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Physiological Responses to Low-Volume 
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Abstract 

Interval training is a form of exercise that involves intermittent bouts of relatively intense effort interspersed with 
periods of rest or lower-intensity exercise for recovery. Low-volume high-intensity interval training (HIIT) and sprint 
interval training (SIT) induce physiological and health-related adaptations comparable to traditional moderate-inten-
sity continuous training (MICT) in healthy adults and those with chronic disease despite a lower time commitment. 
However, most studies within the field have been conducted in men, with a relatively limited number of studies con-
ducted in women cohorts across the lifespan. This review summarizes our understanding of physiological responses 
to low-volume interval training in women, including those with overweight/obesity or type 2 diabetes, with a focus 
on cardiorespiratory fitness, glycemic control, and skeletal muscle mitochondrial content. We also describe emerging 
evidence demonstrating similarities and differences in the adaptive response between women and men. Collectively, 
HIIT and SIT have consistently been demonstrated to improve cardiorespiratory fitness in women, and most sex-based 
comparisons demonstrate similar improvements in men and women. However, research examining insulin sensitivity 
and skeletal muscle mitochondrial responses to HIIT and SIT in women is limited and conflicting, with some evidence 
of blunted improvements in women relative to men. There is a need for additional research that examines physiologi-
cal adaptations to low-volume interval training in women across the lifespan, including studies that directly compare 
responses to MICT, evaluate potential mechanisms, and/or assess the influence of sex on the adaptive response. 
Future work in this area will strengthen the evidence-base for physical activity recommendations in women.
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Key Points

• Our understanding of physiological adaptations to 
interval training is primarily a result of research 
conducted in men, with a relatively limited number 
of studies conducted in women-only cohorts. Given 
the well-recognized sex-based differences in physi-
ological systems at rest and in response to exercise, 
research findings in men may not be translatable to 
women.

• Research demonstrates that low-volume interval 
training is efficacious for improving cardiorespiratory 
fitness in women. However, research that examines 
improvements in glycemic control, insulin sensitiv-
ity and skeletal muscle mitochondrial responses in 
women-only cohorts is limited, with some studies 
reporting that women “respond less” compared to 
men.

• Further research is needed to clarify and advance our 
knowledge of interval training-induced responses 
in women of various ages, activity levels and health 
statuses, including studies that evaluate the influence 
of training prescription variables (e.g., training dura-
tion, protocol, exercise modality), and possible ergo-
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genic or ergolytic variables (e.g., peri-exercise nutri-
tion, supplements, hormonal contraceptives).

Introduction
Interval training refers to a style of exercise in which 
intermittent bouts of intense effort are interspersed with 
periods of lower-intensity exercise or rest for recovery. 
Research conducted over the past two decades has dem-
onstrated the potency of interval training for eliciting 
physiological remodeling and improvements in indices of 
health that are comparable, or indeed superior, to those 
achieved with traditional forms of moderate-intensity 
continuous training (MICT) [1–5]. Interval training is 
also included as an exercise option within some physi-
cal activity guidelines [6, 7] and practiced widely by the 
general public, as evidenced by a top 5 ranking in the 
American College of Sports Medicine’s annual survey of 
Worldwide Fitness trends from 2014 to 2021 [8]. Wide-
spread interest in the application of interval training for 
improving health and fitness may stem, in part, from the 
time-efficient nature of low-volume protocols, consider-
ing ‘lack of time’ is a commonly reported barrier to regu-
lar physical activity participation [9].

Our understanding of physiological adaptations to 
interval training is primarily a result of research con-
ducted in men or mixed-cohorts of men and women. 
A relatively limited understanding of interval training 
responses in women has recently been recognized [10–
13], which is perhaps unsurprising given that women are 
known to be underrepresented as participants in exercise 
physiology research [14–16]. However, there are well-
recognized sex differences in physiological systems at rest 
and in responses to acute exercise [17] that may result in 
sex-specific physiological and health-related adaptations 
to interval training. Thus, findings observed in men may 
not be translatable to women. Understanding biological 
similarities and differences between men and women is 
timely, as demonstrated by recent reviews summarizing 
sex-specific responses across a range of exercise-induced 
physiological, health and performance adaptations [12, 
17–24].

Some of the most commonly reported health and 
performance-related adaptations to low-volume inter-
val training include improvements in cardiorespira-
tory fitness (CRF), glycemic control and skeletal muscle 
mitochondrial content. Indeed, an interested reader is 
directed to recent comprehensive narrative reviews in 
this regard [1, 5, 11, 25]. However, given that sex differ-
ences in physiology are increasingly recognized [17], 
the goal of this review is to summarize the evidence (or 
in some instances, lack thereof ) for these physiologi-
cal adaptations in women, and where relevant, identify 

similarities and differences to men. We identify gaps in 
our understanding of physiological and health-related 
responses to low-volume interval training in women and 
provide recommendations for how to advance the field 
in this regard. This review primarily focuses on research 
that examines aerobic-based low-volume interval train-
ing in participants who are healthy, with overweight/obe-
sity or type 2 diabetes (T2D).

Terminology and Methodology
Interval training protocols within the literature vary in 
several factors, including the duration, intensity and 
number of intervals performed. High-intensity interval 
training (HIIT) consists of submaximal efforts that elicit 
≥ 80% of maximal heart rate (HRmax), whereas sprint 
interval training (SIT) involves “all-out” or supramaximal 
efforts at an intensity ≥ 100% of the power output that 
elicits peak oxygen uptake ( V̇O2peak) [1, 26]. In addition, 
the duration of the intervals within a HIIT or SIT proto-
col is typically ≥ 1 min or ≤ 30 s, respectively, and if the 
exercise protocol involves < 15 min of intense exercise, it 
is considered to be low-volume [5, 27]. While the focus of 
this review is on adaptations to these time-efficient low-
volume HIIT and SIT protocols, some reference to stud-
ies using high-volume HIIT is provided, especially when 
conducted in unique women-only cohorts across the 
lifespan and/or when adaptations to low-volume proto-
cols are lacking in women.

