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Abstract
The diagnosis of solid tumors of epithelial origin (carcinomas) represents a major part of the workload in clinical
histopathology. Carcinomas consist of malignant epithelial cells arranged in more or less cohesive clusters of var-
iable size and shape, together with stromal cells, extracellular matrix, and blood vessels. Distinguishing stroma
from epithelium is a critical component of artificial intelligence (AI) methods developed to detect and analyze
carcinomas. In this paper, we propose a novel automated workflow that enables large-scale guidance of AI
methods to identify the epithelial component. The workflow is based on re-staining existing hematoxylin and
eosin (H&E) formalin-fixed paraffin-embedded sections by immunohistochemistry for cytokeratins, cytoskeletal
components specific to epithelial cells. Compared to existing methods, clinically available H&E sections are
reused and no additional material, such as consecutive slides, is needed. We developed a simple and reliable
method for automatic alignment to generate masks denoting cytokeratin-rich regions, using cell nuclei positions
that are visible in both the original and the re-stained slide. The registration method has been compared to
state-of-the-art methods for alignment of consecutive slides and shows that, despite being simpler, it provides
similar accuracy and is more robust. We also demonstrate how the automatically generated masks can be used to
train modern AI image segmentation based on U-Net, resulting in reliable detection of epithelial regions in previ-
ously unseen H&E slides. Through training on real-world material available in clinical laboratories, this approach
therefore has widespread applications toward achieving AI-assisted tumor assessment directly from scanned H&E
sections. In addition, the re-staining method will facilitate additional automated quantitative studies of tumor
cell and stromal cell phenotypes.
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Introduction

There has been a rapid onset of deep learning applica-
tions in pathology. Although achieving the full
potential of artificial intelligence (AI)-assisted histopa-
thology is some distance away, research in this area is
expanding and providing promising results. Progress
in the digitization of histological samples has resulted
in the production of so-called ‘virtual slides’ or
‘whole-slide images’ (WSI). The trend to digitize the
whole laboratory workflow [1,2] has the potential to

substantially change the profession, especially when
practically useful AI assistance algorithms are devel-
oped, validated, and implemented [3,4] to support
pathologists in routine tasks, such as finding carci-
noma micrometastases in lymph nodes or small foci of
prostate carcinoma in core biopsies, or in tasks requir-
ing quantification, such as precise evaluation of differ-
ent antigens by immunostaining, location, and
counting of different cell populations [5,6]. Unfortu-
nately, developing AI algorithms requires large vol-
umes of learning and validation data. For supervised
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learning, these are created mostly by manual annota-
tion of histological images, requiring substantial time
and effort from experienced pathologists, representing
a roadblock for their development, validation, and
implementation.
Solid tumors of epithelial origin (carcinomas) repre-

sent a major part of the workload in diagnostic histo-
pathology laboratories. These tumors are composed of
malignant epithelial cells arranged in more or less
cohesive clusters of different sizes and shapes,
together with admixed stroma including fibroblasts,
adipocytes, endothelium, and inflammatory cells, and
variable amounts of extracellular matrix. Various types
of inflammatory cells may also infiltrate the epithelial
islands.
The manual identification of tumor areas is often a

relatively simple process for a trained pathologist and,
by default, surrounding stromal areas are also identi-
fied. Such manually created data have been useful for
developing AI applications, especially in the diagnosis
of malignancy per se, tumor typing, and prognostica-
tion. On the other hand, there are applications that
require precise identification and annotation of carci-
noma cells and stromal cells within tumor islands, at
the tumor/stroma interface, and more distant stromal
cell populations devoid of carcinoma cells
(e.g. counting mitoses, nuclear morphometry, enumer-
ating intraepithelial and stromal lymphocytes, and
evaluating the topographical distributions of specific
inflammatory cell populations). These applications
require the identification of an ‘epithelial mask’ that
accurately delineates the areas of epithelial cells. Due
to the complexity of carcinoma structures, manual cre-
ation of a precise epithelial mask is challenging if rep-
resentative areas of tumor are to be identified for a
large number of samples, such as required for AI train-
ing. This differentiation of cancer cells from stroma is
recognized as an important problem, to which solu-
tions using staining of consecutive tissue sections have
been proposed [6,7]. A recent paper [8] demonstrated
an approach to manual annotations supervised by an
epithelial mask based on re-staining of hematoxylin
and eosin (H&E)-stained slides using immuno-
histochemistry (IHC) to visualize cytokeratins, cyto-
skeletal components specific to epithelial cells.

