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Abstract 

Background: Multiple studies have related psychiatric disorders and immune alterations. Panic disorder (PD) has 
been linked with changes in leukocytes distributions in several small studies using different methods for immune 
characterization. Additionally, alterations in the methylation of repetitive DNA elements, such as LINE‑1, have been 
associated with mental disorders. Here, we use peripheral blood DNA methylation data from two studies and an 
updated DNA methylation deconvolution library to investigate the relation of leukocyte proportions and methylation 
status of repetitive elements in 133 patients with panic disorder compared with 118 controls.

Methods and results: We used DNA methylation data to deconvolute leukocyte cell‑type proportions and to infer 
LINE‑1 element methylation comparing PD cases and controls. We also identified differentially methylated CpGs 
associated with PD using an epigenome‑wide association study approach (EWAS), with models adjusting for sex, 
age, and cell‑type proportions. Individuals with PD had a lower proportion of CD8T cells (OR: 0.86, 95% CI: 0.78–0.96, 
P‑adj = 0.030) when adjusting for age, sex, and study compared with controls. Also, PD cases had significantly lower 
LINE‑1 repetitive element methylation than controls (P < 0.001). The EWAS identified 61 differentially methylated CpGs 
(58 hypo‑ and 3 hypermethylated) in PD (Bonferroni adjusted P < 1.33 × 10–7).

Conclusions: These results suggest that those with panic disorder have changes to their immune system and dys‑
regulation of repeat elements relative to controls.
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Background
Panic disorder (PD), an anxiety disorder, is character-
ized by sudden and repeated, unexpected panic attacks. 
Panic attacks usually last ten minutes and are defined as 
A: palpitations or racing heart, sweating, shortness of 
breath, chest and stomach pain, feeling dizzy and shak-
ing or trembling B: fear of dying, choking feeling, feeling 
unsteady or faint, feeling unreal, fear of being out of con-
trol and worrying about the next panic attack [1]. Accord-
ing to the survey of National Institute of Mental Health 
(NIMH) and National Comorbidity Survey Replication 

(NCS-R), an estimated 2.7% of adults (age > 18) had 
a panic disorder in the U.S. (2001–2003), and 4.7% of 
U.S. adults had ever experienced panic disorder [2]. 
Additionally, the lifetime prevalence of PD is higher for 
women (7.1%) than for men (4.0%) [3], and its prevalence 
changes as individuals age—2.8% in 18–29 years old, 3.7% 
in 30–44 years old, 3.1% in 45–59 years old, and 0.8% in 
those 60 + years old [2]. Beyond sex and age, panic dis-
order has also been associated with other comorbidities 
like agoraphobia, clinical depression [2], hypertension 
[4], diabetes [5], and irritable bowel syndrome, along with 
higher utilization of health systems [6]. Together, these 
findings suggest a complex mechanism that is impacted 
through experience, environment, and biology.

New approaches to understand and investigate molec-
ular and physiological mechanisms of mental health 
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conditions are needed, and epigenetic marks are cur-
rently being investigated in PD. DNA methylation is the 
covalent addition of a methyl group to a cytosine, usually 
in the context of CpG dinucleotides that serves to regu-
late gene expression and cell lineage specification. The 
combination of reference DNA methylation profiles from 
purified immune cell types and statistical techniques 
allows peripheral blood DNA methylation measures to be 
used to infer immune cell proportions [7, 8]. This DNA-
based approach has the advantage of being amenable to 
archival blood samples, unlike traditional cell sorting 
methods. Previously, in efforts to study PD’s relation with 
immune status, researchers employed immunostaining 
and flow cytometry to measure numbers and propor-
tion of lymphocytes. Here, we used publicly available 
genome-scale peripheral blood DNA methylation data 
from two independent studies of panic disorder cases 
and controls to infer immune cell proportions [9, 10], and 
test the relation of leukocyte subtype proportions with 
panic disorder case status comparing to healthy controls. 
In addition, to assess potential immunosuppression in 
PD cases versus controls, we calculated the methylation-
derived neutrophil-to-lymphocyte ratio (mdNLR) [11]. 
Due to the differential association that sex and age have 
with PD [2, 3], and immune status [12], we also tested 
the association between PD and leukocyte proportions 
and mdNLR in adjusted models. Finally, using genome-
wide methylation data allowed us to infer methylation of 
repeat elements, which make up a large proportion of the 
human genome and have been demonstrated to have dif-
ferential methylation in neurological and psychiatric con-
ditions [13–15].