The present narrative review focuses primarily on data 
obtained from low-volume HIIT or SIT studies involv-
ing women-specific cohorts, as well as studies designed 
to address sex differences by directly comparing results 
between women and men. While a systematic review 
approach was not specifically employed, the informa-
tion presented in this review was informed by literature 
searches conducted on MEDLINE and PubMed in Feb-
ruary and March 2021 using keywords specific to the 
population (e.g., adult, female, women or type 2 diabe-
tes), intervention (e.g., high intensity exercise, interval 
training, or sprint) and outcomes (e.g., aerobic capacity, 
cardiorespiratory fitness, oxygen consumption, glycemic 
control, insulin resistance, citrate synthase, mitochon-
drial content or mitochondrial proteins) of interest. The 
reference lists of relevant reviews returned by the litera-
ture searches were also examined for additional pertinent 
articles.

For areas where low-volume interval training studies 
in women-only cohorts are limited, the results of mixed-
sex cohort studies are presented, with acknowledgement 
that the evidence is from a mixed-sex study design. In 
many instances, the objectives of these studies do not 
include sex as an independent variable, and therefore, 
authors explore hypotheses in a mixed-cohort of men 
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and women to enhance generalizability of the findings. 
This approach is commendable and often represents a 
well-considered design after evaluation of study timeline, 
funding and logistical constraints. However, mixed-sex 
cohorts in the field of exercise, cardiovascular and muscle 
physiology have been reported to be male dominant, with 
examples of studies published with > 4:1 male bias [14]. 
This obviously precludes an ability to properly assess or 
make inferences regarding responses in women alone. 
Thus, only data obtained from mixed-sex cohorts with 
a men-to-women ratio of ≤ 2:1 (≥ 33% of participants 
studied were women) are discussed in the present review. 
However, even in these instances, our ability to make 
definitive conclusions regarding the response in women 
is often limited owing to commonly small sample sizes 
in the field (e.g., n = 5 of 10). Lastly, across the studies 
included in the present review, participants were referred 
to by a combination of gender (e.g., men, women) and/
or sex (e.g., male, female) terms. As we cannot ascertain 
whether these studies collected information regarding 
biological sex, the terms women and men are used to 
describe individuals in the present review, rather than 
female and male, consistent with others [23].

Cardiorespiratory Fitness
Responses in Women
Amongst the most well-documented physiological adap-
tations to interval training is an increase in CRF, most 
commonly measured with a  V̇O2peak test. Indeed, sev-
eral systematic reviews and meta-analyses have con-
cluded that HIIT and/or SIT improves CRF in adults who 
are young [28, 29], old [30, 31], healthy [32–35] with over-
weight/obesity [36] or with T2D [37–39]. Improvements 
in CRF among inactive and active adults have also been 
reported in systematic reviews specifically examining 
interval training protocols that are low-volume [28, 33, 
34, 40]. These findings have clinical and athletic perfor-
mance implications, as CRF is a strong predictor of risk 
for cardiovascular disease and all-cause mortality [41, 
42] and maximal aerobic capacity is a key determinant 
of endurance performance [43]. A limitation of many of 
these systematic reviews and meta-analyses, however, 
is the lower representation of women as participants, as 
noted in a meta-analysis by Bacon and colleagues [29]. 
Nonetheless, there are still a number of interventions in 
women-only cohorts that have documented improve-
ments in CRF following low-volume interval training 
(Table 1). For example, a randomized controlled trial by 
Trilk and colleagues demonstrated that 4 weeks of low-
volume SIT, involving 4–7 × 30  s “all-out” cycle sprints 
performed 3 times per week, improved V̇O2peak by 
~ 12% in young women with overweight/obesity [44]. 
Other studies have also found 7–22% improvements in 

V̇O2peak following 3–10  weeks of low-volume interval 
training in women who are healthy [45–49] or with over-
weight [50, 51]. The vast majority of low-volume HIIT or 
SIT studies in women have used cycling exercise, how-
ever, and it is unclear if other aerobic exercise modali-
ties are as efficacious. Allison and colleagues [52] found 
that a low-volume SIT protocol, involving 3 × 20  s stair 
climbing-based sprints, increased V̇O2peak in inactive 
young women to a comparable extent as that previously 
observed with 3 × 20 s cycling sprints (~ 12%; [53]) when 
performed thrice-weekly for 6 weeks. Improved CRF was 
also observed following 6–12  weeks of running-based 
SIT, involving 4–10 × 30 s sprints, in recreationally active 
women [54] and inactive women with overweight/obesity 
[55], and walking-based HIIT, involving 6 × 1 min efforts 
at 90% heart rate reserve, in older women (60–85 years) 
with T2D [56]. However, V̇O2peak has been reported 
to be unchanged following 8–16 weeks of thrice-weekly 
6–10 × 1 min low-volume HIIT that used running/walk-
ing intervals in women who are older (60–75 years) [57] 
or with polycystic ovary syndrome [58]. Given these 
observations and considering that cycling equipment is 
inaccessible to some individuals, more research is war-
ranted that evaluates the effect of low-volume HIIT/
SIT on CRF using diverse aerobic exercise modalities in 
women across the lifespan.