Aims and scope
The idea behind our project was to develop a simple,
rapid, and robust working procedure that is able to cre-
ate precise epithelial masks in WSIs and to use these
masks to train a neural network. Once trained, the pro-
cedure can then create ‘virtual’ epithelial masks in

previously unseen H&E-stained WSIs. These virtual
masks have immediate utility in AI-mediated diagnos-
tic applications in cancer detection and can also be
employed to co-localize carcinoma epithelium/stromal
regions to a second WSI produced for any additional
marker, obtained by de-staining the original H&E
section and re-staining for the marker of choice. In this
way, the procedure can be employed both for training
AI-based methods with minimal expert annotation to
simplify and speed up the learning process, and for
further sophisticated analysis of multiple parameters of
interest both clinically and in research.

Materials and methods

Experimental design
The study includes (a) development of a method for
automated pan-cytokeratin re-staining of previously
digitized H&E-stained sections; (b) an automated
method for aligning re-stained pan-cytokeratin
immunohistological images to the original H&E
images, in spite of shifts and nonlinear tissue distor-
tions that occur during re-staining; (c) automated mask
generation based on thresholding; and (d) the demon-
stration that these masks serve as a guide for machine
learning to detect and label epithelium in previously
unseen H&E-stained tissue sections of carcinomas.
We decided to use tissue microarrays (TMAs) as the

source material in phases (a)–(c). These compound
blocks containing multiple tissue cores collected from
routine diagnostic samples ensure adequate numbers
of tumors and with a range of growth patterns for
training and validation. In addition, that these samples
were obtained and processed under real-world clinical
conditions, rather than idealized and highly controlled
model systems, ensures easy transition into the clinical
setting. In phase (d), we used both TMA sections and
whole block tissue sections to test whether the trained
method independently identifies tumor/stroma areas in
H&E sections, applicable for automated quantitation
of additional immunohistochemical or molecular
pathology markers of interest for diagnosis and
research.

Material
The source material originated from diagnostic cases
evaluated at the Department of Pathology, MMCI. All
patients provided written informed consent to use their
leftover material for research. Staining of breast carci-
nomas was performed on residual excess slides from
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IHC quality control procedures, using two TMAs rep-
resenting 12 tumor samples in total. Patient details are
provided in Table 1. These tumors included the most
frequent histological patterns from dissociated lobular
carcinoma, through trabecular and solid, to medullary
growth. The five H&E-stained breast cancer WSIs
used for performance evaluation are part of routine
case documentation in the MMCI Biobank and were
selected randomly from the collection. The colon car-
cinoma TMA samples represent residual material from
a retrospective immunohistochemical study of consec-
utive colon carcinomas. Patient details are given in
Table 2. Each of the five TMAs originally contained
24 tumor samples, each represented by two 1.4 mm
cores. After evaluation of H&E- and cytokeratin-
stained scans, this number was reduced to a total of
85 tumors represented by 141 cores. Four TMAs were
used for U-Net learning and the fifth TMA was used

to evaluate the performance of the trained network.
These TMAs were manufactured by a homemade tis-
sue arrayer.
Additional scans of full-block H&E sections of one

breast carcinoma and three colon carcinomas were
selected from the collection of MMCI biobank to eval-
uate the efficacy of mask generation to demonstrate
the U-Net performance online (Figure 1). The mate-
rials used at each step of method development are
summarized in Figure 2 and details are provided in the
supplementary material.

Re-staining protocol
Sections of 5 μm thickness were collected onto posi-
tively charged slides for IHC (TOMO, Matsunami
Glass IND LTD, Osaka Japan). The H&E staining pro-
tocol was performed according to the standard

Table 1. Details of breast cancer samples.

Grade Grade 1 Grade 2 Grade 3

1 6 10

Morphology Lobular NST Mucinous Micropapillary Medullary

1 13 1 1 1

Estrogen receptor Positive Negative

13 4

HER2 Positive Negative

4 13

Format/use TMA core Full section scan

Learning 12 0

Evaluation 0 5

NST, No Special Type / No Specific Type.

Table 2. Details of colon cancer samples.

