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Abstract: In the past years, deep neural networks (DNNs) have become popular in many disciplines
such as computer vision (CV). One of the most important challenges in the CV area is Medical Image
Analysis (MIA). However, adversarial attacks (AdAs) have proven to be an important threat to vision
systems by significantly reducing the performance of the models. This paper proposes a new black-
box adversarial attack, which is based on orthogonal image moments named Mb-AdA. Additionally,
a corresponding defensive method of adversarial training using Mb-AdA adversarial examples is
also investigated, with encouraging results. The proposed attack was applied in classification and
segmentation tasks with six state-of-the-art Deep Learning (DL) models in X-ray, histopathology
and nuclei cell images. The main advantage of Mb-AdA is that it does not destroy the structure of
images like other attacks, as instead of adding noise it removes specific image information, which
is critical for medical models’ decisions. The proposed attack is more effective than compared ones
and achieved degradation up to 65% and 18% in terms of accuracy and IoU for classification and
segmentation tasks, respectively, by also presenting relatively high SSIM. At the same time, it was
proved that Mb-AdA adversarial examples can enhance the robustness of the model.

Keywords: adversarial attack; medical image analysis; computer vision; deep learning; adversarial
training; robustness; image moments

1. Introduction

Computer Vision has evolved dramatically with the introduction of Deep Learning
(DL) models [1] as the accuracy and the effectiveness of deep convolutional neural net-
works [2] became impressive. DL has been applied with great success to nearly all CV
tasks e.g., classification [2], semantic segmentation [3], object detection [4], pose estima-
tion [5], quality assessment [6] and depth prediction [7]. The application of CV in Medical
Image Analysis [8] is mostly referred to segmentation and classification problems. The
application of CV to MIA compared to other CV applications, seems to have an advantage
due to the fact that medical images are mostly ideally captured, lacking occlusion and
miss-orientation problems and minimizing distortion, deformation and mis-illumination
problems that other images generally present. Lately, the pandemic of COVID-19 showed
that doctors and personnel can never be enough and that everything that can help them
is valuable. This underlines the need for the implementation of computer vision-based
automated medical image analysis in a safe way.

When Adversarial Attacks appeared on DL models [9], CV became seemingly unre-
liable. A great research field of Adversarial Computer Vision (AdCV) was born in order
to create greater security in the models [10–12]. Driven by the success of adversarial at-
tacks on natural images, researchers implement adversarial examples on medical images
to investigate the MIA models’ robustness [13]. The majority of studies have been done
on classification and segmentation tasks. Dermoscopy images were tested in [14,15] for
classification tasks. MRIs have been tested on classification tasks [16,17] and segmentation

Biomedicines 2022, 10, 2545. https://doi.org/10.3390/biomedicines10102545 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10102545
https://doi.org/10.3390/biomedicines10102545
https://doi.org/10.3390/biomedicines10102545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-5545-1499
https://doi.org/10.3390/biomedicines10102545
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10102545?type=check_update&version=2


Biomedicines 2022, 10, 2545 2 of 13

tasks [18,19]. For X-ray images, researchers in [20,21] proved that general purpose attacks
are able to importantly decrease the models’ accuracy. Moreover, attacks were implemented
in fundoscopy images in [22,23] presenting high attack accuracy. The aforementioned stud-
ies used several attacks such as Fast Gradient Sign Method (FGSM), Projected Gradient
Descent (PGD), DeepFool, Jacobian-based Saliency Map Attack (JSMA), Universal Adver-
sarial Perturbations (UAPs), Basic Iterative Method (BIM) and Carlini & Wagner (C&W),
which significantly reduced the MIA models’ accuracy.

Additionally, several custom medical imaging attacks were developed. In [24] created
an attack for Ultrasound (US) images for classification tasks. This attack was tested on
the InceptionResNetV2 model. The authors in [25] created an attack for segmentation
on fundoscopy and dermoscopy images, using the U-Net model. In addition, [26] de-
veloped an attack for fundoscopy images, which can be implemented on segmentation
and classification tasks. Kugler et al. [27] tried to lead five models into misclassification
on dermoscopy images, (ResNet, InceptionV3, InceptionResNetV2, MobileNet, Xception).
Vatian et al. [28] created an attack, which is based on the “natural” noise of medical imaging
systems. Experiments were carried out on CT scans and brain MR images. Chen et al. [29]
generate adversarial examples for medical image segmentation, which are tested on CT
scans. Another interesting attack was created by Tian et al. [30] and it is based on a biased
field phenomenon.

