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A B S T R A C T

The cell-free supernatant of Lactiplantibacillus plantarum (LCFS) is considered a potential natural antimicrobial 
agent due to its outstanding antimicrobial activity. This study demonstrated that the cell-free supernatant of 
L. plantarum SHY96 (LCFS96) effectively inhibits the growth and biofilm formation of L. monocytogenes CMCC(B) 
54002 (L. monocytogenes_02) by reducing cell metabolic activity and damaging cell structure. Metabolomic 
analysis revealed that LCFS96 significantly altered 450 intracellular metabolites, affecting key metabolic path-
ways including linoleic acid metabolism, pyrimidine metabolism, purine metabolism, pantothenic acid and CoA 
biosynthesis, and the TCA cycle. Additionally, application of LCFS96 significantly reduced L. monocytogenes_02 
viable counts by 84.93%, while maintaining the pH, TVB-N and organoleptic properties of chicken meat under 
refrigeration at 4 ◦C for 12 days. These findings highlight the antimicrobial mechanism and potential application 
of LCFS96 in extending the shelf-life of meat products.

1. Introduction

Foodborne pathogens pose a significant challenge to food safety in 
manufacturing and constitute a significant threat to human health (Khan 
et al., 2023). Listeria monocytogenes is among the most important food-
borne pathogens, being prevalent worldwide and commonly associated 
with several foodborne outbreaks (Bodie et al., 2023). Recent epide-
miological data from the World Health Organization have indicated a 
high mortality rate among people infected with L. monocytogenes glob-
ally (FAO and WHO, 2022). In 2020, a 22% mortality rate was observed 
in the United States among individuals infected with L. monocytogenes. 
In addition, the European Food Safety Agency (EFSA) reported 183 cases 
of L. monocytogenes in the EU in 2021 (European Food Safety Authority 
and European Centre for Disease Prevention and Control, 2022). 
Consequently, the widespread dissemination and significant health risks 
associated with L. monocytogenes have escalated into a major public 
health concern.

L. monocytogenes infections are associated with a variety of food 
sources, with meat products being a significant source of contamination 
(Liu, Liu, et al., 2020). Meat, rich in protein, fat, and other essential 
nutrients, provides an ideal environment for the growth and prolifera-
tion of L. monocytogenes (Jamshidi & Zeinali, 2019). L. monocytogenes is 
particularly significant for its ability to form biofilms and endure a range 
of environmental conditions, such as high salt concentrations, low 
temperatures, low pH, and low humidity (He et al., 2023). Thus, meat 
products are at risk of contamination with L. monocytogenes throughout 
all phases of production, including manufacturing, processing, distri-
bution, and even after cooking (Marmion et al., 2022).

To date, the primary strategy for preventing L. monocytogenes 
contamination in the food industry involves rigorous hygiene mainte-
nance during meat processing (Palma et al., 2020). However, the 
effective control of meat contamination still constitutes a considerable 
challenge for the industry. In recent years, an increasing demand for 
natural preservative technology without side effects to enhance food 
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preservation and reduce microbial contamination has been observed 
among consumers. Recent studies have shown that deep learning-based 
systems have the potential to optimize food packaging, thus indirectly 
contributing to the preservation of product quality and safety (Zhang, 
Chen, et al., 2023). In addition, innovative packaging systems, such as 
fuzzy PID-based gas dispensing, can create optimal environments that 
prevent microbial growth, extend shelf life, and complement the role of 
natural preservatives (Zhang, Zuo, et al., 2023). These advances high-
light the importance of an integrated approach that utilizes novel 
packaging technologies and preservatives to address the challenges of 
microbial contamination in food. Therefore, there is an urgent need for 
the development and industrial application of novel natural preservative 
methods specifically targeting L. monocytogenes in meat products.

Probiotics and their metabolites are considered ideal bio- 
preservatives owing to their health-associated benefits, safety, envi-
ronmental friendliness, readiness, and strong antimicrobial properties 
(Silva et al., 2020). In particular, lactic acid bacteria (LAB) have shown 
excellent antimicrobial effects against several foodborne pathogens. For 
instance, LAB strains (J.27 and M.21) isolated from Korean kimchi have 
shown excellent anti-biofilm activity against foodborne pathogens such 
as Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli. 
Moreover, these two LAB strains have been shown to effectively inhibit 
biofilm formation on surfaces in contact with seafood, such as squid 
(Toushik et al., 2021). Moreover, cell-free supernatants from LAB iso-
lated from fermented beverages and fish have demonstrated antibacte-
rial activity against a wide range of Gram-positive and Gram-negative 
foodborne bacteria (Dejene et al., 2021). Notably, Lactiplantibacillus 
plantarum cell-free supernatant (LCFS) has shown an excellent safety 
profile and is less likely to contribute to the emergence of microbial 
tolerance and/or resistance (Yilmaz et al., 2022). However, to the best of 
our knowledge, studies on the activity of LCFS against L. monocytogenes, 
especially regarding its mechanism of action, are still lacking.