Age Range Mean Median

30–92 65.4 66.5

Sex Male Female

56 32

Location Right colon Left colon Indetermined

35 47 6

Clinical stage Stage I Stage II Stage III Stage IV

15 27 35 11

Grade Grade 1 Grade 2 Grade 3

23 46 19

Morphology Tubular Tubopapillary Cribriform Medullary Dissociated

16 28 37 5 2

Format/use TMA core Full section scan

Learning 67 0

Evaluation 18 3
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laboratory protocol using a Leica Autostainer XL5000
(Leica Biosystems, Wetzlar, Germany), followed by
cover glass mounting with Solakryl BMX (Draslovka,
Kolín, Czech Republic) on a Leica CV500 mounting
machine. Details are given in the supplementary mate-
rial. The slides were left for 1 h to dry and then
scanned using a Pannoramic® MIDI (3DHistech,
Budapest, Hungary) with �20 objective lens at a reso-
lution 0.172 μm/pixel. The WSIs were uncompressed
in PNG inside Mirax format. After scanning, slides
were placed in xylene to remove the coverslips,
washed in xylene to remove the remaining mountant,
and re-hydrated through graded alcohols before
returning to water. IHC with a cocktail of cytokeratin
antibodies was performed in a Dako Autostainer Link

48 (Agilent, Santa Clara, CA, USA) using a standard
staining procedure including high pH antigen retrieval.
The cytokeratin antibody cocktail used to stain breast
carcinoma samples consisted of Ba-17, DC10, C-11,
and C-43 antibodies (Masaryk Memorial Cancer Insti-
tute, Brno, Czech Republic). A pan-cytokeratin cock-
tail AE1/AE3 (Agilent) was used for colon cancer
samples. Antibody binding was detected with Envision
HRP-labeled polymer secondary antibody with DAB
as chromogen (Agilent), and nuclei were counter-
stained with hematoxylin before dehydration and
mounting. Details are given in the supplementary
material. The WSIs were checked in the Automated
Slide Analysis Platform (ASAP) (available at https://
computationalpathologygroup.github.io/ASAP/#home)

Figure 1. Illustration of WSIs available online including U-Net computed epithelial mask in colon (A–C) and breast (D) carcinoma. The
links for online viewing include: http://rationai-vis.ics.muni.cz/iipmooviewer-jiri/matej/index.html?image=Biobanka/rgb/2021_0188-01-
T.tif&layer=Biobanka/seg/2021_0188-01-T.tif, http://rationai-vis.ics.muni.cz/iipmooviewer-jiri/matej/index.html?image=Biobanka/rgb/
2021_1546-01-T.tif&layer=Biobanka/seg/2021_1546-01-T.tif, http://rationai-vis.ics.muni.cz/iipmooviewer-jiri/matej/index.html?image=
Biobanka/rgb/2021_1583-02-T.tif&layer=Biobanka/seg/2021_1583-02-T.tif, and http://rationai-vis.ics.muni.cz/iipmooviewer-jiri/matej/
index.html?image=Biobanka/rgb/2021_1768-07-T.tif&layer=Biobanka/seg/2021_1768-07-T.tif.
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and were manually annotated to exclude unacceptable
cores or major artifacts from further analyses.

Dataset access
The dataset is available as raw files stored in Mirax
MRXS format compatible with OpenSlide (https://
openslide.org/formats/mirax/). Annotations used for
the evaluation stage are available as XML files com-
patible with ASAP. The dataset is pseudonymized and
access can be requested via BBMRI-ERIC European
Research Infrastructure (https://www.bbmri-eric.eu/)
by following its access policy; the request should be
placed via BBMRI-ERIC Negotiator platform to
Masaryk Memorial Cancer Institute.

Automated alignment of cytokeratin mask on H&E
slides
Software packages and libraries used in this study are
provided in the supplementary material. Automated
generation of the cytokeratin mask was performed as
follows: (1) the H&E and the re-stained slides are split
into individual tissue cores from the TMA (Figure 3);
(2) cores are registered (aligned) using one of the two
methods described below; and (3) the resulting mask
is created using adaptive thresholding with subsequent
noise filtering. The registration method developed for
step (2) utilizes a specific property of the re-staining

procedure to achieve robust results: cell nuclei cen-
troids act as reference points and are visible in both
the H&E and the re-stained tissue due to the repeated
hematoxylin staining, which is standard procedure for
IHC using DAB and other commonly employed chro-
mogens. The developed method was then compared to
the previously used state-of-the-art registration systems
for alignment of consecutive slides [6,7] and was
found both more robust and more accurate.

