.315 0.454 0.330

0.114 0.144 0.099 0.075 0.119
0.135 0.193 0.126 0.246 0.141
0.123 0.157 0.112 0.084 0.132
0.213 0.397 0.332 0.506 0.220

0.165 0.134 0.086 0.062 0.140
0.197 0.174 0.108 0.194 0.165
0.186 0.144 0.094 0.067 0.156
0.301 0.352 0.273 0.400 0.253

0.860 0.845 0.652 0.770 0.788
0.794 0.811 0.599 0.645 0.719
0.813 0.831 0.567 0.768 0.746
0.497 0.411 0.370 0.266 0.488



Fig. 3. Importance analyses of different feature groups. SAAIMwas constructedwith four kinds of features: historical ILI, weather, sentiment and time. (A) The estimates of SAAIMwithout
the climate features (blue), the public sentiment features containing Baidu Index andWeibo (green), without the historical ILI features (orange) are drawn. The estimated ILI% values of
SAAIMwith all features (red) and the true CDC's ILI activity level (black) are shown as references. (B) The estimation error, defined as estimated valueminus the CDC's ILI activity level. (C-
E) Zoomed-in plots for estimation results in different study periods. (C) The 2014 flu season. (D) The 2015 flu season. (E) The real-time prediction of ILI percentages 1 week before official
publication from March 25th, 2018 to December 30th, 2018.

290 K. Su et al. / EBioMedicine 47 (2019) 284–292
Similarly, removal of either historical ILI data orweather features led
to a drastic increase in prediction delay. The delay scores amplified
around 2-fold and 6-fold in the SAAIM trained without historical ILI
data compared to the original SAAIM during the periods of 2014–2016
and 2017–2018, and amplified around 6-fold and 15-fold in the
SAAIM trained without weather features compared to the original
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SAAIM during the periods of 2014–2016 and 2017–2018 (Appendix
Table S4).

Internet-based public sentiment data, including Baidu Index and
Sina Weibo, had the least impact on SAAIM. This observation is consis-
tent with our finding that the LASSO model constructed with Baidu
Index alone was not sufficient to predict ILI activity efficiently (Fig. 2).
However, removal of web search and social media features did increase
the prediction delay (Appendix Table S4) and marginally decreased the
accuracy of SAAIM (Table 2), suggesting that the Internet-based public
sentiment data also contributed to the forecast.

3.4. Statistical significance test

According to previous researches [40,41], computing prediction in-
tervals is important to indicate the likely uncertainty in point forecasts.
Using the bootstrap strategy specialized for time series proposed by
Lorenzo Pascual [42] (Appendix Page 2), we obtained the 95% predic-
tion intervals of SAAIM compared with all other models, which were
constructed by the 2·5% and 97·5% percentage points of the bootstrap
distribution function of the one-step-ahead forecast. The results indi-
cated that 96·2% of the true ILI% data points were enclosed within the
prediction intervals from 2017 to 2018 (Appendix Fig. S4), which was
very close to the desired value of 95%. In addition, we compared the av-
erage margin of the 95% prediction intervals of SAAIM on the test
dataset with all other reference models. As SAAIM shows an error re-
duction of at least 15% over othermodels, the averagemargin of the pre-
diction intervals confirms the statistical significance of these results,
with a minimum margin reduction of 15·57% (Appendix Table S5).

4. Discussion

Real-time prediction of influenza epidemics has been a great chal-
lenge in areas with irregular influenza activities, such as epidemic
peak shift and reoccurring peaking in short periods, which hindered
timely influenza epidemic response. In this study, we constructed an
innovative AI model (SAAIM) with multi-source data to forecast the in-
fluenza activity in Chongqing, south-western China, which is a repre-
sentative of cities with irregular influenza activities.

We (i) collected multi-source data based on literature review and
expert consultant, (ii) derived features that could contribute to the pre-
diction based onmultiple statistic values from various data sources, (iii)
extracted valid features via the feature selection methods in the pro-
posed methodology, (v) merged the SARIMA model and the XGBoost
model into an integratedmodelwith the concept of Kalman Filter, an al-
gorithm that dynamically updates the weights of the predictions from
different base models.

SARIMA is a prevalent time-series forecasting model and can un-
cover the autocorrelation in time series, while XGBoost model is an op-
timized tree-based model and can display the nonlinear relationship
between features and ILI%. As a result, our method not only retains the
irregular trends of the ILI% time series but also captures the incidental
fluctuations. In addition, we incorporated multi-source data including
historical ILI%, weather data, Baidu search index, and Sina Weibo
data of Chongqing into our model based on previous studies
[5,6,10–12,14,17–21,29,30,33–35]. The diverse data contributed to re-
trieving miscellaneous influenza-related features and thus accurately
constructing the model.

Ensemble approaches have been adopted to improve model perfor-
mance in many studies. While simple averaging methods have been
widely applied [33,43–46], methods involving performance-based
weighting system have also been proposed [47]. Our self-adaptive en-
semble approach integrated the advantages of singlemodels by dynam-
ically updating the weights of the predictions from different base
models, and outperformed the simple averaging method (Appendix
Table S6).
SAAIM has been applied to real-time forecast since the 12th week of
2018 in Chongqing and reached a MAPE of 11·9%, which validated the
forecast capacity of SAAIM in practice. The estimates by SAAIM have
provided guidance on real-time influenza prevention and control to
Chongqing health authorities. The reliable estimates and guidance
have enabled authorities tomake timely and scientific decisions onpub-
lic health resources allocation and to prepare hospitals for the massive
influx of influenza patients during flu season. Furthermore, the service
of providing influenza activity forecast by the intelligent model could
improve public health in the long run by arousing public awareness of
infectious disease prevention and control.

Moreover, SAAIM could enlighten both theoretical and operational
influenza forecasting studies by evaluating feature importance in the
forecast and revealing novel factors that related to influenza epidemics.
The features in the model could provide public health workers with
some clues for investigating the potential reasons for the epidemic in-
crease. The results showed that historical ILI activity one week prior to
real time had the highest ranking score compared with all other fea-
tures, suggesting that the ILI activity is highly autoregressive.

Interestingly, we identified three features that contributed signifi-
cantly to the ILI prediction, including the foggy day counts of the predic-
tion week, the overcast day counts of the prediction week, and the
difference in average temperature between the prediction week and
the priorweek. Although theweather could affect influenza virus viabil-
ity and the spread of influenza [20,21], to our knowledge, this is the first
influenza forecast study that connects foggy and overcast weather with
influenza activity, of which the mechanism remains to be studied.

SAAIM could be further improved by incorporating data sources
with higher granularity, such as personal electronic medical records
and demographic surveillance system. As in metropolises such as
Chongqing, the spatial distribution of population density, population
migration, and geographical features may affect the spread of influenza.
Therefore, SAAIM is being expanded to and will be further tested in
more major cities in China. In conclusion, our study provides a feasible
methodology for irregular influenza activity forecast.
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