DL is more efficient than traditional techniques because it provides powerful models
that can achieve very high accuracy in difficult medical problems just by retraining some
pretrained models. That is why DL models should be resilient to adversarial attacks, as it
is a critical research task that will help CV to become reliable. Trustworthiness together
with the explainability of DL models, which means the ability to explain how and what
features are modeled inside the DL model to extract a decision, are two qualities of the
utmost importance to achieve the goal of integrating this technology into medical practice.
The contribution of this work is to:

(1) Highlight the vulnerability of medical images to attacks and try to explain why some
tasks are more vulnerable to attacks than others.

(2) Propose a generalized attack that significantly affects the operation of DL models.
(3) Investigate adversarial training using the proposed attack method as a universal

defense method.

The proposed attack has the following features:

(1) Can be characterized as a black box attack since there is no need for any knowledge
of the MIA task, the DL model structure, or the dataset used for its training.

(2) Has several degrees of freedom and can be adapted to any DL model and any
image resolution.

(3) Its effect is adjustable.
(4) The way it affects DL models is fully explainable, adding clues to how we can get

closer to the DL interpretability or explainability goal.

2. Materials and Methods

Image moments are image projections on a basis produced by monomials or polyno-
mials [31]. The first set of moments introduced were “geometrical moments” that can be
produced using the following equation:

Mpq =

+∞∫
−∞

+∞∫
−∞

xpyq f (x, y) dxdy (1)

where f (x,y) is the density distribution function of a single image channel and p, q are
integer numbers. For color images, the moment set consists of three sets one for each image
channel produced using the same equation.

The uniqueness theorem presented by Hu [32] proves that a piecewise continuous and
fractured function f (x, y), that doesn’t have infinite non-zero values, can be uniquely deter-
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mined by a sequence of moments
{

Mpq
}

and conversely. Digital images are represented by
a density distribution function f (x, y), which obviously satisfies Hu theorem’s conditions,
except continuation. Such a function is discrete and therefore not continuous, that is the
reason why we need discrete polynomials to produce the basis. In the above means the
Equation (1) for discrete polynomials can be written as:

Mpq = NF(p, q)
N

∑
i=1

M

∑
j=1

Kernelpq
(
xi, yj

)
f
(
xi, yj

)
(2)

where Kernelpq is the product of specific polynomials [33] and is the appropriate normal-
ization factor for the polynomial family selected.

It can easily be concluded that the maximum order of the moments is equal to the
maximum of the values of the image dimensions N, M, so the produced moment set has
the same dimension as the image (N ×M).

Any discrete polynomial set that can produce a basis can be used to produce moments,
but orthogonal polynomial families are mostly used. The orthogonality property simply
means that the moments production procedure can be easily inverted using the same
products of polynomials used for moment production.

When we collect the sequence of moments
{

Mpq
}

, we can use them to reconstruct
the image in a simple way, due to the orthogonality property of the polynomials used in
Kernelpq (2), using the equation:

f̂ (x, y) =
K−1

∑
p=0

L−1

∑
q=0

Kernelpq(x, y)Mpq (3)

Noting that in (3) according to the uniqueness theorem, if the limits K and L are equal to
image dimensions N and M, respectively, the estimated density distribution function f̂ (x, y)
is theoretically identical to the initial function f (x, y). Moment sets can fully describe and
reconstruct the image, which explains why they were broadly used as image descriptors.