Nuclei-based registration
We developed a simple yet robust alignment method
based on isolation of cell nuclei marked by hematoxy-
lin in the original H&E slides and the re-stained
cytokeratin slides. Description of the algorithm refers
to the functions defined in algorithm 1; full
pseudocode is available in the supplementary material,
Section S2.

• Image processing starts with decomposition into
hematoxylin and eosin, and hematoxylin and DAB
channels [9,10] for each image, respectively. For
optimization of separation of the DAB and hematox-
ylin channels, the sparse non-negative matrix factor-
ization (SNMF) method was used [11].

• Cell nuclei centroids are identified in the hematoxy-
lin channel (DETECT-NUCLEI function), taking
into account both roundness of the shape and the

Figure 2. Flowchart of the automated annotation system for cytokeratin re-staining. Colors serve as a visual aid for related parts of the
system.
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minimum/maximum size, pre-specified for the given
resolution.

• Matching of nuclei centroids in both images is based
on searching for minimum square error when per-
forming rigid transformations (TRANSLATION and
ROTATION functions) with the gradient descent,
and applying nearest neighbor match.

• Once the best possible match is identified, the mat-
ched pairs are used to determine shift vectors for
nonrigid transformation of the image, which is then
performed using warp transformation.

Whole-tissue-based registration
Automatic alignment of consecutive slides using dif-
ferent staining was tackled by the ANHIR challenge in
2019 (https://anhir.grand-challenge.org/) [12] and eval-
uated using landmark validation [13]. This competition
did not provide any additional assumptions on staining
and was based on consecutive slides being stained
with the different methods and not the same slide
being stained with both methods, as described here.
Hence, the methods had to be more general without
being able to use the presumptions that we were able
to make for matching cell nuclei. One of the top three
ranking methods, and the only one that has been

published as open source [14], was used as the basis
for comparison with the method proposed in this
paper.
The algorithm combines several methods and pro-

ceeds in two stages. First, the initial alignment based on
rigid or similarity transformations is computed, and then
non-rigid transformations finish the registration. For the
initial alignment, the system automatically selects
between the two methods. The first uses feature detec-
tion algorithms (SURF, SIFT, and ORB) followed by
RANSAC for calculating similarity transformations
between features. The second method, related to our
algorithm, computes centroids in binary versions of
both images (obtained by Li thresholding) and uses
them to iteratively compute the desired rotation. For
nonrigid transformation, the system automatically
chooses between the four methods: local affine transfor-
mation with local brightness and contrast corrections,
two methods based on Thirion’s Demons algorithm [15],
and a thin plate interpolation applied to all the good
matches from the initial alignment procedure.

Automation of cytokeratin mask generation
We tested various methods of thresholding, and the
isodata [16,17] and minimum methods [18,19] pro-
vided the best results based on comparison with the

Figure 3. Corresponding H&E and cytokeratin re-stained tissue cores used as reference tissues. (A, B) Tissue core 2; (C, D) core 5; (E, F)
core 7; (G, H) core 13. An overview of the full dataset is shown in supplementary material, Section S4.
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pathologist’s expert knowledge, which is consistent
with surveys of thresholding methods [18,20,21].
Perhaps surprisingly, the tissue areas in WSIs after

immunohistochemical staining are slightly larger than
the corresponding regions in the scans of the original
H&E section (Figure 4). We presume that this is cau-
sed by the antigen retrieval step, involving exposure to
an aqueous solution at high temperature and high pH,
which produces partial hydrolysis resulting in swelling
of the tissue. As part of our nuclei-based registration
method, we therefore subtracted areas of the mask
where they overlay white background in the H&E-
stained image (i.e. areas of the slide without tissue,
thereby demarcating the boundary of the tissue). The
resulting binary mask is filtered for objects smaller
than the fixed threshold (smaller than 10.32 μm/area
for our images), which are considered noise.
Two representative areas of two different cores were

selected and the border of the epithelium was marked
by an experienced pathologist in the H&E image as a
series of precisely placed points – these became the
reference points. The ℓ2 distance between the nearest

border point of the automatically computed mask from
each of the reference points was taken as a metric of
alignment. Pairing of the nearest point and the refer-
ence point was also inspected visually.

