
Computational and Structural Biotechnology Journal 18 (2020) 1811–1818
journal homepage: www.elsevier .com/locate /csbj
COSMO: A dynamic programming algorithm for multicriteria codon
optimization
https://doi.org/10.1016/j.csbj.2020.06.035
2001-0370/� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: taneda@eit.hirosaki-u.ac.jp (A. Taneda).
Akito Taneda a,⇑, Kiyoshi Asai b
aGraduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
bGraduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan

a r t i c l e i n f o
Article history:
Received 3 April 2020
Received in revised form 16 June 2020
Accepted 20 June 2020
Available online 30 June 2020

Keywords:
Constraints
Codon adaptation index
Codon pair bias
Hidden stop codon
Multi-objective genetic algorithm
Codon optimization/deoptimization
a b s t r a c t

Codon optimization in protein-coding sequences (CDSs) is a widely used technique to promote the
heterologous expression of target genes. In codon optimization, a combinatorial space of nucleotide
sequences that code a given amino acid sequence and take into account user-prescribed forbidden
sequence motifs is explored to optimize multiple criteria. Although evolutionary algorithms have been
used to tackle such complex codon optimization problems, evolutionary codon optimization tools do
not provide guarantees to find the optimal solutions for these multicriteria codon optimization problems.
We have developed a novel multicriteria dynamic programming algorithm, COSMO. By using this algo-

rithm, we can obtain all Pareto-optimal solutions for the multiple features of CDS, which include codon
usage, codon context, and the number of hidden stop codons. User-prescribed forbidden sequence motifs
are rigorously excluded from the Pareto-optimal solutions. To accelerate CDS design by COSMO, we intro-
duced constraints that reduce the number of Pareto-optimal solutions to be processed in a branch-and-
bound manner. We benchmarked COSMO for run-time and the number of generated solutions by adapt-
ing selected human genes to yeast codon usage frequencies, and found that the constraints effectively
reduce the run-time. In addition to the benchmarking of COSMO, a multi-objective genetic algorithm
(MOGA) for CDS design was also benchmarked for the same two aspects and their performances were
compared. In this comparison, (i) MOGA identified significantly fewer Pareto-optimal solutions than
COSMO, and (ii) the MOGA solutions did not achieve the same mean hypervolume values as those pro-
vided by COSMO. These results suggest that generating the whole set of the Pareto-optimal solutions of
the codon optimization problems is a difficult task for MOGA.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein-coding regions of messenger RNAs have nucleotide-
level redundancy by virtue of synonymous codons coding for the
same amino acid. In general, the frequencies of synonymous
codons are not equally distributed, but biased due to evolutionary
pressure. This bias, which varies in accordance with species, is
called codon bias [1]. Since a codon usage frequency different from
that of a host organism may cause an undesirable inefficiency of
protein synthesis, codon optimization has become a routinely uti-
lized computational design tool for heterologously expressing non-
endogenous genes in host organisms. In addition, it has been
reported that codon pair usage, which is also referred to as codon
context, has species-specific bias [2] and that these biases may
affect the efficiency of protein production [3–5]. Recently, a com-
putational resource providing codon pair usage data has also been
developed [6]. Furthermore, while optimal codons correspond to
abundant tRNAs that promote efficient expression of the protein
products, it is known that non-optimal codons are also important
to ensure that protein structure and function are maintained: e.g.
non-optimal codons have been shown to play an important role
in co-transcriptional protein folding, circadian rhythms and mRNA
decay [7,8]. Thus, elucidating the effect of codon usage and codon
pair usage on translation efficiency is fundamental to improving
the outcomes of synthetic biology [1].

To date, several tools that can be used for codon optimization
have been proposed (for a review, see [9]). Since multiple features
(including codon usage frequency, codon context, and sequence
motif) of protein-coding sequence (CDS) may simultaneously affect
protein expression, codon optimization could be viewed as a multi-
objective optimization problem in which the solution space should

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.06.035&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2020.06.035
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:taneda@eit.hirosaki-u.ac.jp
https://doi.org/10.1016/j.csbj.2020.06.035
http://www.elsevier.com/locate/csbj

1812 A. Taneda, K. Asai / Computational and Structural Biotechnology Journal 18 (2020) 1811–1818
be explored in an effort to find Pareto-optimal solutions [10]. In
this context, multi-objective evolutionary algorithms have been
proposed and utilized to design coding sequences under multiple
criteria [11–13]. Although these multi-objective evolutionary
approaches provide useful design results with reasonable compu-
tational costs, these heuristic algorithms do not guarantee to out-
put optimal solutions.

In addition to these heuristics, methods that use exact
approaches have also been applied to codon optimization. Condon
and Thachuk [14] developed a dynamic programming (DP) algo-
rithm designed to obtain optimal solutions for CDS design prob-
lems in which both the codon usage frequency score, codon
adaptation index (CAI) [15], and the numbers of forbidden and
desired sequence motifs are taken into account by introducing a
priority based order for these objective functions (OFs). CCTool is
another DP implementation for codon optimization, which opti-
mizes the codon context of a coding sequence [16]. These DP algo-
rithms are based on a single-objective optimization framework and
are not designed to output Pareto-optimal solutions for problems
with multiple criteria. In the present study, we propose a novel
DP algorithm, COSMO (Codon Optimization Strategy with Multiple
Objectives), for solving multicriteria codon optimization problems.
This algorithm is deterministic and guarantees that all Pareto-
optimal solutions are obtained. The OFs that can be optimized
using COSMO include CAI, codon pair bias (CPB), and the number
of specified short sequence motifs such as off-frame hidden stop
codons (HSC). Forbidden sequence motifs, such as restriction sites
and polynucleotide tracts, can also be specified and eliminated
from the final solutions via the sequence constraint functions
implemented in COSMO. Efficiency and applicability of the pro-
posed DP algorithm are demonstrated by the adaptation of human
CDSs to yeast codon frequencies in the results and discussion sec-
tion. In this performance demonstration, benchmarking for the
number of Pareto-optimal solutions and run-time is performed to
compare the design performance of COSMO and that of a standard
multi-objective genetic algorithm.
2. Methods

Let us denote the input amino acid sequence as
A ¼ a1; a2; . . . ; aL, where ai is the i-th amino acid and L is the length
of the amino acid sequence. A sequence of codons for A is defined
as C ¼ c1; c2; . . . ; cL with ci 2 kðaiÞ, where kðaiÞ is the set of codons
coding for amino acid ai. Since a single codon is a nucleotide triplet,
the nucleotide sequence S corresponding to C is expressed as
S ¼ s1; s2; . . . ; s3L, where si 2 fA;C;G;Ug.