Low‑Volume Interval Training Versus MICT in Women
Systematic reviews and meta-analyses have concluded 
that there is no difference in the efficacy of SIT and high-
volume MICT for eliciting improvements in CRF in 
healthy adults [28, 59], and available primary evidence 
in women largely supports this conclusion. For exam-
ple, 5 weeks of SIT, consisting of 60 × 8 s cycling sprints 
interspersed with 12  s of recovery, or MICT, involving 
40  min of cycling at 60–80% V̇O2peak, improved CRF 
to a comparable extent (~ 10%) in young inactive women 
with obesity, despite the MICT protocol eliciting a 
~ 2-fold higher energy expenditure [60]. Similarly, other 
studies have reported no difference in the improvement 
in V̇O2peak following low-volume interval training or 
MICT in young women with overweight/obesity [61–63], 
women who are postmenopausal (55–85 years) [64], and 
older women (60–85  years) with T2D [56]. A few stud-
ies have also compared improvements in CRF following 
6–15 weeks of SIT with an energy expenditure-matched 
MICT protocol, demonstrating similar [65, 66] or supe-
rior [67] responses with SIT. Interestingly, a recent meta-
analysis noted that women appeared to respond more 
favorably to SIT as opposed to MICT with respect to 
improvements in CRF [59]; however, the authors cau-
tioned that the weighted effect size was small and a 
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limited number of studies were available in the literature 
to conduct this sex-specific analysis.

Sex‑Based Comparisons
Many investigations have reported no evidence of 
sex-based differences in low-volume interval training-
induced improvements in CRF [53, 68–73], although this 
is not a universal finding [10, 74, 75] (Table 2). In the larg-
est cohort of participants examined, Phillips et  al. [76] 
observed similar relative increases in V̇O2peak in inactive 
men (n = 64) and women (n = 72) aged 18–50  years in 
response to 6 weeks of thrice-weekly 5 × 1 min at ~ 125% 
V̇O2peak. In addition, 6  weeks of the same protocol 
induced similar improvements in CRF in a smaller cohort 

of older (55–75 years) men and women [73]. Other short-
term interventions lasting 2–6 weeks have also observed 
no influence of sex on improvements in CRF among 
young men and women in response to various SIT pro-
tocols, including reduced volume SIT (2–3 × 20  s “all-
out” sprints [53, 69, 71]), Wingate-based SIT (4–8 × 30 s 
“all-out” sprints [68, 70]) and Tabata-based SIT (8 × 20 s 
intervals at ~ 170% peak power output, 10 s of recovery 
[72]).

While improvements in CRF are generally compara-
ble between sexes, the relative contribution of central 
and peripheral mechanisms that underpin changes in 
V̇O2peak with interval training may be influenced by 
sex. Exercise training-induced increases in V̇O2peak are 

Table 1 Summary of adaptations related to cardiorespiratory fitness, insulin sensitivity, glycemic control, and mitochondrial content 
following common low-volume interval training protocols in women

Studies were conducted in women who were classified as healthy [10, 46, 47, 49, 52, 54, 65, 69–72, 75, 79, 161], with overweight/obesity [44, 50, 51, 53, 55, 60–63, 
66, 67, 73, 76, 100, 110, 121, 138, 162, 164, 167, 168] and/or type 2 diabetes [100, 162]. For transparency, the same cohort of women was examined in the following 
pairs of references: [50, 121] and [73, 138]. The symbol (†) denotes when a finding has only been documented in a study comparing responses between sexes and is 
based on a main effect of time for both men and women. Abbreviations: ↑ increase; ↓ decrease; ↔ no change; AUC  area under the curve; COXIV cytochrome c oxidase 
subunit IV; CS citrate synthase; HbA1c glycated hemoglobin; HOMA-IR homeostatic model assessment of insulin resistance; OGTT  oral glucose tolerance test; V̇O2peak 
peak oxygen uptake

Protocol Training duration

2–4 weeks 5–11 weeks 12–16 weeks

Repeated Wingate SIT (3–8 × 30 s) ↑ V̇O2peak [44, 68, 70, 161] ↑ V̇O2peak [47, 54, 67] ↑ V̇O2peak [55]

↓ HbA1c [162] 
↔ HbA1c [55]

↔ HbA1c [55]

↑ CS protein  content† [70]
↔ CS maximal  activity† [163]
↔ COXIV protein  content† [70]

HIIT
(10–12 × 1 min)

↑ V̇O2peak [46, 49, 64, 79]
↔ V̇O2peak [164]

↑ V̇O2peak [49, 50, 165] ↑ V̇O2peak [49]

↔ OGTT insulin sensitivity [50]
↓ HOMA-IR [166]

↓ HOMA-IR [110]

↑ CS maximal activity [50]
↑ COX activity [121]

Repeated sprint SIT
(6–20 s efforts)

↑ V̇O2peak [60, 167] ↑ V̇O2peak [51, 61, 63, 65, 66, 168]

↓ HOMA-IR [61]
↔ HOMA-IR [65, 66]
↓ HbA1c [100]
↔ HbA1c [66]

Reduced-volume SIT
(≤ 10 min session)

↑ V̇O2peak [62, 72]
↔ V̇O2peak [75]

↑ V̇O2peak [52, 53, 69, 71, 75] ↑ V̇O2peak [10, 75]

↔ OGTT insulin sensitivity [69, 71]
↔ 24 h glucose mean or AUC [53]
↓ HOMA-IR† [53]

↔ HOMA-IR† [10]

↑ CS maximal  activity† [53]
↑ COXIV protein  content† [53]