Metabolomics has been widely used to explore dynamic changes in 
bacteria at the metabolic level, having become an effective tool to study 
antibacterial mechanisms (Zhao et al., 2021). For instance, using 
metabolomics analysis, He et al. (2022) found that linalool inhibits the 
growth of L. monocytogenes by interfering with metabolic pathways 
involved in amino acid metabolism, central carbon metabolism, lipid 
metabolism, and nucleic acid metabolism, while 2-methoxycinnamalde-
hyde was found to inhibit the growth of methicillin-resistant Staphylo-
coccus epidermidis by interfering with the TCA cycle and the pentose 
phosphate pathway (Qian et al., 2022). Therefore, metabolomics can be 
considered a promising strategy to study the antibacterial mechanism of 
LCFS against L. monocytogenes.

In the light of this, the aim of the present study was to apply 
untargeted metabolomics to investigate the antibacterial mechanism of 
LCFS on L. monocytogenes. Moreover, the application potential of LCFS to 
chicken breast meat was evaluated. The findings discussed herein 
contribute to the application of LCFS as a natural preservative in meat 
products.

2. Materials and methods

2.1. Bacterial strains

L. plantarum SHY96, isolated from traditional Sichuan kimchi in 
China, is deposited at the China Center for Type Culture Collection 
under the collection number CCTCC M 2024399. This strain was iden-
tified through Gram staining and 16S rDNA sequencing, along with 
evolutionary tree analysis, as illustrated in Fig. S1. It was pre-cultured in 
de Man Rogosa Sharpe (MRS) broth (Land Bridge Technology Co., Ltd., 
Beijing, China) at 37 ◦C for 24 h. Preliminary antibacterial screening of 
50 strains of food-associated lactic acid bacteria from laboratory culture 
collection revealed that L. plantarum SHY96 exhibits potent antimicro-
bial activity against pathogenic microorganisms such as 
L. monocytogenes.

L. monocytogenes CMCC(B)54002 (L. monocytogenes_02) was pur-
chased from the National Center for Medical Culture Collections (CMCC, 
No54002). This strain was widely studied and serves as a model path-
ogen for evaluating the antimicrobial properties of probiotics and lactic 
acid bacteria. It was cultured at 37 ◦C for 24 h in tryptone soybean broth 
(TSB) (Hope Bio-Technology Co., Ltd., Qingdao, China).

2.2. Preparation and concentration of CFS of L. plantarum

Preparation and concentration of L. plantarum SHY96 cell-free su-
pernatant (LCFS96) was performed following a method previously 
described by Xu et al. (2024). Briefly, L. plantarum SHY96 was cultured 
in 300 mL MRS broth and incubated at 37 ◦C for 24 h. After incubation, 
the suspension (109 CFU/mL) was submitted to centrifugation at 6,000 
rpm for 10 min at 4 ◦C to collect the cell-free supernatant. Subsequently, 
the supernatant was concentrated in a rotary evaporator and then sub-
mitted to lyophilization in a lyophilizer (Songyuan Huaxing Technology 
Develop Co., Ltd., Beijing, China). The resulting powder, i.e., LCFS96, 
was accurately weighed in an analytical balance and then dissolved in 
sterile water to prepare a solution at a final concentration of 200 mg/ 
mL. Dissolved CFS samples were stored at − 80 ◦C until subsequent 
analysis, and sterile MRS was used as background control.

2.3. Determination of the antibacterial activity of LCFS96

2.3.1. Determination of the minimum inhibitory concentration (MIC)
MIC values of LCFS96 against L. monocytogenes_02 were determined 

using the broth microdilution assay, as previously described (Jiang 
et al., 2022). Briefly, 180 μL of TSB containing L. monocytogenes_02 
planktonic cells (106 CFU/mL) was mixed with 20 μL of LCFS96 to 
obtain solutions at different final concentrations, i.e., 0.625, 1.25, 2.5, 5, 
10, and 20 mg/mL, respectively. Subsequently, the solution was placed 
in a 96-well plate and incubated at 37 ◦C for 24 h. The growth of 
L. monocytogenes_02 planktonic cells was assessed by measuring the 
absorbance of the suspensions at 600 nm (OD600) in a microplate reader 
(Gen5TM, BioTek® Instruments, Inc., Winooski, USA). The MIC value 
was defined as the lowest concentration of LCFS96 that resulted in no 
visible growth of L. monocytogenes_02. Cells without the addition of 
LCFS96 were considered as the control sample.

2.3.2. Growth curve and time-kill kinetics assays
The inhibitory effect of LCFS96 against L. monocytogenes_02 was 

investigated by constructing growth curves (Ma et al., 2023). Briefly, 
LCFS96 was added to L. monocytogenes_02 planktonic cells (106 CFU/ 
mL) to obtain different final concentrations based on the MIC value, i.e., 
1/2× MIC, 1× MIC, and 2× MIC. After homogenization, bacterial sus-
pensions were incubated at 37 ◦C for 24 h, during which time the 
absorbance (OD600) was determined hourly. Cells without the addition 
of LCFS96 served as the control sample.

Time-kill kinetics assays were conducted to determine the killing 
effects of LCFS96 on L. monocytogenes_02 planktonic cells over a three- 
hour period, as previously described (Ma et al., 2023). LCFS96 was 
added to L. monocytogenes_02 planktonic cells (106 CFU/mL) to obtain 
mixtures at different final concentrations based on the MIC value, i.e., 1/ 
2× MIC, 1× MIC, and 2× MIC, followed by incubation at 37 ◦C for 0, 1, 
2, and 3 h, respectively. Subsequently, 10 μL of the suspension from each 
incubation time point was coated on Tryptone Soy Agar (TSA) plates 
(Hope Bio-Technology Co., Ltd., Qingdao, China) after ten-fold serial 
dilution. After incubation at 37 ◦C for 48 h, colonies formed on plates 
were enumerated. Cells without the addition of LCFS96 served as the 
control sample.