Automation of stroma/epithelium detection in
H&E-stained tissues
To show the feasibility and utility of the automated
annotation generation procedure, we developed a sim-
ple AI pipeline to detect cytokeratin-rich regions in
H&E slides. We used 120 TMA cores to train a seg-
mentation network: 102 colon cores and 18 breast
cores. Dimensions of the tissue core images ranged
from 2496 to 7104 px, with a median of 4096 px mea-
sured as the smallest of the two sides. We used a win-
dow slide technique with a step size of 128 px to
divide the images into 512 � 512 px patches.
To avoid extraction of patches from background

areas of the image, we filtered out the background.
First, we converted the image from RGB (red, green,
blue) to HSV (hue, saturation, value/brightness)

Figure 4. Visualization of registrations and masks generated from part of Figure 3B using the two methods. (A, B) Original H&E-stained slide,
overlaid by the registered slide with cytokeratin visualized with DAB. (A) Nuclei-based registration and (B) whole-tissue-based registration.
Note that both figures also show outlines of the final mask overlaid on the aligned figures after subtracting white background. (C) Differences
between the two masks using overlaid areas. Cyan designates nuclei-based registration, green designates whole-tissue-based registration.
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representation and applied an Otsu’s thresholding on
the saturation channel of the image. We then applied
closing followed by an opening morphological opera-
tion using a disk of size 10 [22–24].
Before the patches are passed to the network input,

image augmentations are applied randomly on each
patch. The following augmentations were used: hori-
zontal and vertical flips with 50% probability each;
random 90� rotation; perturbations to brightness in the
range (�64; 64); perturbations to contrast in the range
(0.7; 1.3); and perturbations to hue and saturation in
ranges (�64; 64) and (�10; 10), respectively. As there
is no canonical orientation for the tissue samples, we
can use the flips to artificially increase the training
dataset and thus prevent overfitting. The random per-
turbations serve as a preventative measure against the
network relying on a specific color palette of a
slide [25].
We selected U-Net [26] as our architecture of

choice. The minimum number of channels was 64 and
the maximum was 1024. The Adam optimizer with a
combination of dice and binary cross-entropy loss [27]
was used to train the network. We initialized the learn-
ing rate to 3 � 10�05. During the training procedure,
the learning rate was reduced by a factor of 10 after
every 5 epochs with no improvement. The network

was trained with a batch size of 1 for 30 epochs. In
addition to image augmentations, ℓ2 regularization
with parameter 1 � 10�05 was used to prevent over-
fitting. All hyperparameter values were tuned on a
validation set.

Results

We measured both the accuracy and the computational
performance of cytokeratin mask generation/
registration for both the nuclei-based registration and
the whole-tissue-based registration on four selected
areas of four distinct cores.

Generation of masks
Accuracy

To allow numeric assessment of the masks generated
by the automated workflow, we used regions of tissue
cores 2, 5, 7, and 13, which were manually annotated
by the pathologist with reference points on the border
of the epithelial region in the H&E scan. An example
is given in supplementary material, Section S3 and
Figure S3.1. The numerical accuracy of the generated
mask was computed by finding the nearest point on
the mask edge to each of these reference points using
ℓ2 distance. The evaluation was manually examined
to check if the measurements had caused mismatch of
the nearest mask edge point for non-convex mask
shapes; no evidence was found for this. The ℓ2 dis-
tance is taken as the measure of error.
As mentioned above, we found that a WSI of

cytokeratin DAB after re-staining extends beyond the
tissue area of the original H&E WSI. This is directly
visible in the results of nuclei-based registration
shown in Figure 4A, as this method only uses nuclei
as reference points and does not attempt to align the
border of the DAB staining to the edges in the H&E
image. The whole-tissue-based registration method
performs this alignment with inconsistent results

Table 3. Evaluation of registration and mask generation for NBR
and WTBR.
TC Method Mean error (px) Median error (px) MSE

2
NBR 2.51 2 11.19
WTBR 2.23 2 8.83

5
NBR 2.21 1.41 53.31
WTBR 2.21 1.41 54.12

7
NBR 3.36 1.41 46.88
WTBR 3.21 1.41 48.14

13
NBR 3.09 2 25.47
WTBR 2.75 2 21.27

Results are provided individually for tissue cores 2, 5, 7, and 13 (denoted as TC
in the table header).
MSE, mean squared error; NBR, nuclei-based registration; WTBR, whole-tis-
sue-based registration.