The explanation of moments in physics and mathematics shows that lower order
geometrical moments carry the greatest amount of information and higher order moments
carry details. In image moments, lower order geometric moments represent some well-
known image properties such as the total mass, the center of mass, the orientation and
many others. In addition, moment functions which are invariant to scaling, translation
(positioning), rotation and reflection, are called “moment invariants” [34], and they are
generated using lower order moments. Lower order moment features describe the image,
while on the other hand higher order moments contain information that is relatively
useless for the task of image classification [35]. The way that the image information is
distributed among image moments depends on the polynomial family that is used for
moment production and on the family of expanding image moments. Specifically in image
tasks, for the reasons mentioned earlier, discrete orthogonal image moments [31] are used.
Most representative families are the Tchebichef, Krawtchouk, dual Hahn and Racah [32]. It
is worth mentioning that moment set’s production is a computationally “heavy” task that
can have large approximation errors, especially when many orders are needed. Numerous
computational strategies [33] have been proposed, to minimize approximation errors and
ease computational load.

The exclusion of some moments Mpq of specific orders used for reconstruction by
excluding some values of p or q from the sums of the reconstruction Equation (3), or
practically substituting the specific moment values to be excluded with zeros, concludes in
the production of an approximation of the estimated density distribution function f̂ (x, y).
Obviously, a good approximation is obtained using the optimal moments, those that carry
most of the image’s information.

The proposed adversarial attack that we call Moment based- Adversarial Attack
(Mb-AdA) produces the adversarial examples as follows:
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• The image is transformed in a moment set
{

Mpq
}

using a discrete orthogonal image
moments family.

• Excluding some moments of specific orders, the image is reconstructed producing
an approximation.

• The product can be used as an adversarial example to attack every DL model.

The motivation behind the proposed attack is based on the fact that by eliminating
some moment orders (possibly non-robust features) participating in the reconstructed
image (attacked) the model will fail to detect this information and consequently will not
compute the desired features within its deep structure.

Mb-AdA can be applied to any image form or resolution. DL models have a standard
input resolution and that is not obvious to an image analysis system (IAS) user, because
usually the system internally converts the image to the model’s standard color space and
resolution before feeding it to the model’s input. In that case, every Mb-AdA can be used,
even if it is constructed for the attacked model’s input resolution or not. The effect of
Mb-AdA remains after any conversion made in the image processing part of an IAS.

The above, together with the fact that the attack is based only on image features, makes
the proposed attack to be applicable to any DL model, without the need for any knowledge
of its structure or the dataset that was used for training. Moreover, the goal of the proposed
attack is not to misclassify an image in a specific category. That is why Mb-AdA can be
clearly characterized as an untargeted black box attack.

One other characteristic of Mb-AdA is that its effect is adjustable. As previously
explained, the lower the moment’s order is, the more significant information is carried,
which is why the exclusion of the last ordered moments is preferred. Using a smaller
subset of moments during image reconstruction can increase the attack’s effect but with the
cost of decreased image quality. On the other hand, acquiring better image quality of the
adversarial examples excluding a smaller set of the last ordered moments, leads to a less
efficient attack.

Adversarial Attack methods usually add an inexplainable noise to images, that is
optimized in a different way in every attack method. Mb-AdA is the only that excludes
specific known features of the image that makes its effect on DL models fully explainable.
Moreover, studying the effect of several ordered Mb-AdAs we can explain in which moment
features, is the DL model trained to base its decisions.

Obviously, for preparing only a specific Mb-AdA there is no need actually to compute
entire the moment sets of the images in the first step but only the chosen subset of the
moments that will be used for the reconstruction, lowering the computational cost of the
procedure.

The experiments following the proposed adversarial attack uses the Tchebichef image
moments family, that are constructed using (2) and the image reconstruction can be done
using (3). The used Kernelpq in both formulas is the product of pth and qth order of the
scaled Tchebichef polynomials given in (4) below. The used normalization factor NF(p, q),
is the inverse of the product of the squared norms ρ(p, N) given in (5).

t̃n(x) = (1/b(n, N))
n

∑
i=0

[(
N − 1− i

n− i

)(
n + i

n

)(
x
i

)]
(4)

ρ(p, N) =
N−1

∑
x=0

[
t̃p(x)

]2 (5)

where n is the order of the polynomial, N − 1 is the maximum order and equal to the
corresponding dimension value of the image and b(n, N) is a scaling constant, usually set
equal to Nn.

