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The hemoglobin-dilution method (HDM) has been used to estimate changes in vascular volumes in patients because direct
measurements with radioisotopes are time-consuming and not practical in many facilities. The HDM requires an assumption of
initial blood volume, repeated measurements of plasma hemoglobin concentration, and the calculation of the ratio of hemoglobin
measurements. The statistics of these ratio distributions resulting from measurement error are ill-defined even when the errors
are normally distributed. This study uses a “Monte Carlo” approach to determine the distribution of these errors. The finding was
that these errors could be closely approximated with a log-normal distribution that can be parameterized by a geometric mean (𝑋)
and a dispersion factor (𝑆). When the ratio of successive Hb concentrations is used to estimate blood volume, normally distributed
hemoglobin measurement errors tend to produce exponentially higher values of 𝑋 and 𝑆 as the SD of the measurement error
increases.The longer tail of the distribution to the right could produce much greater overestimations than would be expected from
the SD values of the measurement error; however, it was found that averaging duplicate and triplicate hemoglobin measurements
on a blood sample greatly improved the accuracy.

1. Introduction

Vascular volume changes have been estimated from blood
hemoglobin concentration ([Hb]�푏) changes for some time.
Dill andCostill [1] in 1974 used thismethod alongwith hema-
tocrit changes to estimate the changes in the volumes of blood
(BV), plasma (PV), and red cells (RCV) due to dehydration.
In 1987, Hahn [2] used a somewhat different approach of
using changes in [Hb]�푏 to estimate BV variation during
transurethral prostatic surgery, where both fluid uptake into
and blood loss from the vascular system occurred; he called
this approach the “hemoglobin-dilution method” or HDM.
Modification of HDM has been used to calculate allowable
blood loss under hemodilution conditions [3], to estimate
BV changes during hemodialysis [4], to determine the PV
kinetic effects of isotonic and hypertonic PV expanders [5],
and to detect hypovolemia and dehydration in patients by
using volume loading [6] and numerous other applications.

HDM and its modifications all require calculation of the
ratio of [Hb]�푏 values at various time points compared to an

initial [Hb]�푏 determination; however, the effect of measure-
ment errors on the accuracy of these volume determinations
has never been adequately explored. This task is not as easy
as it might appear as the statistical distribution of these
ratios is not straightforward. The simple assumption that the
measurement errors are normally distributed does not lead to
a statistically normal distribution, but to a “Cauchy,” “ratio,”
or “Lorentzian” distribution, which cannot be parameterized
like a normal distribution since it contains infinite values
when the denominator goes to zero [7]. The purpose of the
present study to us is a “Monte Carlo” approach to investigate
the statistical properties of the ratio of [Hb]�푏 values when
used in a volume determination and show how the errors can
be much larger than expected.

2. Materials and Methods

As an illustration of the potential errors using the [Hb]�푏-ratio
approach in volume determinations, consider the estimate
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of vascular volumes prior to fluid therapy in a patient in a
critical-care setting. The gold standard for initial BV esti-
mation is to use radioisotopes for this determination, but this
procedure is rarely done because of the cost, patient safety,
and the time required.

2.1. Blood Volume (BV). The proposed approach to BV
estimation requires (1) initial (𝑖) measurement of blood
hemoglobin concentration ([Hb]�푖�푏), (2) a measured volume
(𝑉inf ) of a non-Hb-containing solution infused over a period
of several minutes, and (3) a final (𝑓)measurement ([Hb]�푓

�푏
).

Assuming that neither Hb nor the volume of infused solution
is lost from the circulation over the relatively short time
between measurements and that the blood is well mixed
before the final measurement, conservation of Hb yields

[Hb]�푖�푏 × BV
�푖 = [Hb]�푓�푏 × (BV

�푓 + 𝑉inf) (1)

which can be solved for BV�푖 as

BV�푖 = 𝑉inf ×
1

[Hb]�푖�푏 / [Hb]�푓�푏 − 1
. (2)

An inherent assumption in this method and other methods
using measurements of [Hb]�푏 or hematocrit at various time
points is that the 𝐹cell factor (ratio of large vessel to total-body
hematocrit) remains constant between initial and final [Hb]�푏
measurements.