Reduced-volume HIIT (5 × 1 min) ↑ V̇O2peak [73, 76]

↔ OGTT glucose and insulin AUC [73]
↓ HOMA-IR [76]
↔ HbA1c [73]

↑ mitochondrial complex I, II, III, IV and V 
protein  content† [138]
↑ CS maximal  activity† [138]
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predominantly due to adaptations that increase oxygen 
transport, including peak cardiac output, blood volume 
and oxygen carrying capacity of the blood [77]. However, 
this knowledge is largely based on research conducted 
in men [77] and research examining central adaptations 
to low-volume interval training in women is scarce. 
Interestingly, an exploratory analysis in a recent study 
revealed a sex-specific peak cardiac output response to 
6 and 12  weeks of SIT, involving thrice-weekly 3 × 20  s 
sprints [75]. Despite improvements in CRF in both sexes, 
peak cardiac output was improved following training 
in inactive young men but was unchanged in women 
[75]. In contrast, Astorino et  al. [78] reported no influ-
ence of sex on increases in peak cardiac output follow-
ing ~ 7  weeks of different combinations of HIIT and/or 
SIT protocols that each involved a higher volume of work 
versus the 3 × 20 s SIT protocol examined by Bostad et al. 
[75]. The discrepancy between studies may be a result 
of small sample sizes and/or that neither study was pri-
marily designed to assess sex-based differences in central 
responses to interval training. It is also possible that dif-
ferences in participant characteristics such as ethnicity 
and oral contraceptive use could explain variability across 
studies, as both have been shown to modify peak car-
diac output and stroke volume responses to low-volume 
interval training in women [46, 79]. Additional well-con-
trolled sex-based comparisons of central and peripheral 
responses to low-volume interval training, and their con-
tribution to improvements in CRF, is a fruitful area for 
future research.

Insulin Sensitivity and Glycemic Control
Exercise-induced improvements in insulin sensitivity and 
glycemic control contribute to the well-established ben-
efits of exercise for the prevention and treatment of met-
abolic diseases. Low-volume interval training has been 
reported to improve fasting and peripheral estimates of 
insulin sensitivity and glycemic control in healthy adults 
and those with, or at risk for, cardiometabolic diseases 
[3]. However, determining whether sex modifies this 
health benefit of low-volume HIIT is important as a 
recent meta-analysis demonstrated that studies with a 
higher proportion of female participants are associated 
with smaller improvements in mean 24-h glucose follow-
ing exercise [80]. Improvements in insulin sensitivity and 
glycemic control in response to weeks or months of exer-
cise training are most commonly investigated, but acute 
improvements can also be observed for 24–48 h follow-
ing a single session of exercise [81]. Thus, when consider-
ing the effects of low-volume interval training on insulin 
sensitivity and glycemic control in women, it is important 
to consider both acute and chronic responses.

Acute Responses in Women and Sex‑Based Comparisons
The acute effects of low-volume interval training on insu-
lin sensitivity and glycemic control are not well estab-
lished in women, and available evidence in response to 
SIT as compared to HIIT is conflicting. To the best of 
our knowledge, acute effects of low-volume SIT on esti-
mates of insulin sensitivity or glycemic control have yet 
to be investigated in an independent cohort of women. 
However, in mixed cohorts of healthy young men and 
women, a single session of low-volume SIT, involving 
4–6 × 30 s cycle sprints interspersed with 4 min of recov-
ery, had no effect on insulin sensitivity measured via an 
oral glucose tolerance test (OGTT) [82] or hyperinsu-
linemic-euglycemic clamp [83] 14–16  h post-exercise. 
Similarly, unchanged OGTT-derived insulin sensitivity 
was also observed in response to a very low-volume SIT 
protocol involving 2 × 20 s cycle sprints within a 10-min 
time commitment amongst a mixed-sex cohort of 
healthy young adults [84]. It is unclear if the lack of acute 
improvement in insulin sensitivity observed in mixed-sex 
cohorts is different from that which is observed in men 
alone, as there are reports of both improved intravenous-
tolerance test-derived insulin sensitivity in healthy men 
[85] and unchanged OGTT-derived insulin sensitivity in 
men with overweight [86], measured ~ 24 h after a single 
session of low-volume SIT. Thus, while it is possible that 
the low exercise volume of SIT is insufficient to acutely 
improve insulin sensitivity independent of sex, com-
parisons between men and women are warranted in this 
regard.

Paradoxically, a single session of low-volume HIIT, 
involving 10 × 1 min cycling intervals at 90% HRmax, has 
been demonstrated to improve next-day fasting homeo-
stasis model of insulin resistance (HOMA-IR) in women 
but not men [87]. HOMA-IR primarily reflects hepatic 
insulin sensitivity, and therefore, the sex-specific results 
may not be generalizable to estimates of peripheral insu-
lin sensitivity obtained from methods such as OGTTs 
or hyperinsulinemic-euglycemic clamps. However, sex-
based comparisons involving measurement of peripheral 
insulin sensitivity have not been conducted, and the effi-
cacy of low-volume HIIT to improve peripheral insulin 
sensitivity and glycemic control in women can only be 
ascertained from mixed-sex cohorts. For example, using 
continuous glucose monitoring (CGM), improvements 
in indices of glycemic control have been reported follow-
ing a single session of low-volume HIIT (8–10 × 1 min at 
90% HRmax) in mixed-sex cohorts with overweight/obe-
sity [88, 89] and T2D [90]. The same low-volume HIIT 
protocol has also been demonstrated to improve insulin 
sensitivity, measured with the hyperinsulinemic-euglyce-
mic clamp, 24  h following exercise in adults with over-
weight/obesity who have recently undergone a 12-week 
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exercise-training program [91]. Some of these mixed-sex 
cohort studies have also directly compared the effects of 
acute low-volume HIIT to higher volumes of traditional 
MICT (40–45 min at ~ 70%HRmax), revealing no differ-
ence in the improvement in glycemic control [89] and 
insulin sensitivity [91], despite a reduced time commit-
ment with HIIT. The potency of HIIT in this regard has 
been attributed to high rates of muscle glycogen utiliza-
tion during exercise [91]. Considering there is evidence 
to suggest that muscle glycogen use during exercise is 
lower in women than men [92–94], and that exercise-
induced fuel metabolism is influenced by menstrual 
cycle phase and sex-hormone concentrations [95–98], 
sex-based comparisons and/or women-only studies may 
further enhance our understanding of the effect of low-
volume interval training on peripheral insulin sensitivity.