The multicriteria codon optimization problem is formulated as
follows:

Maximize FiðCÞ; i ¼ 1;2; . . . ; n;
subject to C 2 U;

�
ð1Þ

where FiðCÞ is the i-th objective function value for a sequence of
codons, C; U is the feasible decision space. This feasible decision
space is composed of possible sequences of codons that code for
the input amino acid sequence and do not have any forbidden
motifs.

COSMO also allows for the minimization of OFs which can be
performed by replacing the phrase ‘‘Maximize” in the Eq. (1) with
‘‘Minimize”.

Since, in general, there are trade-offs between the features
expressed by the OFs, the aim of the present algorithm is to obtain
Pareto-optimal solutions for a given amino acid sequence, OFs, and
forbidden sequence motifs. In multicriteria optimization, if we
maximize the OF values, the set of all Pareto-optimal solutions is
defined as follows: fx 2 / j 9= y 2 /; y dominates xg, where
‘‘y dominates x” (x; y 2 Rm and m is a natural number) means that
8i yi P xiK9i yi – xi, and / is a feasible objective space [10]. In other
words, the set of all Pareto-optimal solutions is the set of all ‘‘non-
dominated” solutions in /.

Using this notation, the set of all Pareto-optimal CDSs for the
multicriteria codon optimization problem is expressed as
fC 2 U j 9= B 2 U; FðBÞ dominates FðCÞg, where FðCÞ ¼ ðF1ðCÞ;
F2ðCÞ; . . . ; FnðCÞÞ.

Let a set of multiple features be denoted by a score vector
v 2 Rn where v i contains the value corresponding to the i-th OF.
Throughout the present paper, the terms score vector and solution
are used interchangeably. To describe the recurrence relation of
the DP algorithm, we define the vmax operator as follows:

Definition 1. vmax operator gives the non-dominated score
vectors of given sets: vmaxiV i ¼ Nð[iV iÞ, where NðVÞ indicates
the set of all non-dominated score vectors in a set of score
vectors V .
2.1. Objective and score functions

The score vector function sðch; . . . ; ciÞ is a function of a partial
codon sequence ch; . . . ; ci ð1 6 h 6 i 6 LÞ. Each score function
[logðwCAIðciÞÞ;CPSðci�1; ciÞ, or hscðci�1; ciÞ] is an element of s (the
details of these score functions are described below). Users can
select OFs from the score functions of CAI, CPB, and HSC, where
the lengths of the argument codon sequence are KCAI = 1,
KCPB = 2, and KHSC = 2, respectively. If i� hþ 1 < Kg (i.e. when
the partial codon sequence is too short), the corresponding score
is set to zero, where g indicates an OF type; if i� hþ 1 P Kg (i.e.
when the partial codon sequence is long enough), the prefix
ch; . . . ; ci�Kg is ignored, so that the corresponding score is calculated
for ci�Kgþ1; . . . ; ci.

Codon adaptation index (CAI): CAI is a measure for quantifying
the use of ‘‘fitted” codons in given genes [15]. For each amino
acid, the ‘‘fitted” codon is the most-frequently used codon. Since
the fitted codons are thought to reflect corresponding tRNA
expression levels, it is believed that the fitted codons are prefer-
entially used in highly expressed genes. Usually, CAI is computed
based on the codon frequencies in a set of (highly expressed) host
genes.

Given a sequence C of codons coding for an amino acid
sequence A, CAI is defined as follows:

CAIðCÞ ¼
YL
i¼1

wCAIðciÞ
 !1=L

; ð2Þ

wCAIðciÞ ¼ f ðciÞ
max
c2kðaiÞ

f ðcÞ ; ð3Þ

where L is the length of the amino acid sequence, wCAIðcÞ is the rel-
ative adaptiveness of codon c, and f ðcÞ indicates the frequency of
codon c in a given set of genes (e.g. highly expressed genes)
[15,17]. In the recurrence computation, logarithm of wCAI is used
as an element of the score vector function s.

Codon pair bias (CPB): CPB is the log-odds ratio for how fre-
quently each codon pair is observed compared with the expected
value:

CPBðCÞ ¼ 1
L� 1

XL
i¼2

CPSðci�1; ciÞ; ð4Þ

CPSðci�1; ciÞ ¼ log
f ðci�1; ciÞ

f ðci�1Þf ðciÞ
f ðai�1Þf ðaiÞ f ðai�1; aiÞ

; ð5Þ

A. Taneda, K. Asai / Computational and Structural Biotechnology Journal 18 (2020) 1811–1818 1813
where CPSðci�1; ciÞ (1 < i 6 L) is the codon pair score of a codon pair
ci�1; ci; ;f ðci�1; ciÞ; f ðaiÞ, and f ðai�1; aiÞ are a codon pair frequency, an
amino acid frequency, and an amino acid pair frequency, respec-
tively [16]. CPB was proposed in the context of codon deoptimiza-
tion for virus attenuation [18]. The previously described single-
objective DP, CCTool, also uses CPB as the OF for codon context opti-
mization [16]. To our knowledge, experimental reports on the cod-
ing sequences designed using CPB are relatively rare outside of its
application in virus attenuation studies. For computer scientists,
CPB is an interesting variable for multicriteria optimization, since
there can be a trade-off between CAI and CPB.