2.3.3. Determination of the anti-biofilm activity
The inhibitory effect of LCFS96 on the capacity of L. monocytogenes to 

form biofilms was assessed based on previously described protocols (Luo 
et al., 2021). Briefly, 100 μL of L. monocytogenes_02 planktonic cells was 
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transferred to a 96-well plate, and an equal volume of LCFS96 was added 
to the wells to reach a final concentration of 1× MIC and 2× MIC. 
Following the incubation period, non-adhered bacterial cells were 
carefully discarded, and the wells were gently washed twice with PBS. 
Obtained L. monocytogenes_02 biofilms were then stained using the 
MycoLight™ Live Bacterial Fluorescence Imaging Kit (AAT Bioquest, 
Sunnyvale, CA, USA) and visualized under a fluorescence microscope 
(Bosda, Bosda, Shenzhen, China) at 100× magnification (excitation/ 
emission: 500/550 nm). Mean fluorescence intensities were analyzed 
using ImageJ software version 1.54f (Wayne Rasband, National In-
stitutes of Health, USA). Cells without the addition of LCFS96 served as 
the control sample.

2.4. Determination of the mechanism underlying the antimicrobial 
activity of LCFS96 against L. monocytogenes

2.4.1. Analysis of cell metabolic activity
The metabolic activity of L. monocytogenes_02 planktonic cells 

treated with LCFS96 was evaluated following established protocols 
(Jiang, Xin, Zhang, et al., 2022). Briefly, L. monocytogenes_02 cells (108 

CFU/mL) were treated with LCFS96 at final concentrations of 1× MIC 
and 2× MIC, and incubated at 37 ◦C for 30 min. Following incubation 
time, L. monocytogenes_02 cells were centrifuged at 6,000 rpm for 5 min 
at 4 ◦C and then resuspended in PBS. Subsequently, a mixture of fluo-
rescent dyes NucView Green and propidium iodide (PI) (3.0 μL per well) 
was added to bacterial cells followed by incubation in dark conditions 
for 30 min. Cells were then observed in a fluorescence microscope (Ex/ 
Em: NucView Green: 500/530 nm; PI: 535/617 nm, 200× magnifica-
tion). Control samples without LCFS96 treatment were also included in 
this experiment.

To further elucidate the effects of LCFS96 on the metabolic activity of 
L. monocytogenes_02 planktonic cells, the propidium iodide (PI) uptake 
assay was performed in a flow cytometer, as previously described (Jiang, 
Xin, Yang, et al., 2022). Briefly, L. monocytogenes_02 planktonic cells 
were cultured until the exponential phase was reached. Bacterial cells 
were collected by centrifugation at 6,000 rpm for 5 min at 4 ◦C and then 
resuspended in PBS to obtain a concentration of approximately 106 

CFU/mL. Subsequently, LCFS96 was added to the bacterial suspensions 
to achieve a final concentration of 1× MIC and 2× MIC, and then 
incubated at 37 ◦C for 30 min. Subsequently, the PI solution (10 μg/mL) 
was added to the bacterial suspensions followed by incubation at 37 ◦C 
for 30 min in the dark. PI uptake was determined in a FACScan™ flow 
cytometer (Becton Dickinson, New Jersey, USA) with data analysis 
conducted using the WinMDI software v.2.9 (Scripps Research Institute, 
CA, USA). Samples without the addition of LCFS96 served as the control.

2.4.2. Scanning electron microscopy (SEM) analysis
Morphological changes in L. monocytogenes_02 planktonic cells 

treated with LCFS96 were evaluated using SEM, as previously described 
(Jiang et al., 2022) Initially, 1 mL of L. monocytogenes_02 cells (107 CFU/ 
mL) were collected by centrifugation at 6,000 rpm for 5 min at 4 ◦C, 
followed by three washes with PBS. L. monocytogenes_02 cells were 
treated with LCFS96 at 1× MIC and 2× MIC and then incubated at 37 ◦C 
for 2 h. Subsequently, L. monocytogenes_02 cells were centrifuged again 
at 6,000 rpm for 5 min at 4 ◦C, washed three times with PBS, and then 
fixed in 2.5% glutaraldehyde at 4 ◦C for 8 h. Fixed cells were dehydrated 
using increasing concentrations of ethanol solution (i.e., 30%, 50%, 
70%, 80%, and 95%) for 30 min in each concentration. Dehydrated cells 
were then dried, sputter-coated with gold, and examined in a Hitachi S- 
3000N SEM (Hitachi, Tokyo, Japan). Samples without LCFS96 served as 
the control.