As seen, a measurement of the [Hb]�푏 ratio in the denom-
inator of (2) is required for the determination.The larger this
ratio, the less the effect of measurement errors. For example,
if error-free BV�푖 = 5 l and 𝑉inf = 1 l, then the error-free
[Hb]�푏 ratio in (2) would be 1.2 (20% dilution). If 𝑉inf =
0.5 l, the ratio would be only 1.1 (10% dilution). A 1% [Hb]�푏-
ratio overestimation in the first case would result in a ratio
of 1.212, hence, a volume estimation of 4.72 l (5.6% error),
whereas the same error in the second case would result in an
estimate of only 4.5 l (10% error).The same kind of reasoning
applies when using the [Hb]�푏 ratio to determine the common
approach of sequential changes in blood or plasma volume [5,
6], but the non-Hb-containing fluid lost from the circulation
does not affect the accuracy of this kind of estimation.

2.2. Plasma Volume (PV). If the infused solution does not
contain any protein and does not leave the plasma (p), and
negligible protein is lost from plasma over the short time
between measurements, then conservation of protein (Pr)
requires

[Pr]�푖�푝 × PV
�푖 = [Pr]�푓�푝 × (PV

�푓 + 𝑉inf) . (3)

Equation (3) can be solved for PV�푖 as

PV�푖 = 𝑉inf ×
1

[Pr]�푖�푝 / [Pr]
�푓
�푝 − 1
. (4)

If error-free PV�푖 = 3 l (Hct = 40%) and 𝑉inf = 1 l, then
the error-free concentration ratio in (4) would be 1.33. If

𝑉inf = 0.5 l, the ratio would be 1.17. Again, measurement
errors would more dramatically affect the estimation accu-
racy in the latter case; however, equivalent measurement
errors would affect BV�푖 estimations to a greater extent (see
above). Alternatively, albumin concentrations could be used
in (4).

2.3. Red-Cell Volume (RCV)

RCV�푖 = BV�푖 − PV�푖. (5)

Clearly, the accuracy of RCV�푖 estimation would be
affected by estimation accuracy of both BV�푖 and PV�푖. Hence,
RCV�푖 estimation is most affected by measurement errors.

2.4. Infusion Solutions. An infusion solution that meets the
requirements for all three volume estimations is 6% Het-
astarch in 0.9% saline.McIlroy andKharasch [8] infused 1 l of
this solution over a 7-8min period into healthy males after a
900ml blood draw. Using the HDM, they found that over the
20min period after the infusion, the estimated BV increase
stayed at about 1 l. Hence, in the present study, an infusion
interval as long as 10–20min would satisfy the requirements
of the approach. Morgan [9] lists a number of other possible
nonprotein, colloid solutions and many new ones have been
marketed recently.

2.5. Statistical Determination of Volume-Estimation Errors.
First, assuming that BV�푖 and [Hb]�푖�푏 have error-free baseline
values of 5 l and 150 g/l, respectively, and that the value of𝑉inf
is 1 l (𝑉inf/BV�푖 = 0.2), then from (2), [Hb]�푓

�푏
would be 125 g/l.

To assess the potential effects of measurement-precision
errors, an independent, normally distributed, random value
was added to each of these two [Hb]�푏 measurements in (2)
and then (2) was solved for the resulting BV�푖 value. This
procedure was repeated 10,000 times on an Excel spreadsheet
(available upon request). The code for generating these ran-
dom numbers in Excel was 𝐴 ∗ NORMINV(RAND()(0, 1)).
This statement produces a number picked from a normal
distribution with a mean of one and an SD equal to the value
of 𝐴. From the 10,000 estimated values of BV�푖, a histogram
was generated in Excel using bin sizes of 0.2 l.These data were
transferred to the SigmaPlot computer program (SigmaPlot,
Systat Software, San Jose, CA) where they were plotted and fit
by mathematical equations.