Chronic Responses in Women and Sex‑Based Comparisons: 
Fasting Indices of Insulin Sensitivity and Glycemic Control
Fasting-derived estimates of insulin sensitivity and gly-
cemic control have been widely reported following 
6–15  weeks of low-volume interval training in women-
only cohorts. Trapp et al. [65] were amongst the first to 
demonstrate a reduction in fasting plasma insulin con-
centration measured 72  h following 15  weeks of low-
volume SIT in previously inactive but otherwise healthy 
women. The protocol involved 60 × 8  s cycle sprints 
interspersed with 12  s recovery (20  min total) and was 
found to elicit greater reductions in fasting insulin than 
a 40 min MICT protocol that was also performed three 
times per week for 15  weeks. More recently, Sun and 
colleagues [61] have used a similar low-volume SIT 
protocol in women with overweight and demonstrated 
greater reductions in HOMA-IR after 12  weeks of SIT 
than in response to a MICT protocol involving a three-
fold greater exercise volume. Encouraging findings in 
this regard have also been reported among women and 
girls across the lifespan who are understudied in exer-
cise physiology. For example, HOMA-IR was reduced 
in adolescent girls with overweight and obesity follow-
ing 12  weeks of running-based low-volume SIT (12–
16 × 30  s at maximal aerobic speed interspersed with 
30  s recovery) performed twice a week [99]. In addi-
tion, the aforementioned 20-min low-volume SIT pro-
tocol, involving 60 × 8  s cycle sprints interspersed with 
12  s recovery, improved glycated hemoglobin (HbA1c) 
in postmenopausal women with T2D to a comparable 
extent as 40-min sessions of MICT at 60% HRmax per-
formed twice weekly for 16  weeks [100]. Women with 
polycystic ovary syndrome, a condition commonly asso-
ciated with insulin resistance, have also been reported to 
improve HOMA-IR following 12 weeks of thrice-weekly 
aquatic-based low-volume HIIT [101]. Across these 

studies, training-induced improvements in insulin sensi-
tivity and glycemic control have been largely attributed to 
concomitant reductions in total and/or abdominal body 
fat mass with training [61, 65, 99–101]. Available evi-
dence also suggests that the improvement in HOMA-IR 
following 6 weeks of low-volume HIIT is similar between 
sexes [76].

Chronic Responses in Women and Sex‑Based Comparisons: 
Peripheral Indices of Insulin Sensitivity and Glycemic 
Control
In contrast to fasting-derived indices of insulin sensitiv-
ity, estimates of peripheral insulin sensitivity are generally 
reported to be unchanged in women following low-vol-
ume interval training, which is different from findings 
in men. Two studies in full cohorts of women with 
overweight/obesity have observed no change in insulin 
sensitivity, assessed by OGTTs [50] or the hyperinsu-
linemic-euglycemic clamp [102], when measured 72  h 
following 6–14 weeks of low-volume HIIT. Metcalfe and 
colleagues [69] were the first to provide a direct sex com-
parison in this regard, demonstrating that after 6 weeks 
of low-volume SIT, involving thrice-weekly sessions of 
2 × 20  s cycling sprints within a 10-min time commit-
ment, OGTT-derived insulin sensitivity was improved 
in healthy inactive men but not women. Gillen et  al. 
[53] subsequently observed consistent sex differences 
amongst adults with overweight/obesity reporting that 
6  weeks of a similar low-volume SIT protocol (3 × 20  s 
cycling sprints over 10  min performed three times per 
week) reduced 24-h blood glucose concentration in men 
but not women when measured 48–72  h after training 
using CGM. The authors also observed greater increases 
in skeletal muscle glucose transporter 4 (GLUT4) protein 
content in men [53], providing a potential mechanism for 
the sex difference in training-induced changes in glyce-
mic control. More recently, Søgaard et al. [73] have meas-
ured sex-specific changes in insulin sensitivity, using the 
hyperinsulinemic-euglycemic clamp, following 6  weeks 
of interval training (5 × 1  min at ~ 125% V̇O2peak) per-
formed three times per week in older adults. While a sig-
nificant main effect of time was observed for the increase 
in glucose infusion rate during the clamp, the relative 
increase was ~ 11% in men and ~ 1% in women [73]. Col-
lectively, available evidence suggests that women may 
‘respond less’ than men with regard to low-volume inter-
val training-induced improvements in peripheral insulin 
sensitivity and glycemic control.