For constructing K-th order MB-AdA for the following experiments we used the
following algorithm:

• Read image dimensions N, M.
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• Select attack order K ≤ min{N, M}
• Compute the polynomials t̃n(x) using (4) and add them to a matrix.
• Compute normalization factor NF(p, q) using (5) and add them to another matrix.
• Compute moment set

{
Mpq

}
for every image channel using Equation (2) with the

above matrices. Compute the Kernelpq
(

xi, yj
)
, in every iteration of the sum from 1 to

the selected order K, using the appropriate values from the polynomial matrix and
saving them in a new Kernel matrix.

• Reconstruct the image using the above moment set
{

Mpq
}

and the saved Kernel
matrix using (3).

It should be mentioned that the reason we do not compute the entire moment set in
the above algorithm is that, as explained earlier, we exclude only the last ordered moments
from the reconstruction procedure. So, their computation would be not only useless but
also computationally expensive.

For measuring the quality of the reconstructed (attacked) image, mean structural
similarity index measure (SSIM) [36,37] is used. SSIM is one of the most representative
ways to measure the difference between two images as it is correlated with the quality and
perception of the human visual system [38] and it is given by:

SSIM(x, y) = (l(x, y))α(c(x, y))β(s(x, y))γ (6)

where α , β and γ are weights (usually set to 1) of the terms luminance (l), contrast (c)
and structure (s), that are given below as functions of mean values µA and µB, variance
σA and σB and covariance σAB respectively:

l(x, y) =
2µAµB + C1

µ2
A + µ2

B + C1
(7)

c(x, y) =
2σAσB + C2

σ2
A + σ2

B + C2
(8)

s(x, y) =
σAB + C3

σAσB + C3
(9)

where C1, C2 and C3 are small constants used to stabilize the metric for the case where the
means and variances become very small.

3. Results
3.1. Attack Results

In order to measure the effectiveness of the proposed Mb-AdA to MIA tasks, we
applied the attack, with several orders, in classification and segmentation tasks. The classi-
fication task was tested on X-ray [39] and histopathological [40] datasets. The first consists
of three categories of lung X-rays (299 × 299 pixels size) while the second, which is more
difficult, consists of four categories of cancer (2048 × 1536 pixels size). All datasets were
divided into training, validation and test set. For the X-ray dataset, we used 3160 images
for training 360 for validation and 365 for testing while in histopathological dataset we
used 280/60/60 for training, validation and testing, respectively. These datasets, were used
to train five DL models namely DenseNet 201 [41], Inception V3 [42], MobileNet V2 [43],
DenseNet 169 [41] and Inception ResNet [44]. The segmentation task was tested on nuclei
dataset [45] using the U-Net model [46]. For this task, we used 495 images (256× 256 pixels
size) for training and from 120 for training and validation. In Figure 1 examples of each
dataset of the tasks are shown. The proposed attack was compared to FGSM [47], PGD [48]
and Square Attack [49]. FGSM and PGD were trained in an irrelevant dataset in order
for them to behave as black box attacks. All these attacks were created with Adversarial
Robustness Toolbox (ART) [50]. All experiments were performed in Python with the Keras
library. Additionally, we have experimented with several moment order values but for



Biomedicines 2022, 10, 2545 6 of 13

space saving reasons we present the most significant. As metrics we used Accuracy for
classification task and Intersection over Union (IoU) for segmentation task.

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

IoU =
Area o f Intersection o f two masks (predicted and ground truth)

Area o f Union o f two masks (predicted and ground truth)
Biomedicines 2022, 10, x FOR PEER REVIEW 7 of 14 
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Figure 1. Examples from datasets were used. (a) Histopathology (scale bar—0.42 µm), (b) chest
X-rays, (c) nuclei cells.

The FGSM attack extracts the adversarial gradient and decreases or increases the value
of pixels so that the loss function increases. It perturbs a clean sample for a one-step update
along the direction of gradient descend. Projected Gradient Descent (PGD) attack like
an Iterative FGSM. Perturbations are constrained by projecting adversarial samples from
each iteration into L∞ or L2 neighbor of the clean image. Square Attack (SA) is based on
a randomized search scheme which selects localized square shaped updates at random
positions so that at each iteration the perturbation is situated approximately at the boundary
of the feasible set.