Hidden stop codons (HSC): Hidden stop codons are expected to
prevent erroneous translational frameshift by facilitating early ter-
mination [19]. The number of out-of-frame stop codons is
expressed as follows:

HSCðCÞ ¼
XL
i¼2

hscðci�1; ciÞ; ð6Þ

hscðci�1; ciÞ ¼
X

r2rstop

X
j¼1;2

Ir;jendðci�1; ciÞ; ð7Þ

where rstop is a set of stop codons. We can easily incorporate the
number of other sequence motifs that span continuous multiple
codons (e.g. CpG dinucleotide frequency) into our OFs and maxi-

mize/minimize that in a similar way. The definition of Ir;jend is
described in Eq. (9).

2.2. Dynamic programming algorithm for multicriteria codon
optimization

In order to take into account the nucleotide sequences, such as
codon pairs and forbidden sequence motifs, that span continuous
multiple codons in our DP, we introduce the parameter
k ¼ maxðKscore;KmotifÞ [14]. The Kscore is the minimum amino acid
length necessary to compute the score vector functions. This
parameter is determined by considering the user-specified OFs.
Each score function has a codon sequence as an argument, and
the maximum length of the argument codon sequences is used
as Kscore. Kmotif is the parameter for forbidden sequence motifs. It
is calculated as Kmotif ¼ maxr2MKðrÞ, where M is a set of forbidden
nucleotide sequence motifs, and

KðrÞ ¼ djrj=3e; if jrj mod 3 ¼ 1;
djrj=3e þ 1; otherwise:

�
ð8Þ

Examples of the three situations for forbidden motifs are shown
in Fig. 1.

To rigorously exclude user-specified forbidden nucleotide
sequence motifs from the designed coding sequences, the follow-
ing indicator functions are defined and utilized during the recur-
rence computation:
Fig. 1. Schematic illustration of the three situations considered in Eq. (8). Bold lines
represent boundaries between adjacent codons. (a), (b), and (c) are examples of
jrj = 4 [KðrÞ = 2], jrj = 6 [KðrÞ = 3], and jrj = 5 [KðrÞ = 3], respectively. From top to
bottom, examples for j = 1, j = 2, and j = 3 are shown. Gray boxes indicate the
nucleotides of a forbidden motif.
Ir;jendðiÞ ¼
1; if s3i�2�jrjþj; . . . ; s3i�3þj ¼ r;
0; otherwise:

�

Nr
endðiÞ ¼

X
j¼ 1;2;3f g

Ir;jendðiÞ;
ð9Þ

where i is an amino acid position; Ir;jendðiÞ indicates whether the
codon sequence ci�kþ1; . . . ; ci has the nucleotide sequence motif r
ending at the j-th nucleotide position of the ci or not, where
j 2 f1;2;3g. Nr

endðiÞ is the frequency of the forbidden motif r that
ends within the codon ci.

For an amino acid position i, let V i
c be the set of all Pareto-

optimal score vectors for a conditional subproblem of a1; a2; . . . ; ai

ðk 6 i 6 LÞ, where the condition is that the 3’ end of the coding
sequence of length k is c½i; c�, where c is an integer variable (a
codon assignment index) that specifies the suffix of the coding
sequence of the a1; a2; . . . ; ai; since the suffix is a sequence of
codons with a length of k amino acids, c½i; c� = ci�kþ1; . . . ; ci. Exam-
ples of c½i; c� are shown in Fig. 2.

The recurrence relation of our multicriteria CDS design is as
described below. The base case (i ¼ k) is as follows:

Vk
c ¼

£; if 9r 2 M;
Xk
j¼1

Nr
endðjÞ – 0;

Xk
j¼1

sðc1; . . . cjÞ; otherwise;

8>>>>><
>>>>>:

ð10Þ

where 1 6 c 6 cmax
k ; cmax

k is the maximum codon assignment index
value of the amino acid position k, and sðc1; . . . ; cjÞ is the score vec-
tor function of c1; . . . ; cj. For i > k,

V i
c ¼

£; if 9r 2 M;Nr
endðiÞ– 0;

vmaxhjsuf ½i�1;h�¼pre½i;c�fsðc½i; c�Þ þ v j v 2 V i�1
h g; otherwise;

(

ð11Þ
Fig. 2. An example of the dynamic programming recurrence. (a) The relationships
between the dynamic programming matrix elements. (b) The suffixes, c½i; c�, of the
coding sequences corresponding to the matrix elements shown in (a); e.g.
c½5;3� ¼ y1k2h1. Capital letters (M, D, Y, K, H, and N) indicate amino acid codes,
and their corresponding non-capital letters are codons: e.g. Y is tyrosine; y1 and y2

represent UAU and UAC, respectively. Each solid line indicates which matrix
element (a set of score vectors) is used as the argument of each vmax operation.
Dashed lines indicate the matrix elements that are skipped in the vmax operations
due to the occurrence of a forbidden sequence motif C AAG CA (y2k2h1 = UAC AAG
CAU and y2k2h2 = UAC AAG CAC). This is an example of k = 3.

Fig. 3. An example for the OðKÞ merge algorithm. Solid circles indicate the score
vectors of list 1, and open circles are those of list 2. The numbers indicate the order
in the sorted list of the union of the two lists. We sequentially delete dominated
solutions during scanning of the sorted list. In this example, by scanning score
vectors 1 to 9, we remove score vectors 4, 5, and 8.

1814 A. Taneda, K. Asai / Computational and Structural Biotechnology Journal 18 (2020) 1811–1818
where suf ½i� 1; h� is the suffix of the c½i� 1; h� with a length of k� 1
amino acids, and pre½i; c� is the prefix of c½i; c� with a length of k� 1
amino acids; this condition guarantees that c½i; c� and c½i� 1; h�
share the same codon sequence with a length of k� 1.

Finally, the Pareto optimal solutions of the overall problem is
given by

V L ¼ vmax16c6cmax
L

VL
c: ð12Þ

If the c½i; c� has a forbidden sequence motif that ends within the
amino acid position i, the coding sequences including the c½i; c� are
infeasible, therefore we assign £ to such a V i

c and it is not consid-
ered in the subsequent DP steps. This branch-and-bound proce-
dure guarantees that no forbidden sequence motif is included in
the coding sequences in the decision space U. An example of this
is shown in Fig. 2.