In this study, the statistical-distributional measures for
initial BV, PV, and RCVwere determined for variations in (1)
the measurement-precision error, (2) changes in the 𝑉inf/BV
ratio, (3) the effect of averagingmultiple [Hb]�푏measurements
on a blood sample, and (4) decreased hematocrit values often
seen in critical-care patients.

3. Results

3.1. Measurement-Precision Errors. Histogram data (solid
circles) of the distribution of the estimated 10,000 BV�푖 values
are plotted in Figure 1 for a [Hb]�푏 measurement-precision
error of 1% SD.These data are closely fit by a log-normal (LN)
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Figure 1: A histogram of computed initial blood volume (BV)
estimates assuming an error-free BV of 5 L for normally distributed
[Hb]�푏 measurement errors of 0.5, 1, and 2% SD is shown. The solid
circles are histogram counts of the number of error occurrences
(10,000 total) which fall in the 0.2 l wide bins for the 1% SD added
error as computed with an Excel spreadsheet. The solid line is a log-
normal (LN) fit to these data. The thin- and thick-dashed lines are
fits to the 0.5 and 2% added error data (not shown), respectively.The
arrows indicate the bounds for 68.3% of the potential errors (5−𝑋/𝑆
to 5+𝑋∗𝑆) for the 1% SD case, where𝑋 is the geometric mean value
and 𝑆 is the dispersion factor (see text) for the LN distribution.

distribution as shown by the solid line, even though, theo-
retically, this distribution is not LN [7]. Hence, even though
the added error is normally distributed, the distributions are
not Gaussian (normal). Also in Figure 1, LN fits to histogram
data for errors of 0.5% SD (thin-dashed line) and 2% SD
(thick-dashed line) are shown. The correlation coefficients
for these fits were all > 0.995. As the error increases, the
shape of the distribution becomes more asymmetrical with
the peak moving to the left and becoming flatter and a longer
tail forming on the right.

The LN distribution can be characterized [10] as having
a log-mean (𝜇) and log-SD (𝜎) determined as for a normal
distribution, except that instead of using the individual data,
𝑥, log (𝑥) is used. If the natural log is selected, then 𝜇 and
𝜎 can be back-transformed into the geometric mean (𝑋)
and the multiplicative dispersion factor (𝑆) by taking each of
these quantities to the power of the exponential function (𝑒).
Hence,𝑋 = 𝑒�휇 and 𝑆 = 𝑒�휎. For normally distributedmeasure-
ment errors, 68.3% of the possible observations lie between
the values, mean ± SD. In contrast, for a LN distribution, the
SD equivalence is 𝑋/𝑆 to 𝑋 ∗ 𝑆. The arrows in Figure 1 point
to these BV�푖 boundaries. These measures were used to char-
acterize all the distributions determined in the present study.

Statistics for the distributions of BV, PV, and RCV for
0.5, 1, and 1.5% SD errors are given in Table 1 for error-free
measurements of𝑋 = 5 l and 𝑆 = 1. As seen, these errors only
slightly increase the 𝑋 value of these distributions from the
error-free value. For example, an increase in themeasurement
error from 0.5% to 1.5% SD produced a shift in the estimated
𝑋 value for BV from 5 l to only 5.05 l. In contrast, 𝑆 increased
much more, from 1.04 to 1.14. The result is that the error-
bounds range goes from 8.4% to 26%, a 3-fold increase. The
effect on PV estimation is less as seen in Table 1. As expected,
RCV estimation is most affected, producing a small decrease
in𝑋, but a quite large increase in 𝑆 from 1.12 to 1.47; the error-
bounds range increased from 23 to 79%, suggesting that the
accuracy of RCV estimation by this method is compromised
unlessmeasurement errors areminimized. It is apparent from
the data in Table 1 that the % errors in these estimations are
skewed towards overestimation of volumes.

3.2. Effects due to Decreasing Relative Infusion Volume (Vinf/
BV). As described above, estimation errors increase as the
𝑉inf/BV ratio decreases.The effects of decreasing this quantity
are shown in Table 2. As seen, decreasing this ratio down to
as low as 70% of its standard value of 1 l led to generally small
increases in the estimation errors for all three volumes. As
expected, the RCV estimation had the greatest increase.

