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Effects of L-carnitine on serum triglyceride and cytokine levels in rat
models of cachexia and septic shock

BK Winter*, G Fiskum and LL Galo

Department of Bichemistry and Molecular Biology, George Washington University Medical Center, 2300 Eye St, NW
Washington, DC 20037 USA.

S _ry hiappropriate hepatic _pogenesis, hypertriglyeridamia, decreased fatty acid oxidation and muscle
protein wasting are common m patients with sepsis, cancer or AIDS. Given carnitine's role m the oxidation of
fatty acids (FAs), ted that carnitne might promote FA oxidation, thus ameioratig metabolic

disturbances in (LPS} and methykcolanthrene-induced sarcoma models of wasting in rats.
In the LPS model rats were injected with LPS (24mg kg- i.p.), and teted with carnitine (100mg kg' i.p.)
at - 16, -8, 0 and 8 h post LPS. Rat health was oberved, and plasma inflammatory cytokines and
triglycerides (TG) were measured before and 3 h post LPS. In the sarwma modd, rats wee impanted

subcutaneously with tumour, and treated continuously with carnitine (200 mg kg-' day-' i.p.) via impanted

osmotic pumps. Tumour burden, TG and cytokines were measured weekly for 4 weeks. Carnitine ttment
signifiantly lowekrd the tumour-inducd rise in TG (% rise) in the sarcoma model (700 ± 204 vs 251 ± 51,
P<0.03) in control and arnitine groups repcIvey. Leves of inteleukin-IP (IL-), inteeukin- (IL-6) and
tumour necrosis factor-a (TNF-a) (pgml-') were also lowered by carnitine in both LPS (IL-1p: 536±65 vs
378 44: IL-6: 271 ± 29 rs 222 32; TNF-a 618 ± 86 vs 367 ± 54, P 0.02) and sarcoma models (IL-1p:
423 33 vs 221 60; IL-6: 222 18 rs 139 ± 38; TNF-a: 617 ± 69 vs 280 ± 77, P < 0.05) for control and
carnitine groups es . We condude that camitine has a therapeutic effect on morbidity and lipid
metabolism in these disease models, and that thee effects could be the result of down-regulation of cytokine
production and/or inca clance of cytokines.
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Cachexia is a serious clinical problem associated with AIDS,
cancer and sepsis (Kern and Norton, 1988; Parulo, 1990;
Von Roenn et al., 1992). In these diseses, anorexia and
pro ve weight loss are accompanied by inappropriate
protein wasting and lipogenesis, decreased fatty acid oxida-
tion and hypertriglyceridaemia (for review, see Grunfeld,
1991; l n and Norton, 1991; Smith and Tsdale 1993).
The nisms by which these metabolic disturbaes occur
are not fully understood; however, several factors have been
identified which are able to mimic the effects of cachexia
ecperimentally. In generaL inflammatory cytokines have been
shown to play a major role in the alterations in metabolism
seen in these disease states. Tumour necrosis factor-a (TNF-
a), interleukin-1 (IL-10), interleukin-6 (IL-6) and inter-
ferons-a and -7 have all been shown to increase hepatic
lipogenesis and serm triglyceride levels (Feingold and
GrunfeKl, 1987; Grunfeld et al., 1988, 1991; Darling et al.,
1990; Feingold et al., 1991; Blackham et al., 1992; Ettinger et
al., 1992; Furlong et al., 1992; Arias-Diaz et al., 1993;
Memon et al., 1993; Stassman et al., 1993), and in some
cases reduce triglyceride ckarance (Beutler et al., 1985;
Noguchi et al., 1991). Antibodies to these cytokines have
been shown to ameliorate the effects on lipid metabolism
when sepsis is experimentally induced by injection of
lipopolysaccharide (LPS) in animals (Tracey et al., 1987;
Memon et al., 1993; Strassman et al., 1993), and in cachexia-
inducing tumour models (Sherry et al., 1989; Lgstein et al.,
1991), demonstrating that alterations in lipid metabolism as a
result of diwase are ideed mediated at least in part by
inflammatory cytokines. Further, circulating wles of cyto-
kines have been demonstrated to be elevated in AIDS
(Gunfeld and Feingol 1992a,b), some forms of cancer
(Balkwill et al., 1987; Jablons et al., 1989; Stovroff et al.,
1989) and sepsis (Fong et al., 1990) in humnan and in animal
modeels. Therefore, elevated serum cytokine levls are an
indicator of disturbances in lipid metabolism, and therapy
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that reduces cytokine levels may well have a beneficial effect
on cachectic patients.