It is important to mention that a number of studies 
involving mixed-sex cohorts have observed improve-
ments in peripheral insulin sensitivity in healthy or 
overweight/obese adults following 2–12  weeks of low-
volume interval training [83, 91, 103–105]. There are also 
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several mixed-sex studies in men and women with T2D 
that report improvements in glucose tolerance and gly-
cemic control following 2–12 weeks of low-volume HIIT 
involving 10 × 1  min intervals at ~ 90% HRmax [106–
109]. Considering that these authors did not describe 
any sex differences when presenting the mixed-cohort 
results, it is possible that women do indeed improve indi-
ces of peripheral insulin sensitivity and glycemic control 
following low-volume interval training. In this case, it is 
possible that a lack of control for menstrual cycle phase 
in premenopausal women, not matching baseline insulin 
sensitivity in men and women, and/or differences in study 
design variables across studies, contribute to discrepan-
cies within the literature and false conclusions regarding 
sex-based differences. Indeed, a more recent study from 
Metcalfe and colleagues [71] suggests that the previously 
reported differences between men and women might in 
fact be attributed to differences in baseline insulin sensi-
tivity of participants, rather than sex, which corroborates 
other data suggesting that the degree of insulin resistance 
pre-training influences the adaptive response to HIIT 
[110]. Clearly, additional well-controlled sex-comparison 
studies are needed, including those that evaluate poten-
tial mechanisms.

Given the generally unchanged peripheral insulin sen-
sitivity in women following low-volume interval train-
ing, it is possible that exercise protocols involving higher 
volumes of interval or continuous exercise are needed 
for more consistent improvements. Recently, a high vol-
ume HIIT protocol involving 1  h of cycling three times 
per week has been shown to improve insulin sensitivity, 
measured via the hyperinsulinemic-euglycemic clamp, 
in healthy premenopausal and early postmenopausal 
women after 12 weeks [111], perhaps suggesting a dose–
response threshold may exist. A training program that 
includes both high- and low-volume HIIT may also be 
an efficacious and (more) time-efficient option. Indeed, 2 
weekly sessions of high-volume HIIT and 1 weekly ses-
sion of low-volume HIIT (~ 1.5  h per week) improved 
clamp-derived insulin sensitivity in young women after 
10  weeks [112]. Continued research is needed to deci-
pher the minimal exercise dose necessary to improve 
insulin sensitivity in women.

Skeletal Muscle Mitochondrial Adaptations
Responses in Women
Exercise training-induced increases in skeletal muscle 
mitochondrial volume can enhance skeletal muscle oxi-
dative capacity and thereby improve submaximal fuel 
metabolism, lactate threshold and ultimately endurance 
performance [43, 113]. Another well-documented physi-
ological adaptation to low-volume interval training is 
an increase in skeletal muscle mitochondrial content, as 

reviewed by others [1, 11]. As little as 2 weeks of SIT or 
HIIT has been demonstrated to increase mitochondrial 
content in human skeletal muscle [114–118], which is 
most often assessed using biochemical measurements 
such as the maximal activity or protein content of mito-
chondrial enzymes including citrate synthase (CS), 
cytochrome c oxidase subunit IV (COXIV) and succinate 
dehydrogenase (SDH) [119, 120]. However, as recently 
acknowledged in a narrative review by Bishop and col-
leagues [11], this area of research is predominantly 
supported by studies conducted in men. Nonetheless, 
there is evidence from a limited number of women-only 
cohorts demonstrating HIIT-induced improvements in 
biomarkers of mitochondrial content. To our knowledge, 
Gillen et al. [50] were the first to demonstrate increased 
skeletal muscle mitochondrial content following low-vol-
ume HIIT in an independent cohort of women. Following 
6  weeks of thrice-weekly exercise, involving 10 × 1  min 
cycling intervals at 90% HRmax, the maximal activity of 
CS was increased in young women with overweight or 
obesity. A companion paper from the same cohort [121] 
further demonstrated increases in COXIV activity in type 
1 and 2 muscle fibers using immunofluorescence. While 
the results from this intervention [50, 121] reveal that 
6  weeks of low-volume HIIT increases mitochondrial 
content in women with overweight or obesity, it provides 
limited insight compared to the wealth of low-volume 
HIIT/SIT studies conducted in men-only cohorts that 
vary in training protocol (e.g., [117, 122–124]), training 
duration (e.g., [118, 125, 126]), and participant character-
istics (e.g., [127–129]).

A few studies using high-volume HIIT protocols 
(≥ 60  min per session) have revealed increased mito-
chondrial content in a range of women-only cohorts fol-
lowing 2–12  weeks of training. For example, increased 
maximal activity of CS was observed in young healthy 
women following 2 or 6  weeks of three weekly sessions 
involving 10 × 4  min cycling efforts at 90% V̇O2peak, 
interspersed with 2 min of rest [130, 131]. More recently, 
Nyberg and colleagues [132] have demonstrated 12 weeks 
of interval training (1-h cycling classes involving high-
intensity intervals), three times per week, increased 
mitochondrial protein content in pre- and postmenopau-
sal women. Notably, the improvements following train-
ing were more pronounced in postmenopausal women 
compared to premenopausal women, suggesting that 
menopausal status may impact mitochondrial responses 
to interval training. Future work should explore the influ-
ence of menopausal status on mitochondrial responses to 
low-volume interval training.
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Low‑Volume Interval Training Versus MICT
Given the limited number of low-volume HIIT or SIT 
studies conducted in women, it is perhaps unsurprising 
that we know relatively little with regard to how mito-
chondrial adaptations in response to low-volume interval 
training compare to traditional forms of aerobic training 
(e.g., high-volume MICT) in women. When consider-
ing mixed-sex cohorts, however, similar improvements 
in mitochondrial content have been observed following 
6 weeks of low-volume SIT and MICT in young healthy 
men and women. Specifically, Burgomaster et  al. [133] 
observed similar increases in the maximal activity of CS 
between these protocols despite a ~ 3-fold lower time 
commitment and ~ 10-fold lower exercise volume with 
SIT (4–6 × 30 s “all-out” cycling sprints), as compared to 
MICT (40–60 min cycling at 65% V̇O2peak). This finding 
is consistent with recent studies demonstrating no differ-
ence in training-induced improvements in biomarkers 
of mitochondrial content or total mitochondrial volume 
following 6–12 weeks of low-volume HIIT and MICT in 
adults with overweight or obesity [91, 105, 134] or T2D 
[135]. Thus, based on these mixed-sex studies it is plausi-
ble that low-volume interval training and MICT similarly 
increase mitochondrial content in women, consistent 
with several studies in men-only cohorts [116, 125, 136, 
137]; however, this notion has not been examined in an 
independent cohort of women.

