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Drug discovery has entered a new period of vigorous development with

advanced technologies such as DNA-encoded library (DEL) and artificial

intelligence (AI). The previous DEL-AI combination has been successfully

applied in the drug discovery of classical kinase and receptor targets mainly

based on the known scaffold. So far, there is no report of the DEL-AI

combination on inhibitors targeting protein-protein interaction, including

those undruggable targets with few or unknown active scaffolds. Here, we

applied DEL technology on the T cell immunoglobulin and ITIM domain (TIGIT)

target, resulting in the unique hit compound 1 (IC50 = 20.7 μM). Based on the

screening data from DEL and hit derivatives a1-a34, a machine learning (ML)

modeling process was established to address the challenge of poor sample

distribution uniformity, which is also frequently encountered in DEL screening

on new targets. In the end, the established ML model achieved a satisfactory hit

rate of about 75% for derivatives in a high-scored area.

KEYWORDS

DNA-encoded library, machine learning, protein-protein interaction, TIGIT, anti-
tumor

1 Introduction

One of the main breakthroughs to improve the success rate of new drug development

is applying new technologies for hit discovery and optimization, such as DNA-encoded

library (DEL) (Brenner and Lerner, 1992; Franzini et al., 2014; Johnson, 2018) and

artificial intelligence (AI) (Smalley, 2017) et al. Thanks to the rapid growth of computing

power and the availability of large datasets, AI is being used more and more frequently in

the field of drug development. Among them, the hit discovery and optimization of lead

compounds are one of the fastest-developing fields, generating massive amounts of high-

quality compound datasets (Tetko et al., 2016). The most well-known AI-driven drug

development (AIDD) case is the DDR1 inhibitors discovery by Zhavoronkov et al. They

claimed to have discovered a highly active, selective, and bioavailable inhibitor of

DDR1 within 21 days through AI-aided drug design (Zhavoronkov et al., 2019).

However, the active inhibitors they finally obtained were too structurally like known
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DDR1 inhibitors, which raised some doubts that it was indeed a

fast-follow drug development (Walters and Murcko, 2020). The

main reason is that many active skeletons of DDR1 inhibitors

have been reported. The built AI model is based on known data

for skeletonmodification, making it difficult to break through the

constraints of existing skeletons and produce the first-in-class

drugs with a novel skeleton. Therefore, it is still unknown how

long the AIDD development will be widely and successfully

applied in first-in-class drugs discovery.

For medicinal chemistry, traditional structural optimization

mainly relies on medicinal chemists to analyze the structure-

activity relationship (SAR) through continuous cycle of chemical

synthesis-bioactivity tests. However, this approach is often time-

consuming and varies from target to target. In this way, it is still

difficult for a bioactive compound to reach IC50 value of

nanomolar from micromolar range in a short period.

Fortunately, this limit of efficiency has been substantially

improved by AIDD (Griffen et al., 2020). One of the most

used functions of AIDD is to improve this efficiency through

rapid model iterations significantly and finally provide fast-

follow drug candidates. Therefore, integrating AIDD with

other technologies which have the potential to discover first-

in-class hit compounds will be valuable while may be

accompanied by challenges.

DEL is achieved through combinatorial chemistry and DNA-

encoding techniques. With library modularity, DELs can be built

in a time-saving and labor-saving way. This technology can

construct and screen unprecedented scale combinatorial

compound libraries (hundreds of billions scale) and discover

numerous high-affinity ligands with high efficiency and low cost

through protein target affinity screening and high-throughput

sequencing and decoding (Buller et al., 2010; Kalliokoski, 2015).

(Figure 1) (Goodnow et al., 2017). DEL can be used to create

compound libraries with higher molecular weight. Empirically,

such DEL libraries appear well suited for discovering ligands for

protein-protein interaction (PPI) targets, which are increasingly

needed for hits. In contrast, kinase or typical receptor are other

target classes often with available hit information through

traditional HTS and similar approaches based on existed

skeletons. Therefore, performing DEL on such targets may not

be as pressing (Goodnow et al., 2017). To our knowledge, the

number of small-molecule inhibitors identified by DEL screening

of PPI targets in the past decade is relatively few, mainly

including LFA-1, TEAD, Bcl-xL, and IL-2. (Buller et al., 2009;

Kollmann et al., 2014; Kunig et al., 2020; Gironda-Martínez et al.,

2021; Wang et al., 2022). On the other hand, the PPI targets is

much challenging for DEL screening, due to the lack of

information on existing scaffolds from other sources.