3.3. Effects of Multiple Measurements. The first three lines of
Table 3 show the effects of averaging multiple measurements
on a blood sample. It is clear that this approach is an
effective way to decrease estimation errors for all volumes,
but particularly those for RCV. As seen, the errors decreased
approximately as the square-root of the number of averaged
sample values.

3.4. Effects of Lowered Hematocrit, [Hb]�푏, and [Pr]�푝. It is
expected that that the estimation errors could increase by
lowering any of the three critical quantities, hematocrit,
[Hb]�푏, or [Pr]�푝. To look at the effects of the worst case
of decreasing all three quantities, estimation errors were
assessed for an initial hematocrit of 30%, [Hb]�푏 = 120 g/l,
and [Pr]�푝 = 50 g/l. The bottom line of Table 3 shows the
effect when triplicate measurements are made. As seen, this
averaging effect limited the errors to only slight increases,
even with these large changes in critical quantities.

4. Discussion

The aim of this study was to show the possible errors when
using the [Hb]�푏-concentration ratio to determine vascular
volumes. The example used was the estimation of pretherapy
volume in a patient in order to specify appropriate fluid
therapy. The same kinds of errors would occur in studies
determining sequential changes in blood or plasma volume
[5, 6]. A major finding in the present study was that adding
normally distributed, independent, random error to [Hb]�푏
measurements produced a distribution of BV estimateswhich
were closely fit by a log-normal (LN) curve. The shape of
this distribution (Figure 1) became more asymmetric as the
measurement-precision error increased; the peak flattened
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Table 1: Statistical measures of log-normal (LN) distributions for estimation of initial volumes of blood (BV), plasma (PV), and red cells
(RCV) due to measurement-precision errors.

Added- error SD (%) BV (l)
†X /∗ S

‡% BV error
/∗ S

PV (l)
X /∗ S

% PV error
/∗ S

RCV (l)
X /∗ S

% RCV error
/∗ S

0.5 5 /∗ 1.04 −4.1 to +4.3 3 /∗ 1.03 −2.8 to +2.9 2 /∗ 1.12 −11 to +12
1 5.02 /∗ 1.09 −8.4 to +8.8 3.01 /∗ 1.06 −5.5 to +5.9 1.97 /∗ 1.27 −21 to +27
1.5 5.05 /∗ 1.14 −12.0 to +14.0 3.01 /∗ 1.09 −8.2 to +8.9 1.94 /∗ 1.47 −32 to +47
Error-free BV = 5 l and PV = 3 l (Hct = 40%); [Hb]�푏 = 150 g/l, [Pr]�푝 = 70 g/l; �푉inf/BV = 0.2; †X is the geometric mean and S is the dispersion (shape) factor
of the volume distributions; /∗ signifies the bounding values of 68.3% of the volume values that are in the range of �푋/�푆 to �푋 ∗ �푆; ‡the range of % errors for
/∗ S bounds.

Table 2: Statistical measures of LN distributions for estimation of initial BV, PV, and RCV when the relative infusion volume (𝑉inf/BV) is
decreased.

𝑉inf/BV
BV (l)
X /∗ S

% error
/∗ S

PV (l)
X /∗ S

% error
/∗ S

RCV (l)
X /∗ S

% error
/∗ S

0.2 5.02 /∗ 1.09 −8.4 to +8.8 3.01 /∗ 1.06 −5.5 to +5.9 1.97 /∗ 1.27 −21 to +27
0.17 5.02 /∗ 1.11 −9.4 to +10 3.01 /∗ 1.06 −6.2 to +6.6 1.97 /∗ 1.32 −24 to +32
0.14 5.02 /∗ 1.12 −11.0 to +12.0 3.01 /∗ 1.08 −7.2 to +7.7 1.94 /∗ 1.4 −29 to +40
1% SD error added to [Hb]�푏 and [Pr]�푝 measurements; see Table 1 for other error-free conditions and description of statistical quantities.