2.5. Non-targeted metabolomics analysis

The non-targeted metabolomics analysis was evaluated following 
established protocols (Qian et al., 2022). L. monocytogenes_02 planktonic 

cells in logarithmic phase were treated with 1× MIC concentration of 
LCFS96 for 2 h, then centrifuged at 3,000 rpm at 4 ◦C for 10 min, fol-
lowed by washing three times with PBS. The precipitate with bacterial 
cells (30 ± 5 mg) was obtained and resuspended in 300 μL of 80% 
methanol, ground for 6 min with a frozen tissue grinder, and submitted 
to cryosonication for 30 min at 5 ◦C to extract metabolites. After 
standing at − 20 ◦C for 30 min, samples were centrifuged at 6,000 rpm at 
4 ◦C for 15 min, and the supernatant was collected for UPLC-MS/MS 
analysis. Samples not treated with LCFS96 were analyzed in identical 
manner as samples treated with LCFS96. Each sample was analyzed as 
six independent replicates. During measurements, a QC sample was 
inserted every eight test samples in parallel to ensure quality control of 
the analytical process.

Raw LC-MS/MS data was imported into Progenesis QI software 
(Waters Co., Ltd., Massachusetts, Milford, USA) for analysis. Metabolites 
were identified using the Metabolism Public Database (HMDB) 
(http://www.hmdb.ca/), Metlin (https://metlin.scripps.edu/) and in- 
house Majorbio databases. The processed data matrix was uploaded to 
the Majorbio cloud platform (https://cloud.majorbio.com) for bio-
informatic analysis. The metabolites satisfying variable importance in 
prediction (VIP) > 1, adjusted P < 0.05, and absolute fold change (FC) >
1 were defined as differentially accumulated metabolites (DAMs). 
Metabolic pathway annotation was performed using the KEGG database 
(http://www.genome.jp/kegg/). Pathway enrichment analyses were 
performed using the Python package scipy.stats (https://docs.scipy. 
org/doc/scipy/). Sample correlation analysis and principal component 
analysis (PCA) were performed using the ropls R package (version 
1.6.2).

2.6. Application of LCFS96 to a chicken breast model

2.6.1. Chicken breast sample preparation
Chicken breast samples were prepared according to a previously 

described method with a few modifications (Ying et al., 2023). Chicken 
breasts were sourced from a local market (Chongqing, China) and 
transported to the laboratory at 4 ◦C. Chicken breasts were rinsed three 
times with sterile PBS at room temperature (25 ◦C) and cut into small 
pieces of approximately 1 cm × 1 cm × 2 cm, each weighing approxi-
mately 2 g. Chicken breast cuts were submitted to air-drying at room 
temperature until visually dry. Subsequently, meat samples were 
immersed for 15 min in LCFS96 solution at different concentrations, i.e., 
0× MIC (Control), 1× MIC, and 2× MIC, followed by air-drying at room 
temperature. Then, 1 mL of L. monocytogenes suspension (105 CFU/mL) 
was inoculated using a sterile spray bottle on meat samples, followed by 
air-drying in aseptic conditions for 1 h. Finally, inoculated meat pieces 
were stored at 4 ◦C for 12 days, and removed for analysis on day 0, 2, 4, 
6, 8, 10, and 12.

2.6.2. Microbiological analysis
The microbiological analysis was assessed based on previously 

described protocols (Xin et al., 2023). Briefly, 2 g of the treated meat 
sample was aseptically placed in a sterile bag containing 10 mL of 0.9% 
sterile saline. The mixture was homogenized at 6,000 rpm for 10 min 
using a BILON-08 homogenizer (Bilon Instrument Co., Ltd., Shanghai, 
China). Subsequently, 10 μL of the mixture was coated on TSA plates 
after a ten-fold serial dilution (Jiang, Xin, Yang, et al., 2022). After in-
cubation at 37 ◦C for 48 h, colonies formed on plates were enumerated.

2.6.3. pH measurements
The pH of samples was determined based on the method GB 

5009.237–2016 ‘National Standard for Food Safety Determination of pH 
Value of Food’ with slight modifications (Yuan et al., 2021). Briefly, 2 g 
of the treated meat sample was added to 20 mL of saline, and then ho-
mogenized in an ice bath, followed by centrifugation at 6,000 rpm at 
4 ◦C for 10 min. The collected supernatant was harvested, and the pH 
was measured a pH-320 acidity meter (Fangzhou Technology Co., Ltd., 
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Chengdu, China). pH measurements were repeated three times for each 
sample.

2.6.4. Determination of total volatile basic nitrogen (TVB-N) content
TVB-N content in chicken breast samples was determined using the 

semi-micro-distillation method in accordance with the Chinese standard 
GB 5009.228–2016, as previously described by Ying et al. (2023). 
Briefly, 2 g of the treated meat sample was homogenized in 20 mL of 
deionized water and then filtered using a Whatman filter paper No. 1 
(Whatman, Maidstone, England). Then, 5 mL of the filtrate was mixed 
with 5 mL of a 10 g/L magnesium oxide suspension in a Kjeldahl ni-
trogen distillation apparatus (Tianchang Kangpeng Experimental 
Equipment Co., Ltd., Anhui, China). Subsequently, volatile alkaline ni-
trogen was distilled into a receiving flask containing 10 mL of 20 g/L 
boric acid solution with five drops of a mixture of indicators, i.e., methyl 
red (1 g/mL) and methylene blue (1 g/mL) in a 2:1 (v/v) ratio. The 
mixed solution was distilled for 5 min, and then the boric acid absorbent 
was titrated with a standard titrant of 0.01 M sulfuric acid standard 
titrant. The volume of sulfuric acid consumed by the sample was 
denoted as V1 (mL), while 5 mL of distilled water served as the control; 

V2 (mL) indicated the volume of sulfuric acid consumed. TVB-N content 
was calculated using the appropriate formula: 

X =
(V1 − V2) × 0.01 × 14

m × 5/100 

2.6.5. Sensory evaluation
The experimental protocol was approved by the Institutional Review 

Board (College of Food Science, Southwest University), and panelists in 
the sensory experiments were informed of the experimental protocol and 
volunteered to participate. The panelists gave consent to take part in the 
experiment and to have their data used as part of the study.