Successful treatment of cachexia could ease the discomfort
and prolong the life of affected patients, thus providing a
largr window of time in which to treat the patient for the
prImary di . Several therapies, such as parenteral nutri-
tion (Popp et al., 1981; Chance et al., 1991) and drugs aimed
at increasing the appetite of the patient (Beck and TLsdale,
1990; Stallion et al., 1991; Nelson et al., 1994) have been
tried, as well as naloxone, an opiod antagonist (Hackshaw et
al., 1990), and inhibitors of the synthesis of prostaglandin
and platelet-activating factor (Welbourn and Young, 1992)
but none has been completely successful in altering metabolc
imbalances or increasng survival. Because of the well-known
role of L-carmtie as a carrier of long-chain fatty acids into
the mitochondrial matrix for oxidation (for review, see
Bremer, 1983), it has recently been hypotheised that
administration of carnitine to septic or cachectic patients
could increase the rate of oxidation of fatty acids and nor-
malise lid metabolism. Carnitine administration has been
shown to rele the symptoms of carniine-deficient humans
(Worthley et al., 1983) and increase the survival of endotoxic
rats (Takeyama et al., 1989). This laboratory recently demon-
strated that carnitine administration to LPS-injected rats in-
creased survival and food consumption, and decreased
plasma triglycerides and hepatic lipogenesis (Gabo et al.,
1993). Mehanisms of carnitie effects in sepsis are still un-
known, as in vitro rates of oxidation in isolated mitochondria
from livers of LPS-injected rats were not increased by in vivo
administration of carnitine.

In the studies presented in this paper, we investigated
whether carnitine had an effect on the level of inflammatory
cytokines which are generally increased in sepsis and cachexia
and are known to affect lipid metabolism. We uilised both
an LPS-induced model of septic shock in rats (Takeyama et
al., 1989; Gallo et al., 1993) and a rat methykholanthrene-
induced sarcoma model previously demonstrated to cause
cachexia (Burt et al., 1981; Popp et al., 1981; Moley et al.,
1985). We studied the effects of carniie administration on
plasma levels of TNF-a, IL-10 and IL-6, as well as tri-
glycerides, in each of these models.
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Materials and methods

Animals

All rats (Hilltop Lab Animals, Scottdale, PA, USA) were
housed and fed ad libitwn in the Animal Research Facility at
the George Washington University Medical Center, and were
held in quarantine for 7 days before use. The experimental
protocols for animal use described below were approved by
the Institutional Animal Care and Use Committee at George
Washington University.

LPS-induced sepsis model (Figure 1) At - 16. - 8 and 0 h,
experimentally treated male Sprague-Dawley rats (250 -300 g)
were injeeted i.p. with 100 mg kg-' L-carm'tine (Sigma Tau,
Italy) in 8.4% sodium bicarbonate, pH 8.0 (in a volume of
approximately I ml). At the same time points, control rats
and rats to be treated with LPS only received i.p. injections
of 8.4% sodium bicarbonate. At 0 h, all rats except the
controls were injected with 24 mg kg-' LPS (Escherichia coli
serotype 0127:B8, Sigma, St. Louis, MO, USA) in sodium
bicarbonate buffer. At 8 h post-LPS, all rats received either
L-carmitine in sodium bicarbonate buffer or sodium bicar-
bonate buffer alone according to treatment group. All
injected solutions were produced from substances guaranteed
to be endotoxin-free by the manufacturers. Rat health was
monitored hourly for 24 h after LPS injection, and regularly
for the next 48 h. Aliquots of 1 ml of fasting tail-vein blood
were collected with 10 p1l of 0.25m EDTA (Sigma) 24 h pre-
LPS and 3 h post-LPS. All rats were fasted for 12 h before
any blood collection.