Although reports have shown evidence of differing 
immune phenotypes for patients with panic disorder, the 
results of these studies have been inconsistent and often 
only include small numbers of subjects. Increased B lym-
phocyte and NK cell proportions with concomitantly 
decreased T cell proportions have been observed in PD 
patients compared with controls (n = 41 and n = 52) [16, 
17]. However, other work has observed lower absolute 
counts of B lymphocytes and no difference in other cell-
type proportions (n = 28) [18]. Lower proportions of CD8 
T cells have also been observed in PD patients (n = 40) 
[19], and a study investigating the impact that PD had on 
immune functioning found that it induced higher natu-
ral killer cell activity than those without PD (n = 28) [20]. 
Finally, three recent studies have examined the potential 
role of DNA methylation in PD risk. Two studies meas-
ured DNA methylation in peripheral blood with the 
450 K array in PD patients. Iurato et al. [9] recruited PD 
patients (n = 89) and controls (n = 76) through the Max 
Planck Institute of Psychiatry (MPIP) in Munich, Ger-
many. Shimada-Sugimoto et al. [10] recruited individuals 

with PD (n = 48) and controls (n = 48) living in Tokyo 
and Nagoya, Japan. The third study recruited 57 PD 
patients and 61 controls at the University of Wuerzburg, 
Germany, and measured peripheral blood DNA methyla-
tion with the MethylationEPIC array, though data were 
not archived or available upon request at the time of our 
analysis [21].

While the original studies adjusted for cell-type het-
erogeneity in epigenome-wide analyses, Shimada-
Sugimoto et  al. [10] tested the relation of cell-type 
proportion with PD case status using the Reinius library 
from 2012 [7], which was based on six healthy Swedish 
males 25–60 years old. To expand on the work of Iurato 
et al. [9] and Shimada-Sugimoto et al. [10] (in a combined 
analysis) of immune phenotype and its relationship with 
the panic disorder, we use the updated cell-type reference 
data from Salas et al. [8] that includes ethnically diverse 
subjects, both men and women, and has improved decon-
volution accuracy compared with the Reinius library.

Results
The 251 total participants were 60.6% women (n = 152) 
had a mean Horvath methylation derived age of 
38.8  years (10.2 SD), with 133 (53%) participants diag-
nosed with panic disorder (PD). Details of study popula-
tion characteristics were described in each original study 
and are also provided in Table 1 [9, 10]. In the combined 
analysis of immune cell proportions in cases and controls 
from both studies, we observed significantly lower pro-
portions of CD8+ T-lymphocytes in PD cases compared 
with controls (− 0.97%, P = 0.0044, Fig.  1a). In addition, 
we observed significantly higher neutrophil proportions 
in PD cases compared with controls (1.20%, P = 0.043, 
Fig. 1b). The methylation-derived neutrophil-to-lympho-
cyte ratio (mdNLR) was also significantly elevated in PD 
cases compared with controls (0.06%, P = 0.048, Fig. 1c). 

Table 1 Study participant characteristics

a Methylation derived, Horvath library

Control (N = 118) Panic 
disorder 
(N = 133)

Total (N = 251)

Sex, n (%)

 Male 45 (38.1) 54 (40.6) 99 (39.4)

 Female 73 (61.9) 79 (59.4) 152 (60.6)

Age, mean (sd)a 40.0 (9.0) 37.8 (11.0) 38.8 (10.2)

Study

 Iurato et al. [9], 
n (%)

70 (59.3) 85 (63.9) 155 (61.8)

 Shimada‑Sugi‑
moto et al. [10], 
n (%)

48 (40.7) 48 (36.1) 96 (38.2)
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Summary statistics of cell-type proportions and mdNLR 
estimates among all subjects and stratified by case sta-
tus are shown in Table 2. In models adjusted for age and 
sex, there was a reduction in CD8+ T-lymphocytes and 
(OR: 0.86, 95% CI: 0.78–0.96, P-adj = 0.030), increased 
mdNLR was still evident in PD cases, though it did not 
reach statistical significance (OR: 1.53, 95% CI: 0.81–
3.00, P-adj = 0.794).