Chicken breast samples were submitted to sensory evaluation to 
assess smell, color, texture, and acceptance, as previously described 
(Ying et al., 2023). Ten panelists were selected among graduate students 
enrolled at the College of Food Science, Southwest University, China, 
based on the following criteria: age between 20 and 28 years old and 
non-smokers. Samples were randomly labeled, then presented in a 
separate booth to each panelist for evaluation. A total of seven sensory 
evaluations were carried out on days 0, 2, 4, 6, 8, 10, and 12 throughout 
the experiment. Each panelist performed three different assays for each 

Fig. 1. Antimicrobial and anti-biofilm activity of the cell-free supernatant LCFS96 obtained from Lactiplantibacillus plantarum SHY96 against Listeria mono-
cytogenes_02. (A) Growth curves of L. monocytogenes_02 in the control sample, and in the presence of LCFS96 at 1/2× MIC, 1× MIC, and 2× MIC. All OD values were 
presented after subtracting the blank sample. (B) Time-kill curve of L. monocytogenes_02 in the control sample, and in the presence of LCFS96 at 1/2× MIC, 1× MIC, 
and 2× MIC. Fluorescence microscopy observations of L. monocytogenes_02 biofilm formation without LCFS96 (C), and with LCFS96 at 1× MIC (D) and 2× MIC (E). 
Mean fluorescence intensity of L. monocytogenes_02 biofilm in the control sample, and treated with LCFS96 at 1× MIC and 2× MIC (F).
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subsample. Sensory attributes were scored by panelists based on a 20- 
point scale (20 = liked very much, 18 = liked very much, 14 = liked 
generally, 12 = liked slightly, 10 = neither liked nor disliked, 8 = dis-
liked slightly, 6 = disliked generally, 4 = disliked very much, and 2 =
disliked very much). Samples with a score below 10 were considered 
unacceptable.

2.7. Statistical analysis

Data were expressed as mean values ± standard deviation and 
analyzed using SPSS statistics v.26.0 (SPSS Inc., Chicago, Illinois, USA). 
Analysis of variance (ANOVA) with Tukey’s multiple comparison was 
used to compare sample groups, and differences were considered sta-
tistically significant when P values < 0.05.

3. Results

3.1. Antimicrobial effect of LCFS96 against L. monocytogenes_02

The MIC value for LCFS96 against L. monocytogenes_02 cells was 10 
mg/mL. Compared to the control sample, the growth of 
L. monocytogenes_02 cells was significantly inhibited when treated with 
LCFS96 (Fig. 1A). Similar results are depicted in Fig. 1B, the number of 
L. monocytogenes_02 cells in the control group increased to 7.62 ± 0.05 
log10 CFU/mL at 3 hpt. In contrast, a decrease in the number of 
L. monocytogenes_02 was observed after LCFS96 treatment at 3 hpt (1×
MIC = 6.04 ± 0.04 log10 CFU/mL, 2× MIC = 5.86 ± 0.09 log10 CFU/ 
mL). In addition, the biofilm formation ability of L. monocytogenes_02 
was significantly impacted by LCFS96. Specifically, compared to control 

Fig. 2. Changes in metabolic activity of Listeria monocytogenes_02 cells treated the cell-free supernatant LCFS96 obtained from Lactiplantibacillus plantarum SHY96. 
Fluorescence microscopic observations of live green-stained L. monocytogenes_02 cells and red-stained dead cells in the control sample (no LCFS96) (A), and treated 
with LCFS96 at 1× MIC (B) and 2× MIC (C). Flow cytometry analysis of L. monocytogenes_02 cells in the control sample (D), and treated with LCFS96 at 1× MIC (E) 
and 2× MIC (F).

Fig. 3. SEM observations of Listeria monocytogenes_02 cells treated with the cell-free supernatant LCFS96 obtained from Lactiplantibacillus plantarum SHY96. (A) 
Untreated L. monocytogenes_02 cells, (B) cells treated with LCFS96 at 1× MIC, (C) cells treated with LCFS96 at 2× MIC.
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samples (Fig. 1C), the density of L. monocytogenes_02 biofilms treated 
with LCFS96 at 1 ×MIC (Fig. 1D) and 2 ×MIC (Fig. 1E) was significantly 
reduced. Moreover, the results of mean fluorescence intensity revealed 
that biofilm density was significantly (P < 0.01) reduced to 87.94% and 
61.98% when treated with LCFS96 at 1× MIC and 2× MIC, respectively, 
compared to control samples (Fig. 1F).