The procedure of our dynamic programming is summarized as
follows:

Algorithm 1: (Step 1) Initialize Vk
cð1 6 c 6 cmax

k Þ using Eq. (10);
the amino acid position indicator i is set to kþ 1. (Step 2) Compute

V i
cð1 6 c 6 cmax

i Þ for a1; . . . ; ai with Eq. (11); during this computa-
tion, a pointer to the original score vector of position i� 1 is

assigned to each v 2 V i
c; if i < L, increment i and go to Step 2. (Step

3) After completing the sets V L
cð1 6 c 6 cmax

L Þ, we obtain all Pareto-

optimal solutions VL of the whole amino acid sequence A using Eq.
(12); the finally-designed sequences of codons can be constructed
through the backtracking starting from each score vector in VL

with the pointers assigned to the score vectors during the recur-
rence computation.

Since the score vector element is computed by summing the
logðwCAIÞ values in Eqs. (10) and (11), the OF value for CAI is

obtained as FCAIðCÞ ¼ exp ðvL
CAIÞ

1=L, where vL
CAI is an element of a

score vector vL 2 VL. The OF value for CPB is obtained as
FCPBðCÞ ¼ vL

CPB=ð1� LÞ, where vL
CPB is an element of vL. The OF value

for HSC FHSCðCÞ is vL
HSC, which is an element of vL.

2.2.1. Merging sets of non-dominated score vectors
The vmax operation used in the recurrence computation merges

sets of non-dominated score vectors to obtain the non-dominated
vectors in their union. This merging is done by repeatedly merging
two sets (e.g. when V1;V2 and V3 are merged, first V1 and V2 are
merged, then its result [i.e. non-dominated solutions in V1 [V2]
and V3 are merged). To compute the non-dominated vectors for
given sets of score vectors, we use an OðKÞ algorithm for the prob-
lems with two objective functions, where K is the total number of
solutions. The OðKÞ algorithm is based on the algorithm described
in the ‘‘Maxima” section of [20].

To simplify the explanation, we assume no duplicated score
vectors are included in the two lists of score vectors to be merged
(duplicated score vectors can be allowed by slightly modifying the
following procedure). First, we sort the union of the two lists each
of which contains score vectors that are pre-sorted in descending
order of OF1 values (if the OF1 values tie, the corresponding score
vectors are sorted in descending order of OF2 values). By using the
pre-sorted lists, this sorting is done in linear time with respect to
the number of elements in the lists. Then, we set the OF2 value
of the score vector at the head of the sorted list of the union to
ymax, and scan the sorted list from the head. During the scanning,
every time we meet a score vector with an OF2 value that is lower
than or equal to ymax, we delete the score vector from the sorted
list; otherwise, we update ymax by the new OF2 value. After finish-
ing the scanning, we obtain a set of non-dominated score vectors
that are sorted in descending order of OF1 value. An example of
the merge algorithm is shown in Fig. 3.
2.3. Correctness of the dynamic programming algorithm

As shown in the paper of the structural RNA alignment by mul-
ticriteria DP [21], the correctness of the multicriteria DP is shown
by proving (i) deletion of dominated intermediate solutions during
the recurrence computation does not delete any Pareto-optimal
solutions, and (ii) all feasible intermediate solutions are considered
by the recursion. These factors guarantee that all Pareto-optimal
solutions of the overall problem are generated by the multicriteria
DP algorithm.

Theorem 1. Algorithm 1 produces all Pareto-optimal protein-coding
sequences in the feasible decision space for a given amino acid
sequence A, score vector function (OFs) s, and a set of forbidden
sequence motifs M.
Proof. (i) As shown in the first case of the proof of Theorem 2 in
[21], multicriteria DP algorithms in which the solutions are gener-
ated by adding a score vector to each solution of the corresponding
subproblems satisfy the monotonicity (if a solution a dominates a
solution b in a subproblem, aþ s dominates bþ s in a larger prob-
lem, where s is a score vector). As can be seen from Eq. (11), the
multicriteria codon optimization algorithm satisfies the mono-
tonicity (s is added to each v). In the multicriteria DP that satisfies
the monotonicity, addition of any score vector to a dominated solu-
tion in a subproblem never produces Pareto-optimal solutions in
larger problems. Therefore, deletion of dominated solutions in each
subproblem does not affect the Pareto-optimal solutions of the
overall problem.

(ii) Let us consider a recursion equation derived by replacing

the vmax operator in Eq. (11) by union. If we assume that each V i�1

in Eq. (11) contains all feasible solutions of the corresponding
subproblem, this replaced recursion gives all feasible solutions of a
subproblem (here we call it subproblem A) based on all feasible
solutions of all subproblems that share the partial codon sequence
with subproblem A and that are located just before subproblem A
in terms of amino acid position. All infeasible solutions (those that
violate the forbidden sequence motifs) are detected and deleted by
checking the Nr

end in Eqs. (10) and (11).
Since the monotonicity holds as proved in (i), it is sufficient to

keep the Pareto-optimal solutions of each subproblem in V during
the recurrence computation. Hence Eq. (11) considers all feasible
solutions and gives all Pareto-optimal solutions of each
subproblem. h

A. Taneda, K. Asai / Computational and Structural Biotechnology Journal 18 (2020) 1811–1818 1815
2.4. Constraints

To reduce the computational costs by focusing on the solutions
satisfying given constraints, we developed a pruning technique. To
prune the states in the recurrence computation, we compute the

upper bound of each state. For each v 2 V i
c, elements Ug of the

upper bound score vector are computed as

UCAI ¼ exp ðvCAI þ v�
CAIðaiþ1; . . . ; aLÞÞ1=L; ð13Þ

UCPB ¼ ð1=ðL� 1ÞÞðvCPB þ v�
CPBðai; . . . ; aLÞÞ; ð14Þ

UHSC ¼ vHSC þ v�
HSCðai; . . . ; aLÞ; ð15Þ

where g indicates an OF type, and vg is an element of
v; ;v�

gðaiþ1; . . . ; aLÞ is the maximal score of g for an amino acid
sequence aiþ1; . . . ; aL. The maximal score v�

CAIðaiþ1; . . . ; aLÞ isPL
j¼iþ1 log 1 ¼ 0. The maximal score, v�

CPBðai; . . . ; aLÞ ¼ maxciv�
i ðciÞ,

of CPB is computed by using a simple recursion
v�

j ðcjÞ ¼ maxcjþ1
v�

jþ1ðcjþ1Þ þ CPSðcj; cjþ1Þ from j ¼ L� 1 to j ¼ i, where
the base case is v�

LðcLÞ ¼ 0 for any codon assignment cL. The maxi-
mal score of HSC can also be computed in a similar manner. These
maximal score values can be accessed in Oð1Þ time during the recur-
rence computation in Algorithm 1 by using the arrays storing the
precomputed maximal score values. If the upper bound value is
lower than a user-predefined lower bound (i.e. when the upper
bound value does not satisfy a user-predefined constraint), the state
is pruned. This is because designed CDSs through such a state are no
longer the solutions that have a score value higher than or equal to
the lower bound. Schematic illustration of the constraints is shown
in Fig. 4. A similar pruning technique based on dominance has been
utilized in the DP for bicriteria pairwise sequence alignment [22].

2.5. Complexity

The time (OðLÞ) and space (OðLÞ) complexities of unicriterion DP
codon optimization have already been analyzed in [14], where the
parameter corresponding to the parameter k of the present study is
treated as a constant. By (i) replacing the max operation in the uni-
criterion DP codon optimization by the merge algorithm for two
Fig. 4. Schematic illustration of the constraints. Here we consider maximization of
two OFs as an example. The user-prescribed constraints (i.e. lower bounds) for the
OFs are denoted by dashed lines. In this figure, open circles represent intermediate
solutions of the DP recurrence computation, black and gray stars are the
corresponding upper bounds (this correspondence is indicated by the arrows).
The black star indicates the upper bound of the pruned solution; the gray one is not
pruned.
sets of non-dominated score vectors, (ii) treating k as a constant,

and (iii) assuming that the largest set V i
c has K elements, the bicri-

teria codon optimization algorithm requires OðLKÞ in both the time
and space complexities, where the merging of the non-dominated
solutions is performed at every amino acid position.

Multicriteria codon optimization with three or more OFs
requires higher complexities than bicriteria optimization since
the merge algorithm for three or more OFs has higher computa-
tional complexities than the linear complexities of the merge algo-
rithm for bicriteria optimization (e.g. the merge algorithm for three

or more OFs in [20] has OðKlogn�2KÞ time complexity, where n is
the number of OFs).

2.6. Availability

The codon optimization software and the benchmark dataset
are available at the COSMO website (http://rna.eit.hirosaki-u.ac.
jp/cosmo). In addition, we provide two utility Python scripts. (i)
A utility script (distNearestParetoSol.py) computes the Euclidean
distance between an input CDS sequence and each Pareto-
optimal solution in normalized objective space, then outputs the
nearest distance; this Python script is useful to examine how dis-
tant the input CDS is from the Pareto-optimal solutions. (ii)
Another utility script (gc-filter.py) computes the Euclidean dis-
tance between the ideal point and each Pareto-optimal solution
in normalized objective space (compromise programming
approach [10]), where the ideal point is the vector composed of
ideal OF values (maximum or minimum OF values in all Pareto-
optimal solutions); e.g. if all OFs are maximized, maximum OF val-
ues are the ideal OF values. For a user who needs a small number of
selected Pareto-optimal solutions, this Python script gives user-
specified number of selected Pareto-optimal solutions nearest to
the ideal point.

3. Results and discussion

We evaluated the CDS design performance of COSMO by creat-
ing a set of adapted sequences from distantly related species (hu-
man and yeast). To do this we constructed a dataset of amino acid
sequences randomly taken from the human genes available in the
UniProtKB/Swiss-Prot database [23]. The benchmark dataset con-
tains 50 amino acid sequences ranging from 80 to 495 amino acids
in length.

We designed Pareto-optimal CDSs for the dataset under various
settings with respect to forbidden sequence motifs (with or with-
out forbidden sequence motifs), constraints (with or without con-
straints), and combinations of OFs. In the present study, we
performed bicriteria codon optimization, where three combina-
tions (CAI&CPB, CAI&HSC, and CPB&HSC) of OFs were tested. Codon
and codon pair frequencies were calculated based on the 5,887
yeast genes taken from the Saccharomyces Genome Database
(SGD) [24]. These codon and codon pair frequencies were used to
compute the CAI and CPB values. As the forbidden sequence motifs,
we specified GACGTC (AatII restriction enzyme recognition motif),
AAAAA, CCCCC, GGGGG, and UUUUU in the present benchmarking.

As an example of the CDS design by COSMO, all Pareto-optimal
solutions for an amino acid sequence (004_sp_Q6UWN8_ISK6_HU-
MAN in the dataset) with a length of 81 residues are shown in
Fig. 5. In this bicriteria design (CAI and CPB were maximized),
473 Pareto-optimal CDSs were obtained. As can be seen from this
example, COSMO usually outputs a large number of Pareto-
optimal solutions even when applied to relatively short amino acid
sequences.

Fig. 6 shows the amino acid length dependencies of the number
of Pareto-optimal solutions obtained for the benchmark dataset.

http://rna.eit.hirosaki-u.ac.jp/cosmo
http://rna.eit.hirosaki-u.ac.jp/cosmo

Fig. 5. An example (an amino acid sequence with a length of 81 residues) of the
Pareto-optimal solutions computed by COSMO. Solid circles indicate the OF values
of the designed CDSs.

Fig. 7. The run-time for the designs with and without constraints for the
benchmark dataset, where CAI and CPB are maximized. Each marker indicates an
amino acid sequence. The designs optimizing CAI&HSC or CPB&HSC with the -d
option took less than two seconds (data not shown). If we do not use the -d option,
the run-times will drastically increase.

