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Abstract

Recent studies have demonstrated how the competition for the finite pool of available gene

expression factors has important effect on fundamental gene expression aspects. In this

study, based on a whole-cell model simulation of translation in S. cerevisiae, we evaluate for

the first time the expected effect of mRNA levels fluctuations on translation due to the finite

pool of ribosomes. We show that fluctuations of a single gene or a group of genes mRNA

levels induce periodic behavior in all S. cerevisiae translation factors and aspects: the ribo-

somal densities and the translation rates of all S. cerevisiae mRNAs oscillate. We numeri-

cally measure the oscillation amplitudes demonstrating that fluctuations of endogenous and

heterologous genes can cause a significant fluctuation of up to 50% in the steady-state

translation rates of the rest of the genes. Furthermore, we demonstrate by synonymous

mutations that oscillating the levels of mRNAs that experience high ribosomal occupancy

(e.g. ribosomal “traffic jam”) induces the largest impact on the translation of the S. cerevisiae

genome.

The results reported here should provide novel insights and principles related to the

design of synthetic gene expression circuits and related to the evolutionary constraints

shaping gene expression of endogenous genes.

Author summary

Each cell contains a limited number of macromolecules and factors that participate in the

gene expression process. These expression resources are shared between the different mol-

ecules that encode the genetic code, resulting in non-trivial couplings and competitions

between the different gene expression stages. Such competitions should be considered

when analyzing the cellular economy of the cell, the genome evolution, and the design of

synthetic expression circuits. Here we study the effect of couplings and competitions for
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ribosomes by performing a whole-cell simulation of translation of S. cerevisiae, with

parameters estimated from experimental data. We demonstrate that by periodically

changing the mRNA levels of a single gene (endogenous or heterologous) or a set of

genes, the translation of all S. cerevisiae genes are affected in a periodic manner. We

numerically estimate the exact impact of the mRNA levels periodicity on the translation

process dynamics, as well as on the dynamics of the free ribosomal pool and the way it is

affected by parameters such as the codon composition of the oscillating gene, its initiation

rate and mRNA levels. Furthermore, we show that the codon compositions of syntheti-

cally highly expressed heterologous genes that are expected to oscillate must be carefully

considered. For example, synonymous mutations resulting in “traffic jams” of ribosomes

along the fluctuated mRNAs may cause significant fluctuations of up to 50% in the steady-

state translation rates of all genes.

Introduction

During the gene expression process various macromolecules (e.g. ribosomes, RNA polymerase

(RNAP), transcription factors, elongation factors, spliceosome, transfer RNA (tRNA) mole-

cules, etc.) process the genetic material (DNA, mRNA, pre-mRNA) in order to generate pro-

teins [1]. The number of gene expression macromolecules and factors in the cell is finite; for

example, there are about 200,000 ribosomes and 30,000 RNAP-II molecules in the S. cerevisiae
cell [2, 3]. Thus, this limited resource budget induces competition between the different mole-

cules/regions encoding the genetic material, resulting in non-trivial correlations and couplings

between the different gene expression stages, and between the processed genetic material

molecules.

Some previous studies have suggested that such competition should be considered when

designing synthetic gene expression circuits [4–9], and that they significantly affect the evolu-

tion of genomes [10]. For example, [9] considered a stochastic model to analyze the competi-

tion of two types of mRNAs (two genes) for the limited ribosomal resource, where the total

number of mRNAs and ribosomes fluctuate randomly. It was shown that the strength of the

couplings (or cross-talk) between the translation of the two protein types strongly depends on

whether the ribosomes are underloaded (i.e., there are more ribosomes than mRNAs) or over-

loaded (i.e., there are more mRNAs than ribosomes).

Specifically, it was also suggested that the competition for the limited main resources in

transcription (RNAP [11]) and translation (ribosomes [12]) is a primary factor in the cellular

economy of the cell. The competition for the available resources, which leads to an indirect

coupling between expressions of different genes, might be one of the reasons why levels of

genes, mRNAs, and proteins in the cell do not necessarily correlate [4, 10, 12–16].