3.2. Impact of LCFS96 on L. monocytogenes_02 cell membrane integrity

L. monocytogenes_02 cells which were not treated with LCFS956 
exhibited intense green fluorescence (Fig. 2A), which indicated a high 
proportion of viable cells. In contrast, L. monocytogenes_02 cells treated 
with LCFS96 at 1× MIC (Fig. 2B) and 2× MIC (Fig. 2C) showed a sub-
stantial increase in red fluorescence, which indicated the significant cell 
death occurred. Furthermore, flow cytometry quantitative results 
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showed a significant increase in the proportion of red-stained 
L. monocytogenes_02 cells in samples treated with LCFS96 at 1× MIC 
(33.60%) (Fig. 2E) and 2× MIC (62.00%) (Fig. 2F) compared to the 
control sample (5.15%) (Fig. 2D) (P < 0.05).

3.3. Impact of LCFS96 on L. monocytogenes_02 morphology

SEM images revealed that untreated L. monocytogenes_02 cells 
maintained a uniform rod-shaped morphology with well-defined edges, 
clear outlines, and intact cell structures (Fig. 3A). In contrast, 
L. monocytogenes_02 cells treated with 1× MIC LCFS96 displayed subtle 
morphological changes, including surface roughening, shrinkage, and 
slight indentation (Fig. 3B). Importantly, intense morphological alter-
ations were observed in L. monocytogenes_02 cells exposed to 2× MIC 
LCFS96, including marked collapse, deformation, and partial disinte-
gration of the cell envelope (Fig. 3C).

3.4. Metabolomics analysis of L. monocytogenes

As shown in the PCA score plot (Fig. 4A and B), LCFS96-treated 
samples were clearly separated from the control group samples, thus 
indicating significant metabolic differences between the two groups. 
Similarly, OPLS-DA (Fig. 4C and D) further confirmed a clear separation 
in the metabolite profiles of the two sample groups. Specifically, R2X, 
R2Y, and Q2 values were 0.781, 0.997, and 0.995, respectively, thus 
indicating that the model has excellent fitting and predictive ability.

A total of 1640 metabolites were identified in both LCFS96-treated 
and control groups considering those with VIP > 1 and P < 0.05. 
Among these, 450 DAMs were found significantly altered, and visuali-
zation results are shown in the plotted volcano diagram (Fig. 5A), with 
the red color denoting significantly up-regulated metabolites, blue 
denoting significantly down-regulated metabolites, and grey denoting 
metabolites with differences that were not significant. In addition, 215 

DAMs were up-regulated and 235 DAMs were down-regulated after 
LCFS96 treatment formed two distinct clusters (Fig. 5B), further indi-
cating that the LCFS96 treatment significantly altered metabolic path-
ways in L. monocytogenes. Specifically, KEGG annotation results showed 
that DAMs were mainly involved in pathways related to linoleic acid 
metabolism, pyrimidine metabolism, purine metabolism, glycer-
ophospholipid metabolism, pantothenate and CoA biosynthesis, and 
TCA cycle (Fig. 6).

3.5. Application of CFS to chicken breasts

3.5.1. Impact on microbiological contamination
Changes in the viable counts of L. monocytogenes_02 in chicken breast 

samples stored at 4 ◦C are shown in Fig. 7A. An increase in the viable 
counts of L. monocytogenes_02 was observed throughout the storage 
period in all treatment samples. On day 12, viable counts of 
L. monocytogenes_02 in control samples was 7.45 ± 0.09 log10 CFU/g, 
while in samples treated with LCFS96 at 1× MIC and 2× MIC were 
significantly lower, i.e., 6.63 ± 0.04 log10 CFU/g and 6.55 ± 0.04 log10 
CFU/g, respectively.

3.5.2. Impact on pH
Changes in pH values in chicken breast samples are shown in Fig. 7B. 

In all samples, an initial decrease in pH was observed, followed by a 
subsequent increase. Notably, the rate in pH change in samples treated 
with 1× MIC and 2× MIC LCFS96 was consistently lower compared to 
control samples.

3.5.3. Impact on TVB-N content
TVB-N content in chicken breast samples during storage is shown in 

Fig. 7C. Throughout the storage period, an increase in TVB-N content 
was observed in all samples. Initially, TVB-N content in all samples was 
approximately 6.40 mg/100 g. On day 4, TVB-N content in control 

Fig. 5. Volcano plot of Listeria monocytogenes_02 metabolites in the control sample and in samples treated with the cell-free supernatant LCFS96 obtained from 
Lactiplantibacillus plantarum SHY96 (A). Heatmap hierarchical clustering analysis of the control sample and in samples treated with LCFS96 on L. monocytogenes_02 
metabolites (B). Metabolic pathway analysis of L. monocytogenes_02 exposed to LCFS96 (C).

M. Liang et al.                                                                                                                                                                                                                                   Food Chemistry: X 25 (2025) 102078 

7 



samples was found above the microbiological limit (16.85 ± 0.69 mg/ 
100 g). In contrast, TVB-N content in samples treated with 1× MIC and 
2× MIC LCFS96 increased more slowly; both were recorded at 9.14 ±
0.42 mg/100 g and 8.80 ± 0.49 mg/100 g at day 4, respectively. In 
addition, on day 12, TVB-N content in control samples considerably 
exceeded the microbiological limit (32.57 ± 0.50 mg/100 g), while 
samples treated with LCFS96 at 1× MIC and 2× MIC were closer to the 
upper microbiological limit, i.e., 16.66 ± 0.4 mg/100 g and 13.97 ±
0.45 mg/100 g.