Methilcholanthrene-induced sarcoma model(Figure 2)
Forty-nine male Fisher rats (150-200 g) were anaesthetised
with 68.2 mg kg-' ketamine (Aveco, Fort Dodge, IA, USA)
and 4.4 mg kg-' xylazine (Lloyd Laboratories, Shenandoah,
IA, USA) in 1 ml of phosphate-buffered saline (Sigma),
administered i.p. Thirty-five of these rats were implanted
subcutaneously on the left flank with approximately 1 mm3
tissue samples of methylcholanthrene-induced sarcoma (kind-
ly provided by Dr H Richard Alexander, National Institutes
of Health, Bethesda, MD, USA), the growth and cachectic
characteristics of which have been described previously (Popp
et al., 1981). The remaining 14 rats were sham operated. To
determine whether carnitine would have a beneficial effect on
tumour-implanted rats, and when carnitine administration

would be optimal. tumour implanted rats were divided into
groups of seven, and implanted i.p. at weekly intervals with
Alzet osmotic pumps (Alza Corporation, Palo Alto, CA,
USA) filled with L-carnitine (700 mg ml-') in sodium bicar-
bonate buffer designed to deliver approximately 200 mg kg-'
day-' L-carmitine for 28 days. One group received carnitine-
filled pumps concurrently with the tumour implant on day 0,
another on day 7, another on day 14 and a final group on
day 21. The remaining tumour-implanted rats were implanted
with sodium bicarbonate buffer-filled pumps on day 21, and
served as tumour-bearing controls. Rats were killed by
administering an overdose of ketamine/xylazine 28 days after
implant (earlier if moribund). Seven non-tumour-bearing rats
were implanted with sodium bicarbonate buffer-filled pumps
and seven were implanted with carnitine-filled pumps on day
21 to determine the effects of the pumps themselves and
carnitine on food consumption and control triglyceride levels.
An aliquot of I ml of fasting blood (rats were fasted for 12 h
before blood collection) was taken weekly from all rats with
10 ;1 of 0.25 M EDTA via retro-orbital puncture under
general anaesthesia as described above. Rat health, body
weight and food consumption were monitored daily, and
tumour volume was estimated weekly by measuring in three
orthogonal directions. Tumour burden at time points before
death was estimated by multiplying tumour volume by
tumour density (g cm-3) obtained at death.

Triglyceride analysis
A commercial colorimetric diagnostic kit, GPO-Trinder
(Sigma) was used to determine plasma triglyceride (TG) con-
centrations. The procedure provided with the kit was fol-
lowed. Briefly, plasma samples and a glycerol standard
(250 mg dl-') were assayed in duplicate with the GPO-
Trinder reagent and a control reagent, reagent A, to correct
for haemolysis. Absorbances at 540 nm were determined
using a Beckman Acta CIII spectrophotometer. Plasma TG
concentrations were calculated by comparing sample absor-
bances with standard glycerol absorbance. Control values
(reagent A) were subtracted from sample values (GPO-
Trinder) to yield final TG concentrations.

Carnitine determination
Unesterified and total carnitine in plasma was determined by
radioisotopic assay as previously described (McGarry and
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Foster. 1976). Briefly, a protein-free supernatant prepared by
perchloric acid treatment of plasma was neutralised and
assayed for unesterified carnitine, or treated with alkali to
hydrolyse short-chain carnitine esters, then neutralised and
assayed for total acid-soluble carnitine. In both cases, the
camitine-containing supernatant was incubated with [14C]-
acetyl coenzyme A (CoA) (ICN Biomedicals, Costa Mesa,
CA, USA) in the presence of carnitine acetyltransferase
(Sigma) to yield acetylcarnitine and CoA (which is trapped
by N-ethylmaleimide). Unreacted ['4Cacetyl CoA was re-
moved with ion-exchange resin, Dowex 2 (Sigma), and
radioactivity remaining in the supernatant representing sam-
ple carnitine was determined by liquid scintillation counting.
Samples were analysed in duplicate. Radioactive counts were
corrected for background. and authentic L-carmitine (a gift
from Sigma Tau SpA, Italy) served as the standard.