Table 4. Results for tissue cores annotated using a registration method and DAB staining.
TC Sensitivity Specificity Average sensitivity Average specificity

TC-CRC-1 0.9648 0.9627 0.931 � 0.056 0.91 � 0.12
TC-CRC-2 0.9694 0.9756
TC-CRC-3 0.8894 0.9248
TC-CRC-4 0.8535 0.9624
TC-CRC-5 0.9753 0.7011
TC-MBC-1 0.8386 0.9459 0.794 � 0.063 0.937 � 0.013
TC-MBC-2 0.7498 0.9282

TC, tissue core number.
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(Figure 4B) – sometimes this process succeeds for
part of the given region, while it fails for other parts
of the same region. However, these issues are han-
dled correctly for both nuclei-based registration and
whole-tissue-based registration by subtraction of the
mask where it overlaps with the white region on the
H&E-stained WSI, as demonstrated in Figure 4C.
Resulting errors are shown in Table 3 and the accu-

racy of both methods is equivalent, with mean errors
of 0.344–0.516 μm. Given that the typical cell size is
15–20 μm and nuclear size is 5.16–6.88 μm, these
errors are a fraction of the size of a nucleus. As our
goal is to identify groups of epithelial cells, this level
of error does not compromise the method’s accuracy
for its intended purpose.
The nuclei-based registration procedure is relatively

straightforward compared to more sophisticated
nonlinear methods. Hence, it is also consistent and
robust. Even if tissue damage occurs during
cytokeratin re-staining, nuclei-based registration works
well as long as there are sufficient numbers of nuclei
distributed throughout the tissue. On the other hand,
whole-tissue-based registration truly aligning the tissue
borders is more problematic if tissue lifting, folding,
or loss occurs (supplementary material, Section S3 and
Figure S3.7).
For a more detailed comparison of the two methods,

see Figure 4. The whole-tissue-based registration
method is able to align a mask over the tissue with
high accuracy in a well-separated object; nuclei-based
registration is agnostic to separation of borders and
thus cannot take advantage of clearly demarcated bor-
ders. However, if borders are fuzzy (as at the top of

Table 5. Results for manually annotated colon tissue cores.
TC Sensitivity Specificity

KOS01-1 0.8828 0.5138
KOS01-2 0.8567 0.669
KOS01-3 0.9279 0.9139
KOS01-4 0.932 0.9361
KOS01-5 0.9293 0.9437
KOS01-6 0.9286 0.8953
KOS01-7 0.9263 0.6678
KOS01-8 0.9197 0.8093
KOS01-9 0.9363 0.7651
KOS01-10 0.8364 0.8889
KOS01-11 0.933 0.8777
KOS01-12 0.9404 0.8694
KOS01-13 0.9359 0.8482
KOS01-14 0.9292 0.7437
KOS01-15 0.8465 0.8338
KOS01-16 0.8346 0.8375
KOS01-17 0.948 0.6693
KOS01-18 0.9598 0.8349
KOS01-19 0.8818 0.8827
KOS01-20 0.921 0.6967
KOS01-21 0.9449 0.8235
KOS01-22 0.7198 0.9574
KOS01-23 0.9096 0.8924
KOS01-24 0.9222 0.8143
KOS01-25 0.9591 0.7536
KOS01-26 0.973 0.6975
KOS01-27 0.9301 0.6957
KOS01-28 0.9718 0.1184
KOS01-29 0.9621 0.9374
KOS01-30 0.8689 0.9747
KOS01-31 0.9606 0.8634
KOS01-32 0.9429 0.746
KOS01-33 0.8764 0.9483
KOS01-34 0.8994 0.9206
Average 0.913 � 0.050 0.80 � 0.16

TC, tissue core number.

Table 6. Results for manually annotated breast tissue cores and resection slides using a model trained only on breast tissue cores (MBC
only) and a model trained using a combination of colon and breast tissue cores (CRC + MBC).

CRC + MBC MBC only

Slide Region Sensitivity Specificity Sensitivity Specificity

C-MBC-1 1 0.8359 0.9084 0.8884 0.8815
2 0.7616 0.9707 0.7633 0.9916
3 0.9167 0.8927 0.8969 0.9187
Average 0.838 � 0.063 0.9239 � 0.0037 0.850 � 0.061 0.931 � 0.046

C-MBC-2 1 0.9068 0.9038 0.9017 0.9163
2 0.943 0.9629 0.9265 0.9665
3 0.9162 0.9277 0.906 0.9359
Average 0.922 � 0.015 0.932 � 0.024 0.911 � 0.011 0.939 � 0.021

R-MBC-3 1 0.9374 0.7896 0.9414 0.7538
2 0.8425 0.9421 0.8494 0.941
3 0.8806 0.8734 0.8054 0.929
Average 0.887 � 0.039 0.868 � 0.062 0.865 � 0.057 0.874 � 0.086