Generally, PPI targets contain large and flat binding surfaces

which hinder small molecules to bind strongly. Therefore, DEL’s

application on the PPI target will probably generate a few or no

hits. Every hit compound for such a target is much more unique

and valuable. Once a hit compound with an active scaffold is

obtained, developing a first-in-class drug candidate against PPI

targets is much more promising.

Although machine learning (ML), as a branch of AI, has been

applied to multiple areas of drug discovery, to our knowledge,

cases of DEL combined with ML have not been reported until

recently (McCloskey et al., 2020; Lim et al., 2022). McCloskey

et al. successfully performed ML modeling using data obtained

from DEL screening for targets including sEH (a hydrolase), ERα
(a nuclear receptor), and c-KIT (a kinase). Another example

came from Lim et al., who screened carbonic anhydrase (CAIX),

soluble epoxide hydrolase (sEH), and SIRT2 by DEL and ML

combination. Such reports mainly aim at classical targets such as

kinases and receptors with explicit ligand binding sites and many

active scaffolds. Hence, it is easier to conduct DEL library

building to obtain many functional building blocks. Then,

based on many positive ligands/samples, the problem of

uneven sample distribution is avoided, facilitating ML

modeling greatly. However, the main disadvantage is that

having a novel skeleton will be much more challenging.

Hence, it probably will meet the dilemma of being a fast-

follower as previous DDR1 inhibitors found by AIDD. In this

case, the most critical role of DEL as a promising tool to find

potential first-in-class hits was not fully realized (Walters and

Murcko, 2020).

For drug development, ML is a well-established, proven tool

that can dramatically improve the success and efficiency of drug

optimization. Therefore, DEL-ML combined application should

not be absent from finding ligands for PPI targets, especially for

those with adequate antibody candidates but no small molecule

inhibitors. This combination is expected to discover first-in-class

hit compounds through DEL, and then the screening data can be

efficiently analyzed and iterated through ML to obtain highly

bioactive compounds. However, in such case, ML modeling may

face a stubborn difficulty-uneven sample distribution caused by

too few positive samples/hits. Uneven distribution of samples

creates different obstacles for different ML models. More data

tends to outperform better algorithmic models. In 2017, Altae-

Tran et al. used the One-Shot Learning to generate molecular

graphs to build a model with a minimal number of samples on

drug property prediction. However, whether this method is

suitable for analyzing the DEL’s highly uneven data

distribution remains unknown (Altae-Tran et al., 2017; Lu

et al., 2020; Wang et al., 2020).

Immune checkpoint inhibitors (ICI), a type of tumor

immunotherapy, have attracted much attention for their

remarkable anti-tumor activity in pre-clinical and clinical

studies. ICI representative drugs like PD-1 inhibitors Keytruda

and Nivolumab have reached 30 billion dollars in terms of global

sales amount (Clarke et al., 2018). T cell immunoglobulin and

immunoreceptor tyrosine inhibitorymotif (T cell immunoglobulin

and ITIM domain, TIGIT), another type of immune checkpoint

(IC), was discovered by Yu et al. through bioinformatics in 2009.

The expression of malignant tumor-infiltrating lymphocytes is
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significantly increased, making TIGIT a potential blockbuster

target for cancer immunotherapy (Yu et al., 2009). In

numerous pre-clinical and clinical trials, anti-TIGIT antibody

therapy has achieved significant tumor-suppressive efficacy

(Joller et al., 2011; Zhang et al., 2018; Preillon et al., 2021).

Currently, most TIGIT inhibitors in drug development and

clinical stages are antibodies, while no peer-reviewed literature

has reported small molecule TIGIT inhibitors (Rotte et al., 2021).

Biological drug development faces many safety challenges, mainly

immunogenicity, including anti-TIGIT antibodies. After biological

drugs enter the human body, a cytokine storm could occur, causing

a strong immune response. This known pathway resulted in

various severe clinical side effects. Compared with biological

drugs, small molecule drugs have much less risk of

immunogenicity, with significant advantages like low cost in

R&D and manufactory and diversified administration

approaches (Prueksaritanont and Tang, 2012; Wan, 2016;

Makurvet, 2021). Therefore, it is still necessary to develop

small-molecule inhibitors for TIGIT target.