In an analysis of repeat element methylation, we 
observed no difference in mean methylation of short 

interspersed nuclear elements (Alu repeats) between 
PD cases and controls. However, the mean methylation 
of LINE-1 (Long interspersed nucleotide element-1) 
was significantly lower in PD cases compared with con-
trols (difference in mean beta value = − 0.002, P < 0.001, 
Fig. 1d), and remained significant in a model adjusted for 
age, sex, and study, (P < 0.001).

One of the main objectives of Iurato et  al. [9], and 
Shimada-Sugimoto et  al. [10], was to examine the dif-
ferential methylation status at loci across the genome 
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Fig. 1 Comparison of blood cell proportions and methylation‑derived neutrophil‑to‑lymphocyte ratio (mdNLR), in Panic Disorder cases and 
controls. a Leukocyte proportions—only CD8T cells showed a significant difference between PD patients compared to controls. b Neutrophil 
percent was significantly larger in PD patients compared to controls. c mdNLR was significantly higher in PD patients relative to controls. d No 
difference was observed in Alu repeat elements while there was significant LINE‑1 hypomethylation in those with panic disorder
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associated with PD. Iurato et al. [9] and Shimada-Sug-
imoto et al. [10] found 0 and 40 significantly differenti-
ated CpGs, respectively. Since these studies have been 
published, more accurate cell-type estimation methods 
have emerged. Here, combining data from both studies, 
we tested the relation of methylation with panic disor-
der case status epigenome-wide (EWAS) using models 
adjusted for age, sex, and cell-type proportions. In the 
EWAS combining data from both studies, we identified 
61 significantly differentially methylated CpGs asso-
ciated with PD (Bonferroni adjusted P < 1.33 × 10–7, 
Additional file  1 and Additional file  2: Figure  1). We 
observed a trend of significant hypomethylation in PD 
cases with 58 of 61 sites hypomethylated, and the trend 
was consistent among the 1,560 CpGs at FDR-Q < 0.05 
(Additional file  2: Figure  2). Sensitivity analyses to 
explore the potential contribution of other unobserved 
confounders or smoking exposure were also performed. 
To attempt to adjust for unobserved confounders, we 
used the OSCA MOMENT method, which produced 
similarly ranked CpGs in association with PD, though 
with somewhat attenuated P values (Additional file  2: 
Figure  3). Models including smoking status predicted 
with EpiSmokEr [22], showed highly consistent results 
with our EWAS where 42 of 61 CpGs identified at Bon-
ferroni adjusted P 1.33 × 10–7, and 1,340 of 1,347 CpGs 
(99.5%), with FDR-Q < 0.05 among the 1,560 CpGs 
above.

With a strong trend of differential hypomethylation in 
PD cases, we next explored the genomic context distri-
bution CpGs. Here, to encompass additional CpGs for 
enrichment testing we expanded the CpG set beyond 
those meeting the Bonferroni P value cutoff to include 
those at FDR-Q < 0.05. Examining the genomic context 
of the 1,560 PD-associated CpGs, we observed that 
there was a significant enrichment of CpGs that tracked 
to the enhancer, open sea, and CpG island shelf regions. 
PD-associated CpGs were significantly depleted in CpG 
islands and CpG island shore regions (Fig.  2). Locus 