R-MBC-4 1 0.8155 0.794 0.7738 0.8127
2 0.809 0.8769 0.8359 0.8686
3 0.8335 0.7988 0.7858 0.8687

Average 0.819 � 0.010 0.823 � 0.038 0.798 � 0.027 0.850 � 0.026
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Figure 4A,B), the error of nuclei-based registration
stays consistent, as opposed to whole-tissue-based reg-
istration, which incorrectly distorts the mask. How-
ever, both these problems are corrected by subtraction
of the mask on the white background in the H&E-
stained image. This simple (but unexpected) correction
aids precise delimitation of the original and re-stained
section areas, and consequent alignment of registered
nuclei between the two. Thus, distortion within the
body of the tissues is also accounted for by consecu-
tive alignment of registered nuclei across the entire tis-
sue images, based on minimal distance between each
registered nucleus in the two sets of registered points
in the two images.

Results of H&E-stained tissue segmentation

To evaluate the network, we chose pixel-level sensitiv-
ity and specificity. We combined all the patches to
reconstruct the full mask. The overlapping regions of
the patches were combined using arithmetic mean so
that the resulting inter-patch borders are smoother. The
full maps were thresholded at 0.5. For testing, we used
seven TMA cores, five colorectal (TC-CRC) and two
breast (TC-MBC), which were annotated using DAB-
stained tissues. The results are found in Table 4. Fur-
thermore, we also tested the network on 34 manually
annotated colon tissue cores (KOS01), two manually
annotated breast biopsies (C-MBC), and two manually
annotated full-face breast resection slides (R-MBC).

Figure 5. Low-power field from a breast carcinoma biopsy (region 2 from slide M025): (A) the region analyzed; (B) manual annotations
made by pathologist; (C) predictions made by neural network; (D) heatmap denoting false positives in yellow, false negatives in red, true
positives and true negatives in light and dark blue, respectively.
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Figure 6. (A) High-power view of H&E-stained KOS01-21 tissue core, cribriform growth pattern; (B) manual annotation; (C) predictions
made by neural network; (D) heatmap denoting false positives in yellow, false negatives in red, true positives and true negatives in light
and dark blue, respectively. The carcinoma areas omitted by manual annotation are labeled with green arrows.
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The results are summarized in Table 5 for colon sam-
ples and Table 6 for breast samples. In view of the
complexity of the annotation process, only one subre-
gion within each test core (colon) or three subregions
in each full-face WSI (breast) were selected, rep-
resenting the predominant tissue pattern and avoiding
section artifacts. For breast tissues, we retrained a U-
Net model using only the 18 training breast tissue
cores (MBC only) and compared the results with the
model trained on a combination of colon and breast
tissue cores (CRC + MBC).
In Figure 5, we present the results of the U-Net

model on previously unseen core biopsies of breast
carcinoma against manual annotation. The results of
the model on previously unseen colon cancer cores
compared to the subsequently prepared DAB-stained
cytokeratin mask are shown in supplementary mate-
rial, Section S5 and Figure S5.1. These low-
magnification images show overall concordance.
Figure 6 compares the results of the U-Net model
with manual annotations in a selected high-power
field of previously unseen colon cancer core. Three
more examples can be found in supplementary mate-
rial, Section S5 and Figures S5.2–5.4. These four
cases were selected to represent different histologi-
cal patterns without knowledge of the U-Net results.
Unintentionally, they illustrate how imprecise man-
ual annotation can be. In Figure 6 and supplemen-
tary material, Section S5 and Figure S5.2, small
areas of carcinoma were omitted by pathological
annotation (arrows), but these were accurately rec-
ognized by U-Net. The delineation of epithelial
islands using polygons is less precise compared to
the results of U-Net. In supplementary material,
Section S5 and Figures S5.3 and S5.4, two less fre-
quent growth patterns of colon cancer are presented.
The dissociating pattern (supplementary material,
Figure S5.3) is difficult to annotate manually with
precision, and the U-Net result is closer to ground
truth. The medullary pattern (supplementary mate-
rial, Figure S5.4) has less distinct stroma than other
types and U-Net reveals some small stromal areas
not delineated by manual annotation. Importantly,
this pattern was not represented in the learning
dataset. As further illustrations of the trained U-net
performance to automatically generate virtual epithe-
lial masks from H&E sections without cytokeratin
re-staining or manual annotation, we provide four
randomly selected WSIs of colon and breast cancer
(Figure 1). The figure provides links to allow inter-
active control of probability and opacity of the auto-
matically generated epithelial masks aligned over
the H&E WSIs.