In this study, the own-built DEL platform was used to construct

a 30-million-member DNA-encoded library composed of 3 building

blocks, followed by affinity binding screening on the TIGIT target.

The hit compound was identified with high post-selection counts

and enriched folds (EF). Indeed, after off-DNA synthesis, a

moderately active small molecule hit compound 1 was found

(half-fold binding inhibition for TIGIT/CD155 complex, IC50 =

20.7 µM). A series of derivatives a1-a34 were obtained by structural

modification, including the more active molecule a7 (IC50 = 3.9 µM,

Scheme 1). Furthermore, to comprehensively analyze the DEL’s

dataset, we input it for ML modeling, exploring various positive

sample amplification methods to address the problem of highly

uneven sample distribution (only one positive hit 1, and the count

value distribution is highly uneven). This model has a hit rate of

around 75% for the high-score derivative samples in the validation

and test sets. With such a well-established model, it is expected to be

a good drug-hunter for TIGIT inhibitors when screening virtual

molecule databases like ChEMBL and ZINC in the future.

2 Materials and experiments

2.1 DNA-encoded library screening,
chemical synthesis, and bio experiments

DEL screening, chemical synthesis, bio-activity experiments,

and characterization of compounds are described in supporting

information.

2.2 Machine learning modeling

2.2.1 Data preparation
The compounds from DEL screening and structure

modification (divided into type 1 and 2) are used as the

model’s training, validation, and test sets. Among them, the

hit compound 1 in DEL is a trisynthon molecule composed of

three building blocks. The corresponding machine learning

model is established by transforming molecule structure as

molecular fingerprints.

2.2.2 Calculation of score value
The bioactivity of each trisynthon can calculate from the

corresponding count and enrichment fold (EF) under different

experimental conditions, including the presence of the target-

library, beads-library, and target-DNA-tag, respectively. To

eliminate the dimensional differences in these conditions, data

FIGURE 1
Workflow for DEL screening using immobilized proteins.
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SCHEME 1
The structure and corresponding protein-protein blocking activity for TIGIT/CD155 complex (IC50/µM) of compound 1 and its derivatives a1-
a34. Derivatives a1-a23 were single-site substituted (R1, R2, and R3, respectively); Derivatives a24-a30 were multi-site substituted (R1 -R3); a31-a34
were derivatives with modifications including cyclization on the scaffold amine group (R4) and ortho carbons group (R5).
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obtained were normalized firstly, and the score was calculated

based on normalized count and EF values. The score calculation

formula is described as follows:

count � countnorm target − countnorm beads − countnorm tag (1)
EF � EFnorm target − EFnorm beads − EFnorm tag (2)

score � apcount + bpEF (3)

Among them, countnorm_target, countnorm_beads, and

countnorm_tag represent the normalized value of count value

under the above three different conditions, which aim to

eliminate the undesired environmental effects and interaction

effects of beads and DNA-tag with the target, respectively. The

same rule was applied to EF normalized values. According to the

principle of protein-ligand affinity and PCR amplification, high

count and EF values mean the molecule has high-affinity activity.

Based on our previous experience, the count value significantly

impacts the affinity activity. Thus, when defining the weight

coefficient of the score for formula score = a*count + b*EF, the

count value is given a higher weight as a = 0.8 with EF value as b =

0.2. According to this calculation formula, the unique positive

sample/hit 1 (IC50 = 20.7 µM) in the DEL library scored 0.85 in

the preliminarily established model. Since the count and EF

values cannot be obtained reversely for the structure-modified

derivatives, we also need to assign a score value to them.

According to the indicated relationship between the IC50

value and the count value, the following rule was set: IC50

value (µM) < 10, 10 to 20, 20 to 30, 30 to 40, 40 to 50, and >
50 is given score 1, 0.9, 0.8, 0.7, 0.6, and 0 corresponding.