Cytokine measurement

Plasma cytokine (TNF-m, IL-l and IL-6) levels were deter-
mined by enzyme-linked immunosorbent assay following
fractionation of plasma by high-performance capillary elect-
rophoresis (HPCE) as described previously (Phillips and
Kimmel, 1994). Briefly, samples were introduced into either
uncoated or polyethylene glycol-coated capillaries filled with
100 mM sodium phosphate buffer, pH 7.0, and elect-
rophoretically separated at 27 kV constant voltage. The mig-
ration of the sample components was monitored by on-line
UV detection at 200 nm and the electropherogram directly
read into a computerised recording system. Continuous frac-
tions were collected on a linear modification of the circular
membrane-based system, using a polyvinylidene difluoride
(PVDF; Immobilon-P membrane, Millipore, Bedford, MA,
USA) membrane as the collection device. Similar procedures
were performed using purified or recombinant cytokines as

standards (Genzyme. Cambridge, MA, USA).
Quantitative measurements of cytokines were made after

isolation of the active forms as described above. Fractions
were incubated with 50 pl of predetermined dilutions of
alkaline phosphatase (Sigma)-labelled anti-cytokine anti-
bodies (anti-mouse TNF-a, R & D Sciences, Minneapolis,
MN; anti-rat IL-1p, Cytokine Sciences, Boston, MA, USA;
anti-mouse IL-6, R & D Sciences) overnight at 4°C. The

Carnine thsap in cachza and sepb shodk
BK Winter et al 0

1175
were washed with 0.01 M phosphate-buffered saline/0.01 %
Tween 20, pH 7.2, and then 250 IlI of a 25 mM solution of
AMPPD chemiluminescent substrate (Tropix, Bedford, MA,
USA) was added to each well. Following a 30 min incubation
in the dark at room temperature, the chemiluminescent reac-
tion product was read in a luminometer (Tropix) and
analysed on ANELISA-R software (Man-Tech Associates,
Buffalo, NY, USA) and compared with standard curves.
Reported values for TNF-a and IL-6 are only approxima-
tions of the actual values, as the anti-mouse cytokine
antibodies used in the assays do not react with rat cytokines
with the same avidity as with mouse cytokines. However,
since all values are determined by comparison with a stan-
dard curve, it is appropriate to compare values obtained
within this experiment.

Statistics

All data are presented as mean ± s.e.m. Statistical analyses
were conducted using Student's t-test or ANOVA when more
than two experimental groups were compared. Student-
Newman-Keul's test was used for post-hoc analysis if
indicated. Linear regressions and correlation coefficients were
calculated using the KaleidaGraph software package (Syn-
ergy Software, Reading, PA, USA). For all analyses, a P-
value of < 0.05 was considered significant.

Results

LPS-induced sepsis model

Physical characteristics and triglycerides The effect of car-
nitine on the health, food consumption and plasma trig-
lycerides (TG) of LPS-injected rats has been measured and
reported previously by this laboratory (Gallo et al., 1993).
For purposes of completeness, those results will be sum-
marised briefly here. Carnitine-treated rats displayed a
significantly lower level of illness 2, 4 and 24 h (at 24 h,
carnitine + LPS: 21% dead, 20% very sick/sick, 59% normal;
LPS only: 36% dead, 43% very sick/sick, 21% normal)
post-LPS than did rats receiving only LPS (P<0.001). Food
consumption of LPS-injected rats was also improved by car-

Table I Plasma cytokines (LPS-induced sepsis model)
Treatment (n} TNF-a (pg ml-) IL-Jp (pg mP-}) IL-6 (pgmP)
Pretreatment

control (10) 67 21 54 13 33 6
3 h post treatment
LPS (18) 618+ 86 536 65 271 29
LPS +
carnitine (18) 367 54a 378 44 199 49
Values = mean ± s.e.m. (n in parentheses). Rats were treated with carnitine in

sodium bicarbonate buffer or buffer alone at - 16, -8, 0 and + 8 h. LPS was injected
at 0 h. Serum was analysed for cytokines after HPCE by Chem-ELISA. aSignificantly
less than LPS only group (P< 0.02).