In Table 1, nuclei segmentation results are presented with the SSIM (Structure Sim-
ilarity Index Measure) and IoU (Intersection over Union) percentage that measures the
accuracy of the segmentation for every attack. The indicating order number corresponds to
the maximum order up to which is used to reconstruct the image (e.g., “Order 200” means
that moments from 0 order up to 200 order, 201 × 201 moments in total are participating in
the image reconstruction).

In Tables 2 and 3, the results accuracy percentage for X-rays and histopathology images
are presented, respectively.

3.2. Defence Results

The impact of Adversarial Training with Mb-AdA examples, augmenting the training
dataset of the previously used ML models, as a defensive technique against adversarial
attacks, is a reasonable question. Training DL models with images that lack non-robust
features, as Mb-AdA examples are, should theoretically make them highly resistible to
adversarial attacks. Numerous experiments were performed with several combinations of
orders of images but for space saving, we will show indicatively the influence of adversarial
training on MobileNetV2 with the histopathological dataset, which was the most vulnerable
model. Table 4 shows the MobileNetV2 results with adversarial training using the initial
training set and several moment orders.
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Table 1. Nuclei segmentation results under all attacks in terms of SSIM and IoU (in %).

ATTACK SSIM IoU

Attack Free 100 75.22
Mb-AdA Order 200 92.17 74.37
Mb-AdA Order 140 91.83 73.80
Mb-AdA Order 80 88.96 69.70
Mb-AdA Order 60 86.25 65.50
Mb-AdA Order 50 81.73 61.47
Mb-AdA Order 40 74.23 57.57
FGSM ε = 0.01 89.84 74.10
FGSM ε = 0.07 67.31 74.00
FGSM ε = 0.09 54.65 74.00
FGSM ε = 0.12 41.57 71.90
PGD ε = 0.01 89.73 74.12
PGD ε = 0.05 79.40 74.16
PGD ε = 0.07 70.45 74.15
PGD ε = 0.09 60.88 74.12
Square Attack ε = 0.01 90.14 74.00
Square Attack ε = 0.08 69.38 72.95
Square Attack ε = 0.1 65.00 72.28

Table 2. Image quality and accuracy in histopathological images under attacks (in %).

ATTACK SSIM DenseNet 201 Inception V3 MobileNet V2 DenseNet 169 Inception ResNet

Original 100 81.67 71.67 85.00 71.67 74.00
Mb-AdA Order 200 95.22 70.00 66.67 76.67 70.00 73.33
Mb-AdA Order 180 92.18 68.33 63.33 71.67 70.00 71.67
Mb-AdA Order 160 88.11 65.00 63.33 75.00 71.67 66.67
Mb-AdA Order 140 82.86 68.33 58.33 65.00 73.33 70.00
Mb-AdA Order 100 66.88 71.67 63.33 56.67 61.67 70.00
Mb-AdA Order 80 56.00 56.67 58.33 53.33 46.67 56.67
FGSM ε = 0.03 88.26 73.33 68.33 63.33 73.33 68.33
FGSM ε = 0.1 77.29 65.00 65.00 50.00 60.00 68.00
FGSM ε = 0.3 42.17 45.00 53.33 35.00 46.67 54.00
PGD ε = 0.01 89.46 75.00 66.67 76.67 75.00 76.67
PGD ε = 0.1 83.60 71.67 75.00 60.00 66.67 73.33
PGD ε = 0.2 65.32 63.33 58.33 40.00 55.00 66.67
PGD ε = 0.3 56.55 53.33 55.00 30.00 36.67 51.67
Square Attack ε = 0.01 89.70 76.67 70.00 81.67 73.33 73.33
Square Attack ε = 0.05 87.30 78.33 65.00 75.00 68.33 73.33
Square Attack ε = 0.1 80.90 66.67 56.67 60.00 65.00 75.00
Square Attack ε = 0.2 65.00 61.67 43.33 51.67 61.67 61.67

Table 3. Image quality and accuracy in chest X-ray images under attacks (in %).