2.2.3 Dataset partitioning
Through DEL screening, a total of 1,104,808 valid data were

generated and available for model building. Undersampling was

firstly employed to pre-process the DEL dataset because there

were too few positive samples. We sort the dataset according to

the score value from low to high and sample with interval N. At

the same time, since there is only one positive sample, to ensure

the model can learn sufficient information from the positive

sample, the sampling multiple is set for oversampling the top

100 samples with highest score value. The digital bit value on the

molecular fingerprint is randomly modified to generate more

positive samples with high similarity. The generated sample score

value is based on the original sample plus random (−0.1, 0.1)

interval treatment. 1) The data obtained by the combination of

undersampling and oversampling is used as the training set; 2)

Excluding the training set in the DEL dataset, 100 thousand

samples are randomly selected as the validation set 1, and

100 thousand samples are randomly selected from the

remaining DEL dataset as Test set 1; 3) The 34 molecules

obtained by chemical modification are arranged in order of

activity from high to low, and the odd number is defined as

the validation set 2 with the even one is the test set 2.

2.2.4 Molecular representation
Simplified molecular input line entry specification (SMILES)

sequence can represent each building block in DEL. RDKit provided

a smarts-based reaction according to the offered SMILES sequence

and smarts template (Tosco et al., 2014). Input the SMILES of each

building block accompanied with smarts reaction template resulted

in the SMILES sequence of trisynthon product. Representing

molecules into the dataset required for training models is an

important step. Different molecule representation methods can

be applied to various model architectures for training models.

Commonly used molecular representations include: 1) molecular

fingerprints, which encode molecular structure with a series of

binary numbers that indicate the existence of specific

substructures; 2) quantum physical chemistry and differential

topology-based representation, which statisticians and

cheminformatics usually apply 3) SMILES strings, which

uniquely describe the structure of molecules by representing

them as line symbols; 4) molecular graph, representing molecular

pictures as line symbols; Graphing structural data-the atoms of the

drug are used as graph nodes with the chemical bonds connecting

the atoms are used as the graph edges (Sun et al., 2020). This study

presents molecules by an extended connectivity fingerprint (ECFP)

system with dimensions of 1024 or 2048 and a radius of 2 or 3

(Rogers and Hahn, 2010).

2.2.5 Loss function and evaluation metrics
Since the classification model cannot correctly distinguish

the high and low score values, we established a regression model

for training. The model was learned by optimizing the training

set MSE. At the same time, the sum of the MSE from the

validation sets 1 and 2, together with the percentage of

positive samples (valid2_ratio) in the validation set 2, are used

to adjust the model. The model is adjusted according to the

highest valid_ratio, and the corresponding sum of valid1_mse

and valid2_mse is less than 0.15. Finally, the model is evaluated

by analyzing the sum of MSE of test sets 1 and 2 and the

percentage of active compounds with higher scores in test set

2 (test2_ratio).

2.2.6 Machine learning modeling
The undersampling interval N in the training dataset, and

generation coefficient of the positive sample, radius, and

dimensions of molecular fingerprints, the number of hidden

layers of the Multilayer perceptron (MLP) (Pinkus, 1999), the

number of hidden units in the light gradient boosting machine

(lightGBM) (Ke et al., 2017) are defined as hyperparameters. The

grid search method is used. In the lightGBM model, the optimal

parameters are as follows: the molecular fingerprint radius = 3,

nBits = 2048, bagging_fraction = 0.8, feature_fraction = 0.76,

lambda_l1 = 10, lambda_l2 = 10, and the learning rate = 0.5, N =

8, oversample_multiple = 800. In such case, the number of

samples in the training set used is 146,852 for undersampling,
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and 80,000 for oversampling; for the MLP architecture, the

optimal parameters are the input dimension = 1024, hidden

layers = 1, optimizer is Adam, learning rate = 0.005, the hidden

units = 256, the activation functions are “relu” and dropout = 0.8.

In addition, the output unit = 1 and the activation function of the

output layer is “softplus.” The corresponding fingerprints is

nBits = 1024, radius = 2, N = 6, oversample_multiple = 400.

In such case, the number of samples in the training set used is

192,468 for undersampling, and 40,000 for oversampling.

2.2.7 Structure-activity relationship visualization
The atom-centered Gaussian visualization principle is

defined as follows. Calculate the score of the original

fingerprint, followed by masking defined bits in the molecular

fingerprint. After that, the masked score of the bits in the

molecular fingerprint was calculated. The weight score

corresponding to the bits was defined as the difference

between these two values. Normalize the bit weight by

dividing it by the highest-scoring weight value. The

normalized weight values were used to calculate the Gaussian

distribution centered on the atom, generating a molecular

map. Different colors indicate the contribution of each

substructure to the prediction score.