1816 A. Taneda, K. Asai / Computational and Structural Biotechnology Journal 18 (2020) 1811–1818
We designed CDSs by maximizing two of the three OFs: CAI, CPB,
and HSC. It should be noted that, in the case of the designs using
CAI&HSC or CPB&HSC, we avoid computing solutions with identical
OF values during the recurrence computation, since the
occurrences of such solutions drastically raise the number of
Pareto-optimal solutions in some cases; leading to the increased
run-time and memory usage. This non-redundant processing is
available by applying the -d option in COSMO. The run-times for
the designs optimizing CAI&CPB are shown in Fig. 7. We performed
these benchmarking analyses using a PC with Intel(R) Xeon(R) CPU
E5-2699 v4 (2.20 GHz) and 115 GBytes of memory. The run-time
for each design optimizing CAI&HSC or CPB&HSC took less than
two seconds (data not shown); this fast computation is due to
the small number of Pareto-optimal solutions generated when
applying the -d option.

In COSMO, the OF constraints can be used to reduce the number
of Pareto-optimal solutions in the output; this leads to reduced
computational costs. We tested the performance of the constraints
that specify the lower bound of each OF value. If the constraints are
applied, COSMO outputs only the Pareto-optimal solutions higher
Fig. 6. Design results for the benchmark dataset. Each marker corresponds to an
amino acid sequence. The number of Pareto-optimal solutions designed with or
without constraints is shown. The design results for CAI&HSC and CPB&HSC were
computed using the -d option. If we do not use the -d option, the numbers will
drastically increase.
than or equal to the lower bounds. Here we used 0.9 �
range + (the minimum value) as the constraints for each OF, where
range = (the OF value obtained by the weighted-sum method in
COSMO with uniform weights) � (the minimum OF value). Intro-
ducing a cutoff for the Pareto-optimal solutions with OF values
lower than these lower bounds makes sense, since we are inter-
ested in solutions with higher OF values when maximizing the
OFs. These constraints successfully decreased the number of inter-
mediate solutions in the recurrence computation and reduced the
run-time. In Fig. 6 and 7, the number of Pareto-optimal solutions
and the run-time are shown, respectively, for the designs with
and without the constraints. When we performed the bicriteria
design for CAI&CPB, CAI&HSC and CPB&HSC, on average, the run-
times of the designs with the constraints were 1.76, 1.25, and
2.21 times faster than the designs without the constraints,
respectively.

If we do not specify forbidden sequence motifs, the run-time

may be shorter, since the number of DP matrix elements, V i
c, for

each amino acid position (at most k = 2) are smaller than those
(k > 2) with long forbidden motifs. On average, the run-time for
designs specifying the forbidden motifs was three to four times
longer than those without forbidden motifs.

To date, evolutionary algorithms for CDS design with multiple
OFs have been proposed and used to design synthetic CDSs. The
advantage of COSMO over these evolutionary design algorithms
is the optimality of the solutions. To demonstrate the accuracy of
the solutions computed by COSMO, we compared the design per-
formance of COSMO and that of a multi-objective genetic algo-
rithm (MOGA). For this performance comparison, we adopt one
of the standard MOGA, Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [25]. Our implementation of the NSGA-II
for CDS design has the standard structure (initialization, and itera-
tion between evaluation and reproduction) of the genetic algo-
rithm, where one mutation operator and a one-point crossover
operator are applied in the reproduction step. In the mutation
and crossover operators, whenever the forbidden sequence motifs
are found, these motifs are randomly mutated. No duplicated solu-
tions are allowed in one population. The OFs and forbidden
sequence motifs used in MOGA were identical to those used in
the COSMO benchmarking.

A. Taneda, K. Asai / Computational and Structural Biotechnology Journal 18 (2020) 1811–1818 1817
To date, various measures for evaluating the quality of non-
dominated solutions have been proposed. In the present study,
we evaluated the quality of a set of designed CDSs using the hyper-
volume indicator (HV) [26], which is one of the standard measures
for comparing multi-objective optimization methods. HV is a mea-

sure for the volume of the union of hypercubes: [Nsol
i¼1Di, where Nsol

is the number of solutions in the set of non-dominated solutions,
and Di is the hypercube of solution i; the hypercube
D ¼ fx 2 R

n j 0 6 xj 6 v̂ j ð j ¼ 1; . . . ;nÞg is defined by normalized
score vector values, v̂ j, of each non-dominated solution and a ref-
erence point (the origin) in the normalized objective space, where
n is the number of OFs. To balance the contributions of the OFs to
HV values, we computed the HV values after normalizing the OF
values in such a way that the minimum and maximum OF values
in each dimension are normalized to zero and one, respectively.
A higher HV value indicates a better set of CDS designs.

To determine appropriate values for the parameter set (a muta-
tion probability pm and a crossover probability Pcr) of the MOGA,
we performed a grid search with five amino acid sequences, which
have diverse sequence lengths, selected from the benchmark
dataset. In the mutation operator, each codon is mutated with
a probability of pm. We searched all combinations of
pm ¼ f0:001;0:005;0:01;0:05;0:1g and Pcr ¼ f0;1=3;0:5;2=3;1g.
In our MOGA, either the mutation or the crossover is applied to
generate each child solution in the reproduction step, where Pcr

and Pmut ¼ ð1� PcrÞ give the probabilities that determine which
one is applied. As a result, (pm; Pcr) = (0.005, 1/3) gave the best
mean HV value, where five different initial random numbers were
utilized for each parameter set. These appropriate parameter val-
ues were used in the subsequent benchmark tests.

Table 1 shows the mean run-times for COSMO and MOGA. For
CAI&HSC and CPB&HSC, COSMO generates the Pareto-optimal
solutions more quickly than MOGA generates designed CDSs. In
these designs, duplicated solutions were eliminated using the -d
option in COSMO; this reduction in output solutions drastically
Table 1
Comparison of mean run-times in seconds between COSMO and MOGA. These were mea
memory. In the designs optimizing CAI&HSC or CPB&HSC, the results of COSMO were obtain
increase.

OFs COSMO

50 1

CAI&CPB 40.5 3.9 8
CAI&HSC 0.4 3.5 6
CPB&HSC 0.3 4.0 7

Table 2
Rates (%) of the number of Pareto-optimal solutions recovered by MOGA for various popula
shown.