ATTACK SSIM DenseNet 201 Inception V3 MobileNet V2 DenseNet 169 Inception ResNet

Original 100 99.18 93.97 97.81 97.26 97.26
Mb-AdA Order 200 99.03 98.90 93.42 91.51 93.42 96.99
Mb-AdA Order 160 98.13 98.90 92.05 87.67 94.52 96.44
Mb-AdA Order 120 95.26 96.90 89.04 80.55 89.59 94.25
Mb-AdA Order 80 91.35 82.74 81.10 56.16 69.32 86.58
Mb-AdA Order 50 85.43 60.82 59.73 43.84 36.70 61.37
Mb-AdA Order 40 82.00 53.97 40.55 42.47 33.15 60.00
Mb-AdA Order 30 77.89 40.55 34.52 40.27 32.88 54.25
FGSM ε = 0.01 98.71 98.36 91.23 91.78 93.42 95.34
FGSM ε = 0.03 94.60 96.40 84.93 80.27 88.49 92.60
FGSM ε = 0.05 84.10 90.14 73.15 53.15 70.41 84.11
FGSM ε = 0.07 76.35 84.03 66.11 42.30 68.35 76.75
FGSM ε = 0.09 64.23 73.11 57.14 39.78 64.71 69.75
PGD ε = 0.01 98.15 98.90 91.67 90.00 94.20 95.90
PGD ε = 0.03 93.84 96.40 83.30 75.56 82.70 87.50
PGD ε = 0.05 86.79 91.67 76.11 55.83 75.28 77.78
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Table 3. Cont.

ATTACK SSIM DenseNet 201 Inception V3 MobileNet V2 DenseNet 169 Inception ResNet

PGD ε = 0.07 77.87 85.00 65.56 49.44 68.61 70.56
PGD ε = 0.09 68.21 76.94 59.72 46.39 63.98 60.83
Square Attack ε = 0.01 99.29 98.61 91.94 91.94 93.61 96.67
Square Attack ε = 0.05 88.00 90.28 72.22 61.39 83.89 92.50
Square Attack ε = 0.07 82.59 85.56 58.06 55.83 77.50 91.39
Square Attack ε = 0.09 76.39 79.72 46.67 58.06 70.28 85.00

Table 4. Accuracy after adversarial training in histopathological images with MobileNetV2 (in %).

ATTACK Normal Training Set Augmented Orders 20–200 Augmented Orders100–200

Original 85 88.33 81.6
Mb-AdA Order 200 76.67 90 73.33
Mb-AdA Order 180 71.67 90 71.67
Mb-AdA Order 160 75 86.67 75
Mb-AdA Order 140 65 85 73.33
Mb-AdA Order 120 65 88.33 76.67
Mb-AdA Order 110 65 85 80
Mb-AdA Order 100 56.67 86.67 75
Mb-AdA Order 80 53.33 81.67 76.67
Mb-AdA Order 60 45 70 63.33
Mb-AdA Order 50 45 68.33 68.33
FGSM ε = 0.03 63.33 90 76.67
FGSM ε = 0.05 60 88.33 58.33
FGSM ε = 0.1 50 71.67 61.67
PGD ε = 0.01 76.67 88.33 76.67
PGD ε = 0.1 60 81.67 70
PGD ε = 0.3 30 58.33 35
Square Attack ε = 0.02 80 86.67 85
Square Attack ε = 0.05 75 85 70
Square Attack ε = 0.1 60 68.33 75
Square Attack ε = 0.2 51.67 60 36.33

4. Discussion

The main parameter of the proposed attack is the order of moments. Mb-AdA is
an attack family that does not add some specific or optimized noise to an image as usually
other adversarial attacks do, but it rather removes a part of the image. The removed part
is not abstract but it consists of the last ordered moment features. It is worth noting that
the first moment features carry the main image information, and the last ordered ones less.
Figures 2 and 3 are presented some examples of images under the proposed attack.

According to the results on X-ray dataset, Mb-AdA gets stronger as the order limit
drops, because more and more of the higher ordered moment features are excluded, but as
it is rational the image quality drops also. DenseNet 201, Inception V3 and Inception ResNet
seem to be more resistant to higher order Mb-AdA than MobileNet V2 and DenseNet 169.