Sex‑Based Comparisons
The importance of investigating mitochondrial adap-
tations in women-only cohorts is bolstered by recent 
evidence demonstrating sex-based differences in the 
adaptive response to low-volume interval training. Three 
weeks of low-volume SIT, consisting of 4–8 × 30 s Win-
gate sprints with 4  min of active recovery performed 3 
times per week, induced greater rates of mitochondrial 
biogenesis in young healthy men relative to women, as 
evidenced by greater synthesis of mitochondrial proteins, 
when analyzed as a cluster, and a tendency for higher 
rates of protein synthesis in the mitochondrial frac-
tion in men [70]. A sex-specific response to low-volume 
interval training was also observed in a recent study by 
Chrøis et  al. [138], whereby older men but not women 
(~ 63  years) increased mitochondrial respiration follow-
ing 6  weeks of 5 × 1  min intervals at ~ 125% V̇O2peak. 
The mechanistic basis for the reported greater mito-
chondrial responses in men compared to women remains 
unclear. Interval training-induced mitochondrial bio-
genesis is initiated by repeated, transient disturbances in 
metabolic homeostasis that activate signaling pathways 
which promote the transcription of genes and translation 
of mitochondrial proteins [1, 139]. This knowledge, how-
ever, is largely based on data in men, and there is a dearth 

of research that has examined acute responses involved 
in mitochondrial biogenesis such as the phosphoryla-
tion of AMP-activated protein kinase (AMPK) or mRNA 
expression of peroxisome proliferator activated recep-
tor gamma coactivator 1⍺ (PGC1α) in women. Recent 
efforts have attempted to compare responses between 
men and women in this regard, but no sex difference has 
been observed in the phosphorylation of AMPK [140] or 
PGC1α mRNA expression [141] following a single ses-
sion of low-volume HIIT (6 × 1.5  min at 90% V̇O2peak; 
[140]) or SIT (3 × 20 s “all-out” sprints; [141]). Additional 
work that examines acute molecular responses to low-
volume interval training in women of varying age and 
health status, including sex-based comparisons, may pro-
vide insight into the observed greater rates of mitochon-
drial biogenesis [70] and improvements in mitochondrial 
respiration [138] in men relative to women.

There is also evidence that low-volume interval train-
ing elicits comparable mitochondrial adaptations 
between sexes, specifically with respect to biomarkers of 
mitochondrial content. Training-induced increases in the 
maximal activity or protein content of CS following 3 or 
6  weeks of low-volume SIT did not differ between men 
and women who were recreationally active [70], inac-
tive with overweight or obesity [53] or inactive and older 
[138]. The similar net change in mitochondrial content, 
despite the aforementioned tendency for greater rates 
of mitochondrial protein synthesis in men [70], may be 
explained by higher rates of mitochondrial protein break-
down in men compared with women. It is also possible 
that the small sample sizes of men and women (n ≤ 11 
each) examined in these investigations were underpow-
ered to detect differences in interval training-induced 
improvements in mitochondrial content between sexes. 
Future research in larger sample sizes that examines 
a comprehensive set of mitochondrial measures (i.e., 
mitochondrial protein synthesis, content and function) 
is required to clarify mitochondrial adaptations to low-
volume interval training in women relative to men. This 
work should also include sex-based comparisons using 
different HIIT protocols, since the research in this area 
has primarily utilized interval training protocols involv-
ing only very brief amounts of intense exercise (≤ 5 min).

Methodological Considerations and Directions 
for Future Research
Reasons for the lower representation of women as partic-
ipants in exercise research studies [14–16] are numerous 
and complex and may include investigator-driven deci-
sions and sex-based differences in willingness to partici-
pate [142, 143]. Regardless, more research in women is 
needed that evaluates the impact of population character-
istics (e.g., age, presence of chronic disease, menopausal 
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status), methodology utilized to assess outcomes (e.g., 
type of graded exercise test protocol to determine CRF), 
and intervention variables (e.g., length of training period, 
variations in the interval exercise protocol, progression 
of training load) on physiological responses to low-vol-
ume interval training, as these factors may have influ-
enced the conclusions discussed herein. Progress in this 
regard will require targeted recruitment strategies and 
careful consideration of women-specific methodological 
factors in study design. For example, in premenopausal 
women, menstrual cycle phase has been demonstrated 
to influence resting insulin sensitivity [144] and exercise-
induced mitochondrial gene expression [145]. Oral con-
traceptives, taken by ~ 151 million women worldwide 
in 2019 [146], add further complexity as they have been 
reported to blunt increases in CRF and maximal cardiac 
output following 4  weeks of low-volume interval train-
ing [79]. Thus, careful consideration of these factors is 
necessary for the  proper design of future studies that 
include women as participants, and recommendations 
in this regard have recently been made by others [147–
149]. While controlling for menstrual cycle phase and 
hormonal contraceptive use are generally recommended 
and would improve the quality of women-specific data, 
this approach may also introduce limitations such as 
decreased generalizability of the results and increased 
timescale [149]. Thus, methodological decisions in this 
regard should be carefully considered for each study and 
guided by the specific research question. Nonetheless, 
enhanced documentation and reporting of hormonal 
parameter(s), using consistent definitions, as provided 
by others [149], are needed to reduce ambiguity and help 
clarify conflicting findings between studies.