Overlap Analysis (LOLA) [23] was used to examine 
potential enrichment of the 1560 CpGs differentially 
associated with PD in known genomic contexts. We 
observed several significant enrichments (Q < 0.01) for 
CpG in several types of genomic regions. Of the UCSC 
defined genomic region types [24], repeats—Repeat-
Masker [25] and nested repeats—were enriched for 
CpGs hypomethylated in individuals with PD relative 
to controls. Additionally, deletions and duplications 
identified in the Coriell cell lines and lamin B1-associ-
ated domains (LADs) were also significantly enriched 
for CpGs hypomethylated in individuals with PD rela-
tive to controls (Additional file  2: Figure  4). Using the 
Gene Set Enrichment Analysis (GSEA) molecular sig-
nature database, we identified 12 pathways consisting 
of 216 genes that were significantly enriched among PD 
associated CpGs (adjusted P < 0.05, Additional file  2: 
Table  1). Of the CpGs identified in our linear models, 
36 were linked to 11 of these pathways. When examin-
ing these overlapping CpGs, the majority of the signifi-
cant CpGs were in the Wendt identified cohesin targets 
pathway [26].

Discussion
Previous studies have examined differential methylation 
within panic disorder (PD), and one has examined differ-
ential immune functioning [9, 10, 21]; none have exam-
ined the role of the neutrophil to lymphocyte ratio. The 
NLR has been utilized to assess inflammatory response, 
and an elevated mdNLR has been associated with poor 
prognosis in several cancers [27, 28], along with reduced 
survival [29]. In this meta-analysis of two independent 
cohorts, we observed differential cell-type proportions in 
PD case peripheral blood compared with control subjects 
using improved methods for cell-type deconvolution.

A relationship between depressive/anxiety disorders 
and immune functioning has long been examined [30], 
exploring how inflammatory signaling pathways may 
contribute to the pathophysiology in neurotransmit-
ter function, neuroendocrine function, and neural cir-
cuitry [30, 31]. Our results support the hypothesis that a 
similar mechanism is contributing to PD. A recent study 
demonstrated that inflammation-related miRNAs target 
axon guidance and neurotransmitters [32], suggesting, in 
this context, that exo-miRNAs could be involved in the 
dysregulation of immune cells in panic disorder while 
impacting neurological functioning.

In previous studies, exposure to stress or trauma in 
anxiety-based disorders activates a peripheral inflam-
matory response that leads to increased circulating con-
centrations of cytokines, such as IL-1β and IL-6 [33, 
34]. Those with panic disorder have also demonstrated 
increased IL-1β and IL-6 [35, 36]. This is important in 

Table 2 Methylation-derived cell-type estimates (%)

Cell type Control (N = 118)
Mean (SD)

Panic disorder 
(N = 133)
Mean (SD)

Total (N = 251)
Mean (SD)

B‑cell 9.23 (1.94) 9.25 (1.75) 9.24 (1.84)

CD4T 13.63 (3.10) 13.66 (3.14) 13.64 (3.12)

CD8T 7.37 (2.78) 6.40 (2.40) 6.86 (2.63)

Mono 7.60 (1.49) 7.50 (1.47) 7.55 (1.48)

Neu 51.92 (5.83) 53.12 (5.56) 52.55 (5.71)

NK 8.31 (1.62) 8.06 (1.47) 8.18 (1.55)

mdNLR 1.41 (0.41) 1.47 (0.38) 1.44 (0.39)
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this context as IL-1β and IL-6 promote the differentia-
tion and activation of naïve CD8+ T cells and enhance 
the effector function of activated CD8+ T cells [37–39]. 
Activated CD8+ T cells can secrete TNF-α and IFN-γ in 
response to inflammation, we observed lower CD8+ T 
cell proportions in panic disorder cases, consistent with 
lower levels of IFN-γ in PD cases observed in prior work 
[40]. Higher levels of IL-1β and IL-6 in panic disorder 
patients may interfere with differentiation and activa-
tion of naïve CD8+ T, possibly reducing inflammation. 
Links between inflammatory response and presentation 
of neurodegeneration and neuropsychological perfor-
mance [41, 42] are consistent both with our results and 
the limited evidence for neuropsychological impairments 
in PD patients [43]. Although cause and consequence 
remain unclear, additional research into immune modu-
lation for PD cases could have value for patients and pro-
vide options to treating physicians. It is critical to get the 
most accurate estimate of cell-type proportions through 
the most up-to-date methods and modeling, to examine 
the association of panic disorder and immune cell-type 
distribution.