Additionally, compared to the other attacks, Mb-AdA seems to keep higher the image
quality when it starts to significantly drop the accuracy rates. For example, Mb-AdA order
80 drops the DenseNet 201’s accuracy score to 82.74 keeping SSIM to 91.35 when FGSM
ε = 0.07 drops accuracy to the slightly worse 84.03 with SSIM to 76.35. PGD ε = 0.007 drops
accuracy to the slightly worse 85 and also drops the SSIM to 77.87. The same happens
with Square Attack ε = 0.07, which drops accuracy to 85.56 dropping the SSIM to 82.59,
which is better than FGSM and PGD, nevertheless it can only be compared to Mb-AdA
with order 40 and SSIM equals to 82 that drops accuracy score to 53.97. The proposed attack
performs globally better classification than the other attacks in X-ray. On the other hand,
the classification of histopathological images behaves differently. While SSIM drops, PGD,
FGSM and Square Attack perform better than Mb-AdA. For example, Mb-AdA with order
100 and SSIM 66.88, achieved 71.67% accuracy while PGD ε = 0.3 with SSIM 65.32 and
Square Attack ε = 0.2 with SSIM 65 achieved 53.33% and 61.67% accuracy, respectively.
However, in high SSIM, the proposed attack outperforms the others attacks, which is our
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main goal. The segmentation problem, strongly highlights the superiority of the proposed
attack, as it globally shows a significantly greater reduction in terms of IoU compared to
the other attacks, presenting a much higher image quality at the same time. The other
attacks, achieved 3.5% IoU degradation even with very low SSIM, while our proposed
attack achieved nearly 20% IoU degradation with significantly higher SSIM.
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Mb-AdA is an attack that does not add some random or optimized noise to an image
as usually other adversarial attacks do [13], but it rather removes a part of the image. The
removed part is not abstract but it consists of the last ordered moment features. Removing
from an image the last ordered non-robust features should have a small or no effect on DL
models, since the image quality remains high. However, this effect is in most cases stronger
than the other attacks. The reason can now be explained as the DL model during training,
learning these non-robust features that are removed by the Mb-AdA, together with robust
ones. The other attacks affect the non-robust and the robust features with the same weight
factor, and that is why they importantly drop image quality in order to achieve the same
scores with Mb-AdA.

Moreover, medical image analysis tasks are quite difficult because models learn to
make decisions according to some small details in the pictures. Mb-AdA has the ability to
remove features that describe these details without destroying the structure of the image,
and that is why it achieves high model’s performance degradation with high SSIM. The
fact that the proposed attack does not destroy the structure of the image is also justified
by the GradCAM algorithm [51] applied in Figure 4, which shows that models look at the
almost same coordinates. This means that the attack preserves the structure of the images
and does not disorient the model but removing useful information leads to misdiagnosis.
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In addition to that, the data augmentation for adversarial training proves that it not
only improves performance under Mb-AdA but improves performance even under other
attacks. The MobileNetV2 model, which was the most vulnerable, has become quite ro-
bust after training with augmented data from the proposed attack in histopathological
classification. The results are presented detailed in Table 4 but some representative exam-
ples are the following. The model trained with the Original Training Set (OTS) achieved
63.33% accuracy under FGSM ε = 0.03, while the same model trained with Augmented
Training Set (ATS) achieved 90% accuracy. Additionally, the model with OTS under
PGD ε = 0.1 achieved 60% accuracy while with ATS achieved 81.67%. These results come
from the classification of histopathological images which was also the most difficult prob-
lem. It is clear that augmenting the data with examples of Mb-AdA significantly enhances
the robustness of the model.
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5. Conclusions

In this study, a black-box adversarial attack for medical images based on a moment
exclusion strategy is proposed. The introduced attack was applied in classification and
segmentation problems, achieving significant degradation in models’ performance while
maintaining good image quality. Compared to other black-box attacks, the Mb-AdA shows
better attacking results with additional improved imperceptibility. Additionally, adversarial
learning was applied as a defense, proving that it can significantly enhance the robustness
of models even under other attacks. The proposed attack can be useful for developing more
robust deep learning models towards enforcing the integration of Artificial Intelligence
tools in critical applications such as medical image analysis.

This work is sparking the future investigation into several directions, such as the
optimization of the excluded moment orders per case, the incorporation of other moment
families (e.g., Krawtchouk, dual Hahn, Fractional Moments, etc.) in the same attacking
scheme and the examination of other medical image modalities.
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