3.5.4. Sensory evaluation
The results of the sensory evaluation of chicken breast samples are 

shown in Fig. 7D-G. Sourness and odor intensity in control samples 
gradually increased, with noticeable spoilage occurring after eight days 
of storage. However, the addition of LCFS96 at 1× MIC and 2× MIC led 
to significant delay at the onset of such undesirable sensory changes. 
Similarly, control samples exhibited a steady decline in sensory quality, 
culminating in a pronounced spoiled taste on day 12, while sensory 
deterioration in samples treated with LCFS96 at 1× MIC and 2× MIC 
occurred at a slower rate. Furthermore, minor but observable differences 
in color and texture in LCFS96-treated chicken breast samples compared 
to control samples by the end of the 12-day storage period.

4. Discussion

In the present study, the MIC value for LCFS96 against 
L. monocytogenes_02 cells was 10 mg/mL, which was similar to earlier 
findings. For instance, the MIC value for L. plantarum CFS against Proteus 
mirabilis was 12.5 mg/mL (Wang et al., 2021), whereas MIC values 

found for CFS obtained from Lactobacillus against P. aeruginosa were 
62.5 μL/mL (Asadzadegan et al., 2023). Moreover, the growth of 
L. monocytogenes_02 cells was significantly decreased as a consequence 
of the exposure to LCFS96, with a dose-dependent effect on the degree of 
growth reduction. Specifically, the activity of L. monocytogenes_02 cells 
was significantly decreased when treated with LCFS96, and the growth 
of the cells was even lower under 1× MIC treatment compared with the 
control samples, with a gradual decrease in the viable count of 
L. monocytogenes_02 cells after 3 h of incubation. In addition, biofilm 
formation by L. monocytogenes_02 was significantly decreased when 
treated with LCFS96, suggesting that LCFS96 exhibits anti-biofilm ac-
tivity against L. monocytogenes. Collectively, these results suggest that 
LCFS96 can effectively control cell growth and biofilm formation ability 
of L. monocytogenes_02, thus confirming the potential of LCFS96 as a 
natural antibacterial agent with promising application in the food 
industry.

LCFS96 exhibited an excellent antibacterial activity against 
L. monocytogenes_02. However, the mechanism underlying its antibac-
terial action is unclear. Herein, using fluorescence microscopy and flow 
cytometry, LCFS96 significantly reduced the viability of 
L. monocytogenes_02 cells. In particular, it was observed that 
L. monocytogenes cells had significantly reduced metabolic activity after 
LCFS96 treatment. This is consistent with findings from previous studies 
that the metabolic activity of S. aureus_26 and E. coli_02 cells decreased 
by 42.53% and 47.26%, respectively, after treatment with phytobactin 
LFX01 (Xin et al., 2023), whereas the metabolic activity of E. coli and 
Salmonella Typhimurium was found decreased by 30% and 31%, 
respectively, after treatment with bacteriocin (Kim et al., 2019). In 
addition, SEM analysis revealed the presence of surface wrinkles and 
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even ruptures on L. monocytogenes_02 cells following treatment with 
LCFS96, indicating that the treatment compromised the integrity of the 
cell membrane, potentially leading to increased membrane perme-
ability. This is similar to findings reported for Aeromonas hydrophila ST3 
treated with L. plantarum MY2 CFS (Wang et al., 2023). Therefore, our 

phenotypic results suggest that the inhibitory or killing effect of LCFS96 
may be due to its ability to disrupt the membrane composition on 
L. monocytogenes cells, which likely results in the occurrence of molec-
ular exchanges between the intracellular and extracellular environ-
ments, ultimately leading to changes in membrane potential and 
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biochemical metabolic activity.
Metabolomics is an important tool for resolving alterations in 