Table H Food consumption and body weights (sarcoma model)
Food Conswnption
2 dais post-pump

Treatment implant (g) Host Weight (g) Twnour Weight (g}
Control 10 1 224 3 NA
(buffer-filled pump)
Control 8 1 224 3 NA
(carnitine-filled pump)
Tumour 11 2 183 6a 61 12
(buffer-filled pump)
Tumour 6 1 181 9a 67 3
(carnitine-filled pump)

Values = mean + s.e.m.- n = 6-9. NA. not applicable. Tumour-bearing rats were
implanted with tumour on day 0. All rats were implanted with buffer-f6iled or
carnitine-filled osmotic pumps on day 21. 'Significantly less than non-TB control groups
(P 0.001).
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nine, with carnitine-treated rats consuming 14.8 ± 2.1 gm
chow vs 8.4 ± 2.6 gm chow for LPS-only rats 24-48 h post-
LPS ijection. Plaa TG levels measured 3 h post LPS
injection were significntly decreased by treatment with car-
nitine (carnitine + LPS: 45 ± 6 mg dl-'; LPS only:
83 ± 8 mg dl-P; P< 0.001).

Cytokines TNF-a, IL-lp and IL-6 were measured in the
plasma of carnitine-treated and control LPS-injected rats
(Table I). Preliminary measurements of cytokine levels made
1, 3 and 5 h post-LPS injection indicated that plasma
cytokine levels peak 3 h post-injection. Therefore, for these
suies, cytokine levels were detrmined in plaa taken
from rats 24 h before LPS injection and 3 h after LPS injec-
tion. Levels of all three inflammatory cytokines were
decreased in carnitine-treated rats. The reduction of TNF-s
was statistically significant.

MCA-induced sarcoma model

Physical characteristics Rat body weight and food con-
sumption were monitored daily throughout the experiment,
and tumour weight was obtained after sarifice on day 28
(Table H). Food consumption on the second day after pump
implantation was chosen for display as rpesentative of the
week following surgery; no statistically sigificnt differences
between groups were observed. Surgical implantation of the
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rats (P < 0.05). The slope of the line for carnitine-reat
significantly lower than that for TB control rats (P 4
carnitine treated; D, control.

osmotic pumps decreased food intake in rats for approx-
inately 1 week post surgery. However, food intake was
virtually identical in tumour-bearing (TB) and non-TB rats
after pump implantation, and preliminary experiments
demonstrated that food consumption in TB control rats
(16 ± 1 g, 25 days post tumour implantation) did not differ
from that of non-TB rats (18 ± 1 g, 25 days post tumour
implantation) throughout the course of tumour growth. Host
weight was calculated as the total body weight minus the
tumour weight on the day of death. Host weight was
signiantly diminished in TB control and carnitine-treated
rats when compared to non-TB controls. Carnitine had no
effect on the weight of the tumour.

Triglycerides Plasma TG were measured as an indication of
alterations in lipid metabolism resulting from tumour
implantation and growth. It was observed that there was
quite a variation in tumour burdens within treatment groups,
which was most likely the result of slight differences in the
amount of tumour tissue initially implanted. When prelim-
inary examination of TG data indicated that TG levels were
related to tumour burden, a linear regression analysis was
performed on the data. TGs measured at 21 and 28 days
post-tumour implantation in TB controls were found to be
strongly correlated with the tumour burden (r = 0.90,
P < 0.05) (Figure 3). Regression analysis was also done on
TG values in carnitine-treated TB rats, and the slope of the
line was signiintly lower from that obtained from TB
controls (P, 0.05). This result demonstrates that TG were
significntly lowered by 7 days of carnitine treatment at any
given stage of tumour growth.
Plasma concentrations of TG were obtained 21 and 28

days post-tumour implantation in day 21 pump-implanted
buffer and carnitine-treated control rats, and buffer and
carnitine-treated TB rats (Table Ill). Results are presented as
per cent increase in TG level over a 1 week period. TGs
increased linearly with tumour burden, and tumour burden
increased relatively linearly with respect to time. At 28 days
after tumour implantation, the per cent rise in triglyceride
values was staisically signifintly less in carnitine-treated
TB rats than in TB controls.