OFs

50 100

CAI&CPB 0.2 1.1

Table 3
Mean HV values of COSMO and MOGA obtained for the benchmark dataset. For those of MO
values in bold are the best ones. HV(COSMO) PHV(MOGA) holds in each input amino aci

OFs COSMO

50 1

CAI&CPB 0.91 0.83 0
CAI&HSC 0.97 0.94 0
CPB&HSC 0.94 0.87 0
saved computational costs. In addition to these two cases, another
bicriteria design (CAI&CPB) showed that COSMO generated the
Pareto-optimal solutions more efficiently than MOGA.

Table 2 shows how many Pareto-optimal solutions generated
by COSMO were designed by MOGA; in Table 2, only the CAI&CPB
results are shown, as solutions with duplicated score vectors were
deleted for both CAI&HSC and CPB&HSC using -d in COSMO. In
addition, the mean values for HV are shown in Table 3. MOGA
was applied using a population size of 50, 100, 200, 500, and
1000; and an iteration number of 1000.

COSMO outperformed MOGA in almost all aspects of this
benchmarking; in particular, the solutions obtained by MOGA did
not achieve the complete set of Pareto-optimal solutions. This is
partially due to the limited population sizes (from 50 to 1000) used
in the MOGA analysis. COSMO can output many more solutions if
adequate RAM is available.

COSMO is based on DP, which provides optimal solutions in an
efficient manner. The disadvantage of our algorithm is the less flex-
ibility in terms of the choice of OFs; e.g. it is difficult to deal with a
global quantity such as the target GC content of a whole sequence.
If the user is interested in design problems that can be addressed
within the DP, COSMO is the most reliable tool. If this is not the
case, evolutionary design algorithms are the most practical choice.
For example, if the user wants to optimize a CDS cluster composed
of the same proteins, Tandem Designer [13] is suitable for this pur-
pose, since such CDS designs use OF values containing global quan-
tities (e.g. the minimum value of a normalized Hamming distance
among all CDS pairs). RNA secondary structure is not optimized in
the current version of COSMO. The addition of this type of compu-
tation would make COSMO more applicable in more complex CDS
problems.

Using the current implementation of COSMO, we can optimize
CAI, CPB, and HSC. In literature, the tRNA adaptation index (tAI)
[27] has also been proposed as an OF for codon optimization [9].
In addition, dinucleotide counts, including the number of CpG
motifs, are also of interest when optimizing CDSs; it has been
sured on a PC with Intel(R) Xeon(R) CPU E5-2699 v4 (2.20 GHz) and 115 GBytes of
ed with the -d option. If we do not utilize the -d option, the run-times will drastically

MOGA

00 200 500 1000

.1 17.5 61.0 201.3

.6 15.8 61.8 231.3

.3 17.9 62.2 216.9

tion sizes. Mean values for fifty amino acid sequences in the benchmarking dataset are

MOGA

200 500 1000

3.4 9.9 20.1

GA, mean HV values for a population size of 50, 100, 200, 500, and 1000 are shown. The
d sequence.

MOGA

00 200 500 1000

.85 0.86 0.87 0.88

.95 0.95 0.96 0.96

.88 0.90 0.91 0.92

1818 A. Taneda, K. Asai / Computational and Structural Biotechnology Journal 18 (2020) 1811–1818
reported that CG and UA motifs are underrepresented in humans
[28], and viruses are weakened by increasing CG or UA nucleotide
frequencies in viral genes [29].

In [30], it has been reported that homopolymer codons, which
cause frameshifts during translation, have a tendency to be fol-
lowed by hidden stop codons. Instead of optimizing the total num-
ber of hidden stop codons for a whole coding sequence, such
position-specific optimization may be useful in enhancing protein
expression.

4. Conclusion

We have developed a novel algorithm, COSMO, for obtaining
Pareto-optimal solutions for multicriteria CDS design problems,
where CAI, CPB, HSC, and forbidden sequence motifs are rigorously
taken into account. To efficiently design CDSs, we proposed the
application of a constraint technique that prunes the intermediate
solutions based on both lower and upper bounds during computa-
tion via dynamic programming recurrence. In our benchmark tests,
we found that this pruning successfully reduced the run-time of
the multicriteria designs.

To evaluate the differences between the Pareto-optimal solu-
tions obtained using COSMO and the non-dominated solutions
generated by MOGA, we compared CDSs designed using both
approaches. We found that the rates of Pareto-optimal solution
recovery by MOGA were far less than the perfect value (100 %).
In addition, we found that COSMO efficiently computed sets of
Pareto-optimal solutions with higher HV values than MOGA. These
results suggest that MOGA may have difficulty in identifying all of
the Pareto-optimal CDS solutions. This benchmark test was per-
formed purely in silico. To test these CDS optimization tools more
rigorously, it is necessary to compare the performance of these
CDSs in vitro/vivo.

Our method provides an exact approach for designing optimal
CDSs in terms of multiple OFs, constraints and forbidden sequence
motifs. For this reason, COSMO provides superior solutions for CDS
design problems within the scope of the settings available in
COSMO, while evolutionary design methods have no guarantee of
obtaining the Pareto-optimal CDSs for these complex multicriteria
design problems. The current version of COSMO is capable of only
bicriteria or weighted-sum unicriterion designs; in order to per-
form optimization with three or more OFs, it is necessary to imple-
ment a merge algorithm for three or more OFs.

Funding

This research was partially supported by the Project Focused on
Developing Key Technology for Discovering and Manufacturing
Drugs for Next-Generation Treatment and Diagnosis from the
Japan Agency for Medical Research and Development (AMED).

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon bias as a means to fine-
tune gene expression. Mol Cell 2015;59(2):149–61.
[2] Moura G, Pinheiro M, Arrais J, Gomes AC, Carreto L, Freitas A, Oliveira JL, Santos
MAS. Large scale comparative codon-pair context analysis unveils general
rules that fine-tune evolution of mRNA primary structure. PLoS ONE 2007;2
(9):e847.

[3] Gutman GA, Hatfield GW. Nonrandom utilization of codon pairs in Escherichia
coli. Proc Natl Acad Sci 1989;86(10):3699–703.

[4] Diambra LA. Differential bicodon usage in lowly and highly abundant proteins.
PeerJ 2017;5(2014):e3081.