metabolite composition and metabolic function. Therefore, we focused 
on the metabolic and functional changes in L. monocytogenes_02 
following treatment with LCFS96. It was found that LCFS96 treatment 
induced significant changes in metabolite profiles, mainly concentrated 
in linoleic acid metabolism, pyrimidine metabolism, purine metabolism, 
glycerophospholipid metabolism, pantothenate and CoA biosynthesis, 
and TCA cycle. These changes were also consistent with the observed 
phenotypic results. Moreover, it has been described that disturbances in 
pyrimidine and purine metabolism cause disruptions in DNA synthesis 
and metabolism, with deleterious effects on cellular repair and survival 
functions (Wang et al., 2023). After treatment with LCFS96, UMP, UDP, 
CMP, cytosine, as well as IMP, XMP, GMP, GDP, and guanosine were 
significantly down-regulated in L. monocytogenes; whereas uracil, hy-
poxanthine, and xanthine were significantly up-regulated, suggesting 
disturbances in pyrimidine metabolism and purine metabolism. This 
suggests that disturbed pyrimidine and purine metabolism induced by 
LCFS96 affects DNA repair, potentially leading to bacterial death, as 
previously reported (Cao et al., 2023). Furthermore, linoleic acid is 
involved in the construction of the phospholipid bilayer of the cell 
membrane, ensuring cell membrane permeability, thus being a key 
component of the cell structure. The increased levels of linoleic acid and 
its metabolites (including 9-oxo-ODE, 9,10-DHOME, and others) suggest 
that LCFS96 may have stimulated L. monocytogenes cells, resulting in 
enhanced linoleic acid metabolism, a finding similar to that reported by 
Xu et al. (2024). This result suggests that enhanced linoleic acid meta-
bolism in L. monocytogenes_02 cells after LCFS treatment resulted in 
altered cell membrane permeability, which corresponds to the pheno-
typic observations (i.e., SEM). The TCA cycle is the main pathway 
providing cellular capacity, being associated with cell growth (Liu, Sun, 
et al., 2020). After treatment with LCFS96, the TCA cycle pathway of 
L. monocytogenes_02 was upregulated, and cellular metabolism was 
enhanced. It has been shown that antibacterial compounds can stimulate 
bacteria to undergo excessive metabolism, such as glucose metabolism 
and amino acid metabolism, leading to microbial dysfunction and death 
(Liang et al., 2024). Thus, we herein propose a tentative explanation for 
the antibacterial mechanism of LCFS96 against L. monocytogenes by 
combining phenotypic and metabolomics analyses. Specifically, when 
LCFS96 attacks L. monocytogenes, changes in structural substances (e.g., 
linoleic acid) on the cell membrane are observed, and subsequently 
altering biofilm structure and permeability. This causes intracellular 
substances to leak, and small molecules to enter the cell, thus changing 
osmotic pressure. Thereby, this leads to disturbances in purine and py-
rimidine metabolism and a dramatic increase in energy metabolism. 
Thus, cell growth is inhibited, which may ultimately lead to cell death.

The preservative effect of natural antibacterial agents on meat is 
important for the development and future application of CFS-based 
antibacterial agents. Viable counts of L. monocytogenes, TVB-N con-
tent, and pH values were lower in CFS-treated sample groups compared 
to the control group. After 12 days of storage, L. monocytogenes counts 
decreased to approximately 14.88% and 12.56% in samples treated with 
LCFS96 at 1× MIC and 2× MIC, respectively, compared to the control 
sample. Moreover, TVB-N content in treated chicken breasts was 
significantly lower compared to the control group at 4 ◦C for 12 days of 
storage, which was consistent with the bacterial counts results. More-
over, LCFS96 inhibited the growth of L. monocytogenes_02 and slowed 
down protein breakdown in chicken breasts, which in alignment with 
the results of the application of the natural antimicrobial agent of 
Lactobacillus paracasei FX-6 to chicken breasts during storage under 
refrigeration (Duan et al., 2020). In addition, the pH of chicken breasts 
contaminated with L. monocytogenes_02 showed a downward and then 
an upward trend over a 12-day period, which may be attributed to the 
oxidation of unsaturated fatty acids to produce lactic acid and inorganic 
phosphate, and the growth of L. monocytogenes accelerated the spoilage 
of chicken breasts. This resulted in a decrease in pH initially (Zhu et al., 

2023), followed by an increase due to protein degradation and the 
production of alkaline compounds (Dong et al., 2024). Such changes in 
pH values are in agreement with the study of Q. Li et al. (2024).

Sensory assessment is the most intuitive way to determine the 
deterioration in the quality of meat products. For instance, deterioration 
of fresh chicken meat results in sticky surface and the production of an 
unpleasant odor (Ma et al., 2022). In addition, deterioration of fresh 
pork tenderloin results in oxidization of lipids and proteins, as well as 
production of ammonia, amines, aldehydes, and ketones, thus releasing 
an unpleasant odor (Hu et al., 2022). Herein, sensory evaluation analysis 
showed that treatment with LCFS96 maintained the organoleptic prop-
erties of chicken breast meat, especially odor, which is consistent with 
previously reported findings on chicken treated with proto-
catechualdehyde and linalool (He et al., 2023; Liao et al., 2023). Taken 
together, our findings revealed that LCFS96 effectively inhibited the 
growth of a foodborne pathogen for at least 12 days of storage, slowed 
down nutrient loss, and maintained sensory properties in a chicken 
breast model developed herein, suggesting that it could be a promising 
preservative for potential application in chicken breast meat.

5. Conclusion

In this study, LCFS96 exhibited potent antibacterial and anti-biofilm 
activity against L. monocytogenes_02. Its antimicrobial effect was pri-
marily attributed to disruption of cellular metabolism and membrane 
integrity. Metabolomic analysis identified key metabolic pathways 
affected, including linoleic acid metabolism, pyrimidine and purine 
metabolism, glycerophospholipid metabolism, pantothenate and CoA 
biosynthesis, and the TCA cycle. In addition, LCFS96 inhibited the 
growth of L. monocytogenes_02 in chicken breast meat. It reduced protein 
degradation and maintained sensory quality during storage for up to 12 
days. This indicates that LCFS96 was a promising natural preservative. 
Compared to traditional preservatives that rely on broad-spectrum 
antimicrobial action, LCFS96 targets metabolic pathways and mem-
brane integrity for potent antimicrobial and anti-biofilm effects. It has a 
unique biochemical mechanism and advantages over conventional 
preservatives and shows potential in food preservation. LCFS96 can be 
an important tool to improve food safety and extend shelf life in a 
healthy and sustainable way.
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