3 Results and discussion

3.1 DNA-encoded library screening
experiments

To identify potential binders for TIGIT, we constructed a

tripeptide DEL containing 30 million unique compounds by a

split-and-pool strategy (Supplementary Figure S1A). After DEL

qualification, we performed screening using standard immobilized

target protein selection methods (Figure 1) (Decurtins et al., 2016).

Briefly, purified TIGIT was immobilized on NHS beads and

incubated with a 30 million-member DELs, followed by

repeated washing to remove non-adhesives. The binders were

then recovered, PCR amplified, and the selected library DNA

were sequenced by NGS. Parallel DEL screening was performed on

beads without protein immobilization to exclude nonspecific

binding between the library and blank beads.

The resulting NGS data were processed with computational

software to calculate individual codon sequences and displayed in

a two-dimensional format (Figure 2A). Compounds possessing

significant binding affinity against TIGIT resulted in high post-

selection counts and enrichment folds and were located in the

upper right corner of the scatterplot. Thus, the most enriched

library molecule was found in the TIGIT screening and marked

as potential ligand 1 (highlighted red in Figure 2A), whereas it

was not observed in the bead-only control (Supplementary

Figure S1B). The hit compound 1 was re-synthesized by “off-

DNA” (the structure is shown in Figure 2B), and corresponding

binding affinity was tested utilizing homogeneous time-resolved

fluorescence (HTRF) technology. Compound 1 performed a

moderate binding affinity from the inhibition assay with an

IC50 value of 20.7 µM (Figure 2C).

To further chemically optimize compound 1 for better binding

affinity, its side chains R1, R2, andR3weremodified before performing

a similar HTRF assay (Scheme 1). Among all derivatives, a6, a7, a16,

a17, a18, a19, and a27 had improved TIGIT binding effects, while the

others were not significantly improved or even lost blocking activities.

Among them, compound a7 had the highest binding affinity. Their

structures and IC50 values were further involved in machine learning

model construction.

3.2 Machine learning modeling

3.2.1 Undersampling and oversampling
After sorting the training set from high to low activity, the

training set was adjusted by controlling the undersampling

FIGURE 2
Discovery of novel TIGIT ligands by DEL screening. (A) Two-dimensional display of post-selection DNA sequencing data from TIGIT selection.
x-axis: post-selection sequence counts; y-axis: post-selection enrichment fold = (post-selection counts %)/(pre-selection counts %). (B) Structure
of hit 1. (C) Blocking effects on TIGIT/CD155 complex in HTRF assay for hit 1.
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TABLE 1 The performance of MLP with representative undersampling interval N and repeated sampling multiples (complete data were provided in supporting information).

Model Oversample_multiple N Train_mse Valid1_mse Valid2_mse Valid2_ratio Test1_mse Test2_mse Test2_ratio

MLP 400 4 0.0038 0.0039 0.153 0.33 0.0040 0.104 0.17

MLP 400 6 0.0037 0.0041 0.137 0.67 0.0041 0.101 0.50

MLP 400 8 0.0038 0.0045 0.150 0.50 0.0045 0.111 0.67

MLP 600 2 0.0038 0.0038 0.147 0.17 0.0038 0.100 0.33

MLP 600 4 0.0037 0.004 0.148 0.50 0.0041 0.104 0.67

MLP 600 6 0.0037 0.0043 0.142 0.67 0.0043 0.098 0.50

TABLE 2 The performance of lightGBM with representative undersampling interval N and repeated sampling multiples (complete data were provided in supporting information).

Model Oversample_multiple N Train_mse Valid1_mse Valid2_mse Valid2_ratio Test1_mse Test2_mse Test2_ratio

lightGBM 600 4 0.0074 0.0036 0.172 0.50 0.0046 0.162 0.67

lightGBM 600 6 0.0027 0.0030 0.167 0.50 0.0029 0.191 0.33

lightGBM 600 8 0.0036 0.0045 0.170 0.33 0.0034 0.134 0.67

lightGBM 800 2 0.0064 0.0039 0.178 0.50 0.0045 0.170 0.50

lightGBM 800 4 0.0036 0.0032 0.131 0.67 0.0043 0.168 0.33

lightGBM 800 6 0.0086 0.0054 0.172 0.50 0.0054 0.172 0.33

lightGBM 800 8 0.0032 0.0045 0.138 0.67 0.0033 0.138 0.50
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TABLE 3 The average result obtained by randomly setting the value of bit 0 on 1–4 molecular fingerprints to 1 and repeating ten times.