The observed hypomethylation in LINE-1 elements in 
those with panic disorder is consistent with observations 
in individuals with bipolar disorder and schizophrenia 

[44]. Though we are not aware of studies examining the 
potential association of repeat element methylation with 
panic disorder, there is building evidence of associations 
between reduced methylation of repeat sequences (that 
encode transposable elements) and the pathophysiology 
of schizophrenia and mood disorders [14]. Hypomethyla-
tion of repeat elements can contribute to genomic insta-
bility through increased DNA damage and the potential 
expression of retrotransposable elements [45, 46]. The 
expression of retrotransposable elements can include 
endogenous retroviruses leading to dsRNAs that may 
alter gene expression or immune regulation. Though our 
data are in peripheral blood and it is unclear whether 
decreased CD8-T lymphocyte proportions are specifi-
cally a consequence of LINE-1 hypomethylation, in an 
analysis of 21 tumor types with nearly 7000 samples, 
reduced repeat element methylation was associated with 
reduced infiltration of CD8-T lymphocytes [47]. LINE-1 
hypomethylation and activation have been associated 
with autoimmune diseases [49–51], further affirming the 
observed hypomethylation and reduction in CD8-T cell 
proportions.

The EWAS of panic disorder found several CpGs 
associated with PD when controlling for age, sex, 
and cell-type. Because these differences are observed 
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Fig. 2 Genomic context enrichment analysis of CpG sites whose methylation state is significantly associated with panic disorder. For the 1560 CpG 
sites from our EWAS, we stratified by genomic context and tested for enrichment versus all modeled CpG sites. Each point is the log odds ratio for 
CpGs associated with panic disorder in each region, and the bar represents the 95% CI. Values greater than 1 indicate enrichment values less than 1 
indicate depletion of genomic context among PD associated CpG sites
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in peripheral blood and not brain tissue, it may not 
reflect the changing neural circuitry itself. Over 90% 
of the significantly differentially methylated CpGs in 
PD cases were hypomethylated relative to controls in 
adjusted models. With a Bonferroni P < 1.33 × 10–7 
the 5 most significant p values corresponded to 14 
CpGs (due to tied p values) and 11 genes, all of which 
were hypomethylated in PD cases: PBK (cg21177558), 
SHOC1 (cg01822570), TSBP1 (cg08475898), NDU-
FAF4 (cg05472743), CD2AP (cg02777447), PIK3C2G 
(cg05168215), SLCO1A2 (cg11704114), ACSM3 
(cg09539395), ERI2 (cg09539395), SMARCA5 
(cg08619385), CFAP206 (cg22010963), MEP1A 
(cg02449202).

Of these, several stand out given previous studies. 
PDZ binding-kinase (PBK) (also named T-lymphokine-
activated killer cell-originated protein kinase (TOPK)) 
has wide-ranging regulation, including cell growth and 
immune function [48, 49]. Solute Carrier Organic Anion 
Transporter Family Member 1A2 (SLCO1A2) has been 
implicated in transporting sulfated steroids across the 
blood–brain barrier [50]. SWI/SNF Related, Matrix 
Associated, Actin-Dependent Regulator Of Chromatin, 
Subfamily A, Member 5 (SMARCA5) is highly expressed 
in the brain and has been demonstrated to play an impor-
tant role in brain development in mice [51]. It has also 
been found to play a role in chromatin remodeling dur-
ing stress-induced depressive behavior as part of the ACF 
complex [52]. Together with our LINE-1 results, this sug-
gests a change in chromatin structure.