Carnitine concentration Unexpectedly, we observed that TB
rats treated with carnitine at 0, 7 and 14 days post-tumour

)
40

implantaton did not display significantly different TG levels

from TB controls. To determine whether carnifine was

burden in actually being delvered over the 28 day period, the concen-

centrtions tration of plasma carnitine in pump-bearing rats was deter-
maring(B) mined 28 days after tumour implantation (Figure 4). Rats
iotic pump had carried the carnitine-filled osmotic pumps for 7, 14, 21 or

-TB sham- 28 days. Plasma carnitine concentration was increased nearly
mined from 4-fold over TB control values 7 days following pump im-

srbomd to
plant, but the increase fell to 3-fold 14 days after implant andirnburdens 2-fold 21 and 28 days after implant (Figure 4a). Carnitine

TB control concentration was determined weekly for rats implanted with
ed TB was tumour and osmotic pump simultaneously, and results of one
0.05).0, repesentative rat are shown in Figure 4b. Plasma carnitine

was highest 7 days after pump implant, but decreased to

TaM Hm Plasma tiglyceries and cytokines (sarcoma model)
Percenae increase in 28 days post-twmow implat

Treatmnt TGfrmu days 21-28 TNF-a (pg mit') IL-10 (pgmnit) IL-6 (pgmnit)
Control 107 14" 41 ± 7' 36 ± 7 20 ±2

(buffer-filed pump)
Control 135 I1 ND ND ND

(carifine-fid pump)
Tumour 700 204 617 135 423 66 222 34

(buffer-filled pump)
Tumour 251 5lb 280 77b 221 60b 139 38

(carnitine-filled pump)
Values = mean ± sem; n = 5-7. ND, not done. Tumour bearing rats were implanted on day 0; osmotic

pumps re impnted on day 21 as ioted in Materials and methods. Plasma was analysed for cytokines after
HPCE by Chem-ELISA -Signifatly less than ntal groups (P< 0.02). ISignificantly kss than tumour
control (P<0.04). cControl TG value = 23.9 ± 1.3 mg dl.
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Figre 4 Plasma carnitine concentrations in osmotic pump-
implanted tumour-bearing rats. Carnitine concentrations were

determined in plasma from tumour-bearing rats taken 28 days
post-tumour implantation (a). Rats were implanted with the
carnitine-filled osmotic pumps 7, 14, 21 or 28 days before assay.
Carnitine concentration was determined weekly in the plasma of
a single tumour-bearing rat that was implanted with the tumour
and osmotic pump simultaneously (b). Plasma carnitine concen-

tration decreased over the course of the experiment, suggesting
that the pump did not deliver carnitine at the same rate con-

tinuously.

almost control level over the next 3 weeks. The failure of
carmitine treatment to decrease TG levels for longer than 7
days after pump implant was probably related to the
decreased level of circulating carnitine. Most pumps (in place
for longer than 7 days) appeared, upon removal, to be
obstructed by host tissue growth, and it is likely that car-
nitine delivery was decreased over time.

Cytokines Plasma from non-TB control, TB control and all
carnitine-treated TB rats was obtained 28 days post-tumour
implantation, and analysed for levels of TNF-a, IL-l and
IL-6. No correlation between tumour burden and cytokine
concentration was observed (r = 0.29 for TNF-a). Results are
presented in Table III. Concentrations of all three cytokines
were significantly elevated above control values in carnitine-
treated TB rats. Carnitine treatment sigificantly dereased
plasma concentrations of TNF-a and IL-lp in the TB rats.

Both sepsis and cancer can induce a cachectic state, charac-
terised by anorexia and disturbances in lipid metabolism,
such as increased hepatic lipogenesis, decreased fatty acid
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oxidation, and hypertnriglyceridaemia. The primary purpose
of these studies was to determine whether carnitine had any
therapeutic effect on lipid metabolism in rat models of septic
shock and cancer-induced cachexia.