Properly matching both participant characteristics 
and the exercise stimulus remains a challenging issue 
for sex-based comparison studies. There is evidence of 
greater baseline insulin sensitivity [150] and mitochon-
drial volume [151] in women relative to men, which 
may impact training-induced responses. It is also well 
known that V ̇O2peak relative to body mass is lower in 
women compared to men of a similar training back-
ground [152–154]. Given this sex-based difference, and 
the greater body fat percentage in women compared 
with men, it has been suggested to match men and 
women for fitness levels using V ̇O2peak relative to fat 
free mass [155]. The optimal method for matching the 
interval exercise stimulus in sex-comparison studies, 
however, is an unresolved issue, as noted by Bishop and 
colleagues [11]. Men typically produce larger power 
outputs during “all-out” SIT protocols compared with 
women [70, 93] and a discrepancy in work performed 
during interval training may contribute to the observed 
greater responses in men. Some authors have compared 

power outputs during SIT relative to whole body fat-
free mass to account for sex-based differences in body 
composition and found no sex differences in relative 
power output [53, 70, 93, 141]. However, this outcome 
may need to be interpreted with caution since cycling 
is a lower body exercise and there may be sex differ-
ences in the relative contribution of lower body fat 
free mass to total fat free mass [156]. Moreover, there 
is large between-participant variability in the homeo-
static disturbance elicited by reference points com-
monly used to determine exercise intensity in interval 
training protocols [e.g., HRmax, V ̇O2peak or peak 
power output (Wpeak)] [11, 157], which can confound 
sex-based comparisons. As such, it has been suggested 
that prescribing exercise intensity relative to metabolic 
thresholds may be more appropriate for sex-based 
comparisons [17]. The methodological decisions related 
to matching the interval exercise stimulus between men 
and women may also depend on the study objective(s) 
and whether the findings will address a more applied or 
basic science research question.

Given the evidence that women may “respond less” to 
interval training, it is important for future work to assess 
whether modifications to the interval training stimu-
lus can augment responses in women. Manipulation of 
the interval exercise prescription variables (e.g., exercise 
intensity, duration, work to recovery ratio) and/or peri-
exercise nutrition represent strategies in this regard. For 
example, women have been reported to have faster meta-
bolic recovery following repeated Wingate sprints rela-
tive to men [93, 158] and therefore may require shorter 
recovery periods between high-intensity intervals [17]. 
Indeed, a recent study by Schmitz and colleagues found 
that 4 weeks of SIT involving shorter (30  s) rather than 
longer (180 s) active recovery periods improved repeated 
running ability in women [159]. Whether altering the 
recovery duration during low-volume interval training 
modifies improvements in CRF, insulin sensitivity and 
mitochondrial content in women remains largely unex-
plored. Nutrition and/or ergogenic aids may also aug-
ment physiological adaptations to low-volume interval 
training in women, and investigations examining sex-
specific nutritional strategies for interval training are 
needed. Interestingly, when 8 weeks of low-volume HIIT 
was combined with caffeine supplementation in women 
with obesity, larger improvements in glycemic control 
during an OGTT were observed compared to those who 
underwent training without caffeine supplementation 
[160]. Additional research that examines the potential 
for nutrition to modify chronic responses to low-vol-
ume interval training in women would advance the field 
further. Studies that assess the mechanisms by which 
low-volume interval training improves physiological 
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responses in women are also warranted and will provide 
insight into how to optimize the interval exercise stimu-
lus for women.

Conclusion
There is a relative lack of data regarding physiological 
responses to low-volume interval training in women 
as compared to men. Nonetheless, given the wealth 
of research conducted over the past two decades, the 
efficacy of low-volume HIIT and SIT to improve select 
outcome variables in women, such as CRF, has been 
consistently demonstrated. However, research that 
explores peripheral adaptations to low-volume interval 
training in women-only cohorts, such as skeletal mus-
cle mitochondrial responses and insulin sensitivity, is 
limited and conflicting, with some evidence demon-
strating blunted improvements in women relative to 
men. Further research is needed to clarify and advance 
our knowledge of these interval training-induced 
responses in women of various ages, activity levels and 
health statuses, including studies that provide direct 
comparisons to traditional MICT. Additional sex-
comparison studies that utilize best practice guidelines 
for matching men and women are also needed, as are 
studies that evaluate a mechanistic basis for previously 
reported sex-specific adaptations to low-volume inter-
val training. To increase our understanding of physi-
ological adaptations to low-volume interval training 
in women, it is also necessary to evaluate the influence 
of training variables (e.g., training duration, protocol, 
exercise modality), and possible ergogenic or ergolytic 
variables (e.g., peri-exercise nutrition, supplements, 
hormonal contraceptives) on HIIT/SIT responses in 
women-only cohorts across the lifespan. These research 
efforts are important and necessary from both a basic 
science and translational perspective, and will support 
sex and gender equity in research while strengthening 
the evidence-base for physical activity recommenda-
tions in women.
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