In the EWAS analysis, the highest number of signifi-
cantly differentially methylated CpGs associated with a 
particular gene tracked to chromodomain helicase DNA-
binding 2 (CHD2), which had five CpGs. Of these, all 
three in open sea regions 200–1500 bases upstream of 
the transcription start site were hypomethylated in PD, 
while the two remaining CpGs were both hypermethyl-
ated in the north shore region of the same CpG island. 
Mutations in CHD2 have been associated with seizures 
and abnormal brain function, and as it appears to impact 
only nerve cells [53] may play a role in PD patients.

Of the 3 CpGs that were found to be associated with 
PD here and by Shimada-Sugimoto et al. [10], two have 
been reported in relevant studies. (A) cg20340149 is 
located in the transcription start site (TSS) of CLASP1, 
which has been associated with neuron development 
[54]. (B) cg05910615 lies in the TSS of HSPB6, which 
has been associated with neurological disorders [55, 
56]. The differences between the study-specific differen-
tially methylated CpG sub-analysis that we identify and 
those originally reported can partially be attributed to 
the use of updated and accurate cell-type deconvolution 
methods.

Finally, we identified several genomic features that are 
enriched for CpGs associated with PD. We observe that 
nested repeats and RepeatMasker defined features are 
enriched in those with PD, which is in concordance with 
our observation that LINE-1 is significantly hypometh-
ylated in those with PD. Lamin B1-associated domains 
(LADs) were also enriched with CpGs associated with 
PD. These results further suggest that the epigenetic 
structure of those with PD is different compared to con-
trols. The impact that this has on gene products and 
pathways is less clear. Of the 12 GSEA pathways associ-
ated with PD, three stand out—cohesin targets, nuclear 
factor κ-light-chain-enhancer of activated B cells (NF-
κB), and neurotransmitter secretion as enriched with PD 
associated CpGs. In conjuncture with LINE-1 results, 
again highlights the potential for chromatin restruc-
ture. One gene within the cohesion target set identified 
is activated leukocyte cell adhesion molecule (ALCAM), 
further supporting the difference in CD8T cells. ALCAM 
has also been indicated in mediating the blood–brain-
barrier’s permeability in a multiple sclerosis mouse model 
[57]. The NF-κB pathway has been indicated in regulat-
ing neuroinflammation [58–60] and can impact neu-
rons, glia, and cerebral blood vessels in diverse ways [58]. 
These results are also notable, given the hypothesized 
neurochemical and neurobiological origin of PD and the 
subsequent and medication treatments target neuro-
transmitters. As mentioned by Ziegler et  al., some have 
reported the correlation of methylation status between 
blood and brain tissue. This observation may indicate a 
similar state in the brain [61–63].

Because Ziegler et al. used the EPIC array to measure 
methylation status, it is difficult to make direct com-
parisons of the methylation status of CpGs with our 
combined analysis of 450  k based data. While cell-type 
proportions were not reported, one significant CpG we 
found in SMYD3 (SET and MYND Domain Containing 
3)—was also identified by Ziegler et  al. in their PD to 
control cross-sectional study.

While we are unable to make any causal conclusions 
from this meta-analysis, the associations identified war-
rant further investigation in the pathophysiology of 
panic disorder. An additional limitation was the 10,247 
CpGs missing data in the 333,479 CpGs, which had to be 
imputed. We would expect that the k-means method used 
would shift the results towards the null—reducing any 
observed effect. The use of ComBat would also reduce 
any observed effect size. Due to the lack of data on the 
study participant age, we could not examine the poten-
tial difference in DNA methylation age and chronologi-
cal age, which could be examined in future studies. Other 
missing covariate data, such as smoking, and medication, 
limit the potential confounders that can be controlled for 
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and examined. Our cell-type proportion results are not 
entirely consistent with previous reports [10]. While ear-
lier studies of DNA methylation in PD used up to date 
approaches, more recent advances in immune cell-type 
methylation libraries allowed increased accuracy for 
cell-type inference in this study. Differences in cell-type 
using previous methods and those used in this study can 
result in meaningful differences that we could demon-
strate (Additional file 2: Figure 5), suggesting that using 
updated cell-type proportions is warranted.