It has been shown previously that treatment with carmitine
decreases illness and increases survival in rats suffering from
sepsis after injection with lipopolysaccharide (LPS) (Tak-
eyama et al., 1989; Gablo et al., 1993). Carnitine treatment
has also been shown by this laboratory to lower serum TG
levels and decrease hepatic lipogenesis in LPS-injected rats
significantly (Gallo et al., 1993). In this study, we examined
the effect of carnitine on lipid metabolism in a model of
cancer cachexia, and found that carnitine-treated tumour-
bearing rats had significantly lower levels of serum TG than
did untreated tumour-bearing rats (Table III and Figure 3).
This finding together with our previous results suggests that
carnitine does have a normalising effect on lipid metabolism
in both sepsis and tumour models of cachexia.
The mechanism by which carnitine lowers serum TG levels

in cachexia is currently unknown. Given the well-defined role
of carnitine in fatty acid oxidation, it was hypothesised that
carnitine decreased TG levels in disease models by increasing
fatty acid oxidation. However, in vitro studies with isolated
mitochondria from carnitine-treated septic rats showed no
difference in oxidation rates from untreated septic rats
(Takeyama et al., 1989; Gablo et al., 1993). These results
suggest that the carnitine effect may not be explained by an
increase in mitochondrial oxidation of fatty acids in vivo.
This is not a definitive finding, as it is possible that carnitine
was washed out of the mitochondria during isolation for in
vitro study. In addition, this laboratory has shown that liver
carnitine levels are increased following LPS injection, even
when no carnitine therapy is given, indicating that hypertrig-
lyceridaemia that may result from decreased fatty acid oxida-
tion is not the consequence of insufficient levels of carnitine
(Gabo et al., 1993). Thus, the mechanism by which carnitine
relieves hypertriglyceridaemia and other symptoms of sepsis
and cachexia may be different from its necessary role in fatty
acid oxidation.

Several inflammatory cytokines, such as TNF-x, IL-l1,
and IL-6, have been shown to be mediators of hypertri-
glyceridaemia and other symptoms observed in both LPS-
induced sepsis and cancer cachexia. Because serum levels of
these cytokines are often elevated in septic shock (Fong et
al., 1990) and sometimes in cachexia (Balkwill et al., 1987;
Jablons et al., 1989; Stovroff et al., 1989), and can play major
roles in lipid metabolism, we decided to examine whether
carnitine had any effect on cytokine levels in our rat models
of LPS-induced septic shock and methylcholanthrene-induced
sarcoma cachexia. We found that carnitine did lower serum
levels of inflammatory cytokines in both models. In the LPS
model, carnitine therapy resulted in reduced levels of all three
cytokines measured, significantly lowering TNF-a and
decreasing IL-lp and IL-6 (Table I). In the sarcoma model,
TNF-x and IL-l were significantly reduced in the carnitine-
treated TB rats (Table III). These results suggest that car-
nitine plays a role in controlling the level of circulating
cytokines, which in turn have an effect on lipid metabolism.
In fact, other groups have shown that carnitine reduces
circulating cytokines in surgical patients (Delogu et al., 1993)
and also reduces TNF-a secretion by stimulated human
polymorphonuclear cells (Fattorossi et al., 1993).

In summary, we have shown that carnitine treatment has
the effect of lowering serum TG in both an LPS-induced
model of sepsis and a well-established MCA-induced sar-
coma model of cachexia. This suggests that carnitine pro-
vides at least some normalisation of lipid metabolism in
septic or cachectic rats. Previous results indicate that the
mechanism of this carnitine effect on lipid metabolism may
not involve an increase of fatty acid oxidation. Further
results have shown that carnitine also has the effect of reduc-
ing serum levels of inflammatory cytokines in both sepsis and
cachexia models. Increased levels of inflammatory cytokines
are known to result in increased serum TG; thus, reduction
of cytokines by carnitine would also lower serum TG. Future
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studies will examine the mechanism of the reduction of
cytokine levels by carnitine. and will begin by determining
whether carnitine lowers cytokine levels by increasing
clearance of cytokines, or by reducing production of
cytokines.
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