Table 3: Statistical measures of LN distributions for initial volume estimations when multiple measurements are made on a sample.

Measurement (s) BV (l)
X /∗ S

% error
/∗ S

PV (l)
X /∗ S

% error
/∗ S

RCV (l)
X /∗ S

% error
/∗ S

Single 5.02 /∗ 1.09 −8.4 to +8.8 3.01 /∗ 1.06 −5.5 to +5.9 1.97 /∗ 1.27 −21 to +27
Duplicate 5 /∗ 1.06 −5.8 to +6.2 3 /∗ 1.04 −4.0 to +4.1 1.98 /∗ 1.18 −15 to +18
Triplicate 5 /∗ 1.05 −4.7 to +5.0 3 /∗ 1.03 −3.2 to +3.3 1.99 /∗ 1.14 −13 to +14
†Triplicate 5 /∗ 1.05 −4.8 to +5.0 3.5 /∗ 1.05 −3.6 to +3.7 1.48 /∗ 1.21 −17 to +21
1% SD error added to [Hb]�푏 and [Tpr] measurements; �푉inf/BV = 0.2; †Hct = 30%, [Hb]�푏 = 120 g/l, [Pr]�푝 = 50 g/l; error-free PV and RCV = 3.5 and 1.5 l,
respectively; see Table 1 for other error-free conditions and description of statistical quantities.

and a long tail formed to the right (higher values). This
effect is characterized by an increased dispersion factor (𝑆) as
shown in Table 1. The dispersion errors also increased in PV
estimation (Table 1) but were less than those for BV because
the volume infused was a greater percentage of PV. The dis-
persion errors were the greatest for RCV estimation because
they were influenced by both BV and PV estimation errors.
The latter errors coupled with the smaller volume of RCV
compared to the other volumes produced the greatest poten-
tial % errors of the three volumes (Table 1).

Another important factor that increases errors is the rela-
tive infusion volume (𝑉inf/BV) as shown in Table 2. Inability
to infuse sufficient volume is one cause andpossible loss of the
infused fluid from the circulation during the rapid infusion
is a second cause. It could be that some patients cannot
tolerate infusions equivalent to 20% of their blood volume.
Although a 1 l infusion of 6% hetastarch was well tolerated
in normal subjects [8], this volume may not be tolerated
in some ill patients, but using a lesser volume would result
in increased estimation errors. Likewise, it is possible that
the hetastarch or some other colloid may leave the circula-
tion more rapidly during the infusion in severely ill patients,
resulting in potentially increased estimation errors.

Critically ill patients often have low hematocrit and
hemoglobin concentration values along with low concentra-
tions of plasma proteins; however, the finding (see Table 3)
was that although these factors increased the volume-esti-
mation errors, the increases were not overly large. The most
important way to minimize volume-estimation errors in any
study using concentration ratios is to average multiple labo-
ratory measurements of [Hb]�푏 and [Pr]�푝. This observation is
clearly shown in Table 3. Only practicality limits the number
of these repeated measurements.

The volume-estimation errors examined in this study
were caused by the worst kind of measurement error, inde-
pendent and uncorrelated. Measurement errors due to zero
drift or change in sensitivity of the measuring instrument
would likely be correlated; that is, measurement error of
initial and final measurements would be in the same direc-
tion. The result would be to diminish the tails of the LN
distribution and hence the dispersion (𝑆) values. It is possible
to simulate such effects, but that was not done in the present
study.

A proposed approach to determining the statistics of
measurement-precision errors is for each laboratory to make
a number of measurements on a given sample. The result is
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that each laboratory could establish and possibly minimize
their potential volume-estimation errors.

5. Conclusions

The error analysis done in this study is applicable to any
technique where measurements are made of ratios of hemo-
globin, plasma protein concentration, or hematocrit in order
to determine changes in fluid volumes (see (2) and (4)). As
shown in the present study, normally distributed measure-
ment errors lead to potential volume-estimation errors far
greater than the SD of the measurement errors. Such error
analyses have not been done for the numerous studies esti-
mating vascular volume changes using this approach.
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