Our analysis highlights the benefits and some chal-
lenges of meta-analysis with DNA methylation data. 
Building on previous studies, the meta-analysis of DNA 
methylation data can lead to additional insights through 
increased power and diversified study populations. 
We addressed the challenge of using separate data sets 
through advancement in analytic methods for DNA 
methylation data to remove batch effects.

Conclusions
Here, we demonstrate the utility of DNA methylation 
measures in peripheral blood to test immune phenotype 
associations with panic disorder. We identified signifi-
cantly different immune phenotypes and dysregulation 
of repeat elements in PD compared with control subjects.

Methods
Study subjects and samples
The subjects and data used in this work have been pre-
viously described in their respective publications [9, 10]. 
Briefly, Iurato et  al. [9] recruited panic disorder (PD) 
patients (Diagnostic and Statistical Manual of Men-
tal Disorders, 4th Edition (DSM-IV) criteria—Addi-
tional file  2: Table  2) through the Max Planck Institute 
of Psychiatry (MPIP) in Munich, Germany, described 
elsewhere [9]. They excluded patients with PD due to a 
medical or neurological condition or the presence of 
comorbid personality disorders (axis II disorders in the 
DSM-IV classification). They recruited age-matched and 
sex-matched controls from a Munich-based community 
sample. Subjects did not take any mental health medi-
cation for at least four weeks before providing a blood 
sample. Study data were accessed through the Gene 
Expression Omnibus (GEO) GEO Series (GSE) number 
GSE102468. Raw probe intensity data (IDAT files) were 
accessed and downloaded directly.

Shimada-Sugimoto et  al. [10] recruited Japanese 
individuals living in Tokyo and Nagoya. PD diagnosis 
was verified and defined through medical records and 
the Diagnostic and Statistical Manual of Mental Dis-
orders, 4th Edition (DSM-IV) criteria [64] based on 
responses to the Mini-International Neuropsychiat-
ric Interview (MINI) [65]. There was no data on mental 

health medication. Study data was access through the 
Nation Bioscience Database Center (NBDC) of the 
Japan Science and Technology Agency (JIST). Data set 
JGAS0000000011 contained preprocessed beta values for 
all samples.

DNA methylation data
As previously described, peripheral blood processing, 
extraction of genomic DNA, and bisulfite conversion 
were conducted before DNA methylation measures in 
the original studies. In both studies, genomic DNA was 
bisulfite converted using the Zymo EZ-96 DNA Methyla-
tion Kit (Zymo Research), and DNA methylation levels 
were measured at > 480,000 CpG sites using the Illumina 
HumanMethylation450 BeadChip array [9, 10]. Hybridi-
zation and processing were performed according to the 
instructions of the manufacturer.

Probe intensity data (IDAT files) from Iurato et al. [9] 
study were imported into R version 3.5 [66]. Data were 
processed with the minfi [67] version 1.24.0 (https ://
bioco nduct or.org/packa ges/minfi /) R package. Ten sam-
ples were removed due to more than 5% of their probes’ 
signal intensity failing to be significantly higher than 
background (low signal intensity; mean negative detec-
tion p value > 0.05), leaving 155 samples in the analy-
sis. Additionally, 26,974 CpGs were removed from for 
analysis due to poor performance across samples (mean 
negative detection p value > 0.05). Beta values were quan-
tile-normalized and combined with the beta values from 
Shimada-Sugimoto et al. [10]. Beta values from Shimada-
Sugimoto et al. [10] were imported into R version 3.5 and 
10,247 partially missing probes were imputed through k 
nearest neighbors [68]. Of the 485,512 probes in the Shi-
mada-Sugimoto et  al. [10] dataset, 2,065 were removed 
from for analysis due to poor performance (mean nega-
tive detection p value > 0.05). The combined beta val-
ues were limited to the 376,602 CpGs that were in both 
data sets and normalized along with the reference betas 
through beta-mixture quantile (BMIQ) [69] normaliza-
tion method, and a detected batch effect was addressed 
through the use of ComBat [70].