Discussion

Detecting carcinoma cells is a key focus for AI
methods in digital pathology, either as an end in itself
for cancer diagnosis or as the starting point for further
analyses of tumor phenotypes. As such, the ability of
AI methods to accurately differentiate stroma from
epithelium is an absolute requirement for development
and evaluation of AI methods for different cancer
types, and for identifying abnormalities in pre-cancers,
dysplasias, etc. This paper presents a novel method
that overcomes the shortage of manually annotated
WSIs to differentiate stroma from epithelium. It must
be noted that, in our study, intended as a ‘proof of
concept’, we did not attempt to distinguish between
neoplastic and non-neoplastic epithelium (both posi-
tive for cytokeratins). Some TMA cores in the learning
dataset contained admixtures of non-neoplastic epithe-
lium and accurately distinguishing between neoplastic
and non-neoplastic cells would require a different con-
struction of learning datasets, containing more non-
neoplastic tissue and strictly defined carcinoma areas.
This might be a matter of further studies using our
approach. In addition, implementation of other AI-
based methods employing parameters such as nuclear
size, topology, and texture [1–5,28,29] will also be
useful in this respect and is to some extent simplified
by analyzing only the epithelial components.
By integrating an automated re-staining, scanning,

and image processing pipeline (registration, color
channel separation, and thresholding), the procedure
has potential to generate large amounts of data suitable
for machine learning. Another advantage is that the
method can use existing H&E-stained material. Hence,
well-characterized pathology collections can be used
easily for training, without the need to retrieve and
recut tissue blocks to provide sections that are consec-
utive to each other for H&E and corresponding IHC
staining. The original H&E-stained slides as well as
re-stained sections can be scanned to produce WSIs
using any modern scanner. No additional visual cues
are needed or assumed by the methods.
In this paper, we have also demonstrated the viabil-

ity of ingesting the resulting pixel-level annotated
images into the machine learning pipeline: we trained
a U-Net-based image segmentation method to detect
epithelium directly in previously unseen H&E slides.
The method of re-staining and alignment can be
applied to obtain tumor masks using either full-face
tissue sections from clinical samples or, more easily
for training purposes, from large numbers of samples
using TMAs created from those tissues, as we
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demonstrated in breast and colorectal carcinoma, all-
owing data to be collected rapidly for training on large
and diverse sample sets of samples. Once the AI is
trained, data derived from applying the virtual mask
directly from any H&E-stained section can be trans-
ferred to other available software for cell measure-
ments and high throughput analysis of stromal/
epithelium compartments, or morphometric analysis
can be performed, such as nuclear morphometry,
mitotic counts, or epithelial topology. This will
undoubtedly aid in the recent development of AI
methods that can identify characteristic tumor cell
morphologies associated with specific genetic
changes [28,29].
In addition, after AI-assisted identification of tumor/

stroma compartments in the original diagnostic H&E
slide, the re-staining protocol with re-alignment can be
applied for automated enumeration of any marker or cell
parameter of potential importance clinically or in
research (e.g. tumor Ki67 index; PD-L1+ cells in tumor
and stroma; tumor-infiltrating CD8 T-cells; proliferation
and activation states of endothelium, fibroblasts, or mac-
rophages; etc). Although we used immunoperoxidase
with DAB for bright-field microscopy, the re-staining
protocol can be adapted to allow fluorescent-based detec-
tion or the use of other chromogens, opening up the pos-
sibility for analysis of multiple antigens on the same
section, coupled with repeated re-staining operations, as
required [30–33]. Thus, by correcting for the small scan-
ner shifts and distortions of tissue sections caused by de-
staining/re-staining procedures, the nuclei-based co-
registration of sequential scans can also be applied to the
increasingly evolving multiplexed techniques to allow
comprehensive automated analysis of multiple antigens
(and DNA/RNA [34]) in a single tissue section from a
diagnostic sample. These approaches will therefore allow
simplified analysis of both the tumor and the tumor
microenvironment in clinical samples. In addition to the
simple but important task of identifying tumor from
stroma, the re-staining method with alternative markers
that identify stromal rather than epithelial antigens can
theoretically be used to train similar AI pipelines for
automated identification of specific tumor microenviron-
ment components in clinical H&E sections in the future.
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