Model Modify_bita Modify_typea Train_mse Valid1_mse Valid2_mse Valid2_ratio Test1_mse Test2_mse Test2_ratio

MLP 1 1 0.0049 0.0043 0.157 0.32 0.0041 0.143 0.37

MLP 1 2 0.0052 0.0045 0.158 0.36 0.0043 0.152 0.33

MLP 2 1 0.0051 0.0043 0.164 0.41 0.0041 0.160 0.40

MLP 2 2 0.0052 0.0043 0.161 0.40 0.0041 0.161 0.35

MLP 3 1 0.0051 0.0042 0.166 0.28 0.0040 0.163 0.35

MLP 3 2 0.0055 0.0045 0.163 0.38 0.0043 0.167 0.38

MLP 4 1 0.0052 0.0041 0.171 0.28 0.0040 0.165 0.45

MLP 4 2 0.0056 0.0042 0.166 0.37 0.0040 0.171 0.28

lightGBM 1 1 0.0047 0.0046 0.140 0.50 0.0043 0.128 0.62

lightGBM 1 2 0.0058 0.0049 0.189 0.48 0.0044 0.237 0.39

lightGBM 2 1 0.0045 0.0046 0.138 0.46 0.0042 0.128 0.62

lightGBM 2 2 0.0067 0.0054 0.176 0.48 0.0050 0.227 0.35

lightGBM 3 1 0.0042 0.0044 0.137 0.50 0.0041 0.127 0.67

lightGBM 3 2 0.0055 0.0049 0.163 0.55 0.0045 0.222 0.35

lightGBM 4 1 0.0042 0.0044 0.136 0.50 0.0041 0.128 0.67

lightGBM 4 2 0.0047 0.0045 0.163 0.52 0.0042 0.216 0.37

aModify_bit is to modify the number of digits of the fingerprint randomly, modify_type = 1 is the performance when the bit of the fingerprint is set to 0 and 1, and modify_type = 2 is the reverse performance of setting.
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interval N and the multiple of repeated sampling. Parameter

selection is performed with the highest valid_ratio value and the

smallest sum of the corresponding valid1_mse and valid2_mse.

Such adjustments will produce results that achieve best on the

validation but not on the test set. In the MLP model, when the

oversampling multiple is 400 and 600 and N = 6, a maximum

valid_ratio2 value and a relatively small value for the sum of

valid1_mse and valid2_mse were obtained. At this point, the

model performed best on the validation set. However, in the test

set, the best performance is when the oversampling multiples are

400 and 600, and N is 8 and 4, respectively (Table 1). A similar

result was observed in lightGBM model (Table 2). Therefore, a

better prediction methodmay be setting a threshold for the above

two sets firstly and predicting the score that meets the threshold,

followed by taking the average value.

3.2.2 Positive sample generation
To compare the difference between positive sample

generation and direct oversampling, the bits on the molecular

fingerprints are randomly changed, including 1) randomly

TABLE 4 Model performance without additional positive sample.

Model Train_mse Valid1_mse Valid2_mse Test1_mse Test2_mse Valid2_ratio Test2_ratio

MLP 0.0026 0.0039 0.163 0.0039 0.189 0.33 0.33

lightGBM 0.0021 0.0035 0.230 0.0035 0.225 0.33 0.33

TABLE 5 Model performance with additional positive sample a6.

Model Train_mse Valid1_mse Valid2_mse Test1_mse Test2_mse Valid2_ratio Test2_ratio

MLP 0.0037 0.0041 0.137 0.0040 0.102 0.67 0.5

lightGBM 0.0087 0.0067 0.132 0.0067 0.145 0.67 0.5

FIGURE 3
The relationship between lightGBM (A) and MLP (B) prediction score and IC50 value.

FIGURE 4
Gaussian distribution of compounds with high predicted scores.
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replacing the value of bit 0 on 1-4 molecular fingerprints with 1;

2) randomly reversed bit values on 1-4 molecular fingerprints.