Statistical analysis
Cell-type proportions were determined for each sample 
through a modified version of the Houseman method 
[71] using the projectCellType_CP function [8] from the 
FlowSorted.Blood.EPIC package in Bioconductor. Due to 
missing data for CpGs in standard deconvolution DMR 
libraries, we generated a library from available data. The 
reference betas were determined through the meffil.cell-
type.specific.methylation [72] function resulting in 1,629 
unique CpGs contained in the combined data set. To 
verify the efficacy of the identified CpGs, we used them 

https://bioconductor.org/packages/minfi/
https://bioconductor.org/packages/minfi/
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to estimate cell-type proportions of samples with known 
proportions (Additional file 3). The resulting  R2 for each 
cell type ranged from 0.915 to 0.999 (Additional file  2: 
Figure 6). As age was not available at the subject level in 
covariate data, it was estimated through the watermelon 
[73] implementation of the Horvath age estimation [74] 
and OSCA method [75, 76]. Comparing the distribution 
of these age estimates to the originally published study 
mean by Iurato et  al. [9] Horvath-based age estimates 
were used in subsequent modeling (Additional file 2: Fig-
ure  7). mdNLR was calculated through grouping leuko-
cyte subtypes as previously established [11]. Differences 
in cell-type proportions between individuals with Panic 
Disorder and Controls were assessed using the Wilcoxon 
signed-rank test. To determine if there were differences 
between cell-type proportions using these updated meth-
ods and those previously used, we calculated cell-type 
proportions using minfi as reported and tested the mean 
difference between each (Additional file  2: Figure  5). 
Unconditional multivariable logistic regression models 
were fit to test the association of CD8-T and mdNLR 
with PD case status while controlling for age and sex 
while allowing for each study to have a random effect [77, 
78]. We used the Holm–Bonferroni method to adjust for 
multiple testing reported as P-adj. Methylation status 
of repeat elements, Alu, and long interspersed nucleo-
tide element-1 (LINE-1), was estimated through the use 
of REMP R-package [79]. The mean beta of all Alu and 
LINE-1 elements was taken separately for each indi-
vidual. The difference between those with and without 
panic disorder was compared using the Wilcoxon signed-
rank test. Unconditional multivariable logistic regression 
models were again fit to test the association of Alu and 
LINE-1 with PD case status while controlling for age and 
sex while allowing for each study to have a random effect.

Epigenome wide association study (EWAS)
To examine the association of specific methylated CpGs 
with PD diagnosis, we performed a combined one-stage 
individual participant data meta-analysis and study-
specific analysis. We fit linear models for each CpG 
controlling for age, sex, immune cell proportions, and a 
random-effect of study (combined model only) [80]. We 
defined significance as a Bonferroni threshold of 1.33e−7 
for the 450  k array. We relaxed this assumption for 
enrichment analyses using a more lenient false discovery 
rate (FDR) q-value of < 0.05. The same model structure 
and specifications were used with Alu and LINE-1 meth-
ylation status to examine the association of specific meth-
ylated non-LTR retrotransposons with a PD diagnosis.

In a sensitivity analysis, we examine potential unmeas-
ured confounders with the OSCA MOMENT method 
[75]. To test if smoking may be a confounder, we first 

predicted smoking status for each individual through 
EpiSmokEr [22]. We then added smoking status to an 
additional limma model with age, sex, immune cell pro-
portions, and a random-effect of study.

Enrichment analysis
Departing from the list of CpGs, whose methylation 
status was associated with PD, we used three methods 
to examine if they were enriched in genomic features 
and biological pathways. First, we tested if PD associ-
ated CpGs were enriched by CpG island-related genome 
context through independent logistic regression models 
for being in enhancers, open sea, north shelves, north 
shores, islands, south shores, or south shelves. Second, to 
determine the enrichment of genomic features, we used 
Locus Overlap Analysis (LOLA) software [23], limiting 
to UCSC-defined features. Finally, we used an empiri-
cal Bayes method for pathway and gene enrichment 
through the ChAMP R package [81] linked to the Gene 
Set Enrichment Analysis (GSEA) molecular signature 
database.
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