[5] Brule CE, Grayhack EJ. Synonymous codons: choose wisely for expression.
Trends Genet 2017;33(4):283–97.

[6] Alexaki A, Kames J, Holcomb DD, Athey J, Santana-Quintero LV, Lam PVN,
Hamasaki-Katagiri N, Osipova E, Simonyan V, Bar H, Komar AA, Kimchi-Sarfaty
C. Codon and codon-pair usage tables (CoCoPUTs): facilitating genetic
variation analyses and recombinant gene design. J Mol Biol 2019;431
(13):2434–41.

[7] Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA
decay. Nat Rev Mol Cell Biol 2018;19(1):20–30.

[8] Seligmann H, Warthi G. Genetic code optimization for cotranslational protein
folding: codon directional asymmetry correlates with antiparallel betasheets,
tRNA synthetase classes. Comput Struct Biotechnol J 2017;15:412–24.

[9] Gould N, Hendy O, Papamichail D. Computational tools and algorithms for
designing customized synthetic genes. Front Bioeng Biotechnol 2014;2:41.

[10] Deb K. Multi-objective optimization using evolutionary
algorithms. Chichester: John Wiley & Sons; 2001.

[11] Gaspar P, Oliveira JL, Frommlet J, Santos MAS, Moura G. EuGene: maximizing
synthetic gene design for heterologous expression. Bioinformatics 2012;28
(20):2683–4.

[12] Chin JX, Chung BKS, Lee DY. Codon Optimization OnLine (COOL): a web-based
multi-objective optimization platform for synthetic gene design.
Bioinformatics 2014;30(15):2210–2.

[13] Terai G, Kamegai S, Taneda A, Asai K. Evolutionary design of multiple genes
encoding the same protein. Bioinformatics 2017;33(11):1613–20.

[14] Condon A, Thachuk C. Efficient codon optimization with motif engineering. J
Discrete Algorithms 2012;16:104–12.

[15] Sharp PM, Li W-H. The codon adaptation index – a measure of directional
synonymous codon usage bias, and its potential applications. Nucl Acids Res
1987;15(3):1281–95.

[16] Papamichail D, Liu H, MacHado V, Gould N, Robert Coleman J, Papamichail G.
Codon context optimization in synthetic gene design. IEEE/ACM Trans Comput
Biol Bioinf 2018;15(2):452–9.

[17] Jansen R, Bussemaker HJ, Gerstein M. Revisiting the codon adaptation index
from a whole-genome perspective: analyzing the relationship between gene
expression and codon occurrence in yeast using a variety of models. Nucl Acids
Res 2003;31(8):2242–51.

[18] Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S. Virus
attenuation by genome-scale changes in codon pair bias. Science 2008;320
(5884):1784–7.

[19] Seligmann H, Pollock DD. The ambush hypothesis: hidden stop codons prevent
off-frame gene reading. DNA Cell Biol 2004;23(10):701–5.

[20] Bentley JL. Multidimensional divide-and-conquer. Commun ACM 1980;23
(4):214–29.

[21] Schnattinger T, Schöning U, Kestler HA. Structural RNA alignment by multi-
objective optimisation. Bioinformatics 2013;29(13):1–7.

[22] Abbasi M, Paquete L, Liefooghe A, Pinheiro M, Matias P. Improvements on
bicriteria pairwise sequence alignment: algorithms and applications.
Bioinformatics 2013;29(8):996–1003.

[23] Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E,
Huang H, Lopez R, Magrane M, Martin MJ, Natale Da, O’Donovan C, Redaschi N,
Yeh L-SL, et al. UniProt: the universal protein knowledgebase. Nucl Acids Res
2017;45(D1):D158–69.

[24] Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al.
Saccharomyces genome database: the genomics resource of budding yeast.
Nucl Acids Res 2012;40(D1):D700–5.

[25] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182–97.

[26] Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms –
a comparative case study. Lecture Notes Comput Sci 1498 LNCS
1998:292–301.

[27] Reis Md. Solving the riddle of codon usage preferences: a test for translational
selection. Nucl Acids Res 2004;32(17):5036–44.

[28] Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous genome
recoding: a tool to explore microbial biology and new therapeutic strategies.
Nucl Acids Res 2019;47(20):10506–19.

[29] Tulloch F, Atkinson NJ, Evans DJ, Ryan MD, Simmonds P. RNA virus attenuation
by codon pair deoptimisation is an artefact of increases in CpG/UpA
dinucleotide frequencies. eLife 2014;3:e04531.

[30] Seligmann H. Localized context-dependent effects of the gAmbush hypothesis:
more off-frame stop codons downstream of shifty codons. DNA Cell Biol
2019;38(8):786–95.

http://refhub.elsevier.com/S2001-0370(20)30324-X/h0005
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0005
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0010
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0010
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0010
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0010
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0015
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0015
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0020
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0020
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0025
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0025
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0030
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0030
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0030
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0030
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0030
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0035
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0035
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0040
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0040
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0040
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0045
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0045
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0050
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0050
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0055
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0055
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0055
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0060
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0060
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0060
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0065
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0065
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0070
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0070
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0075
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0075
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0075
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0080
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0080
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0080
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0085
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0085
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0085
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0085
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0090
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0090
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0090
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0095
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0095
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0100
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0100
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0105
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0105
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0110
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0110
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0110
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0115
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0115
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0115
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0115
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0120
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0120
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0120
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0125
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0125
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0130
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0130
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0130
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0135
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0135
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0140
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0140
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0140
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0145
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0145
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0145
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0150
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0150
http://refhub.elsevier.com/S2001-0370(20)30324-X/h0150

	COSMO: A dynamic programming algorithm for multicriteria codon optimization
	1 Introduction
	2 Methods
	2.1 Objective and score functions
	2.2 Dynamic programming algorithm for multicriteria codon optimization
	2.2.1 Merging sets of non-dominated score vectors

	2.3 Correctness of the dynamic programming algorithm
	2.4 Constraints
	2.5 Complexity
	2.6 Availability

	3 Results and discussion
	4 Conclusion
	Funding
	Declaration of Competing Interest
	References