The generative model did not outperform the oversampling one

when the number of molecules generated was the same as the

oversampling. Additionally, we found a significant drop in

valid2_ratio and test2_ratio in model performance when such

noise was introduced in MLP, while it was not observed in

lightGBM. The difference may be that MLP is more sensitive to

such noise than lightGBM. (Table 3).

3.2.3 Model performance
MLP and lightGBM models were built and compared.

Initially, the unique positive sample 1 was applied for training

with an oversample. The resulted model’s unsatisfying

performance is shown in Tables 4, 5. This imperfect model

may result from too simple positive sample structure. The

features of positive samples are not learned sufficiently.

Afterward, the model’s performance changed by adding a

positive sample from the validation set to the training set,

with the identical oversample multiples for both models. In

the case of one more positive sample, the model performed

much better with a6 than the other positive samples (Scheme 1).

In the validation set 2 and test set 2 from the lightGBM model,

there are nine samples with a score greater than 0.5, 7 of which

are active compounds (IC50 < 50 µM), with an overall hit rate of

78%. In the set with a score less than 0.5, the hit rate is less than

30%. This rule is observed in both validation and test sets. Similar

results were observed for the MLP model. The overall hit

percentage of these two models is shown in Figure 3. In

addition, we also tried two additional positive samples

including a6. Unfortunately, the model’s performance did not

improve, meaning that for samples with relatively high similarity,

adding a minimal number of samples may not be beneficial.

Introducing more positive samples is still the key to improving

the model’s generalization performance.

3.2.4 Performance of molecular fingerprints
When using different molecular fingerprint settings, the results

of the positive samples from models will also be different. When

using molecular fingerprints with nBits = 2048 and radius = 3, the

samples with score > 0.5 from lightGBM included a7, a15-a20. On

the other hand, when using molecular fingerprints with setting

nBits = 1024, radius = 2, the samples with scores > 0.5 by lightGBM

and >0.4 by MLP included a7, a15-a19, and a27. Therefore,

simultaneously selecting different molecular fingerprints for

modeling is conducive to obtaining a more comprehensive

screening for the model.

3.2.5 Structure-activity relationship-specific
analysis

Visualizing the important features learned by the model is

helpful for medicinal chemists to understand the model better

and obtain the structure-activity relationship (SAR). Figure 4

shows a plot of the Gaussian distribution with high model

prediction scores with some molecules as examples, where green

indicates fragments that are conducive to a higher score. Almost all

compounds with high predicted values contain the same fragments,

including the aromatic 2-methoxy-6-naphthalene and the amino

acid scaffold (S)-1-azaneyl-2-(oxo-methyl -amino)-3-propan-1-one.

These fragments are considered beneficial for the enrichment of

compounds and can improve affinity activity. We also noticed that

the highly active compounds have other common fragments, such as

the carboxyl functional group in R3. Still, this functional group also

frequently appears in other inactive compounds, so the ML model

comprehensively learned that its positive contribution is not

confirmed. Consequently, the aromatic naphthalene of R1 in the

parent compound is an active functional group and should not be

modified. While R2 and R3 have the potential for chemical

modification, the specific SAR remains to be explored.

4 Conclusion

Either DEL or AI applications in drug discovery emerged

during the past decade. Their combination for discovering and

developing new PPI inhibitors is also promising to provide vital

drug candidates. With more academic institutes and the

pharmaceutical industry investing in DEL technology

development, taking full advantage of the DEL-generated

terabyte-level dataset, including negative data, is a coming-up

task. Specifically, efficiently constructing a model will be much

more challenging with a few positive or even only one positive

sample, which is nearly unavoidable in the real world. This study

analyzed the big data with one unique positive sample hit 1

generated by DEL screening on the TIGIT target. A series of

derivatives a1-a34 beyond the DEL dataset, including higher active

derivative a7, were chemically synthesized to validate and test the

ML models. Moreover, the difference between fingerprint

molecule generation and oversampling or undersampling

methods was investigated to reach an even distributed dataset

for MLP and lightGBM models. The systemic investigation of

building ML models based on a tiny number of positive samples

provides help for the establishment of subsequent models. To our

knowledge, this is the first reported small molecule inhibitors

against TIGIT in the peer-reviewed literature. This study will

facilitate developing small molecule inhibitors against PPI

targets for tumor immunotherapy. The further bioactivity

investigation of the hit and derivatives and application of ML

models for virtual database screening is still ongoing.
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