The expression levels of large sets of genes and relevant gene expression factors are fluctu-

ating or oscillating in different physiological conditions (e.g. cell cycle [17–21]). In addition,

there are many cases of oscillating genes that are significant (up to hundreds of genes oscil-

lating with a ratio of up to about three folds between highest to lowest mRNA levels) in all

domains of life [22–34]. Furtheremore, various synthetic circuits and cell free systems

include oscillators [35–42]. The couplings, due to competition, may link the oscillations

related to one gene expression stage (e.g. transcription) to oscillations in a different gene

expression stage (e.g. translation). In this study, we suggest for the first time that finite intra-

cellular resources induce non-trivial and significant coupling between different gene expres-

sion stages (transcription and translation) in endogenous and heterologous genes. For
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example, increased mRNA levels in one gene affects the translation levels of all other genes.

To this end, we perform a whole-cell simulation of translation [43, 44], which captures fun-

damental properties of translation, with parameters estimated from experimental data that

enables us to comprehensively quantify these effects for the first time. This type of informa-

tion is currently not available experimentally, and we believe that our results are expected to

reflect well the reality.

We specifically demonstrate by Monte Carlo simulations that by periodically changing

the mRNA levels of a single gene or a set of genes, i.e. by periodically modifying the tran-

scription process, the translation of all S. cerevisiae genes are affected in a periodic manner,

with the same periodicity as the mRNA levels periodicity. Importantly, we numerically esti-

mate, for the first time, the exact impact of the mRNA levels periodicity on the translation

process dynamics, as well as on the dynamics of the free ribosomal pool and the way it is

affected by parameters such as the codon composition of the oscillating gene, its initiation

rate and mRNA levels.

Results and discussion

We utilize a large-scale, whole-cell computational model for simultaneous mRNA translation

and competition for ribosomes to study the effect of mRNA levels fluctuation on the transla-

tion process [43–45]. The model considers all the fundamental properties of translation such

as the different decoding times of codons and their order, the excluded volume interactions

between ribosomes, the finite pool of ribosomes shared by all mRNAs, initiation rates, etc.

[43–45]. The dynamics in this model is expressed by a set of ordinary differential equations

describing the time evolution of the ribosomal occupancies in the different positions along the

mRNAs, and the time evolution of the free ribosomal pool. It was shown that this computa-

tional model provides predictions with high correlation with protein levels and ribosome den-

sity measurements (see more details in the Materials and methods section).

We use the model to simulate translation of the S. cerevisiae genome including a heterolo-

gous green fluorescent protein (GFP) gene (with different codons compositions), while period-

ically modifying the mRNA levels of the GFP gene or of a subset of the endogenous genes. The

competition for the limited, shared ribosomes, results in an indirect coupling between the

translation processes of the different genes. We measure the coupling effect on the free pool of

ribosomes, and on the translation rates and ribosomal densities of the different translation

process as a function of the oscillating mRNA (or mRNAs) parameters and mutations.

Fig 1(a) depicts our study flow diagram. We consider the S. cerevisiae genome and a GFP

gene, while periodically controlling the transcription (i.e. the mRNA levels) of one or more S.
cerevisiae genes or the GFP gene. All mRNAs are then simultaneous translated, while compet-

ing for the ribosomal resource. We then measure different translation parameters, such as

translation rate and ribosomal density of all genes, and the free ribosomal pool (i.e. the number

of free ribosomes). The block diagram of the model we use for simultaneous translation and

competition is depicted in Fig 1(b). Please refer to the Materials and methods section for a

detailed description of the model. Finally, Fig 1(c) shows an example of the translation param-

eters behavior when periodically controlling the mRNA levels of the GFP gene. The figure

depicts the free ribosomal pool, and the GFP translation rate and mean ribosomal density as a

function of time. It may be observed that these oscillate with a common periodicity.

It is important to mention that all the parameters used in the computational model (e.g.

codon compositions, codon decoding times, mRNA levels, and number of ribosomes) were

inferred based on experimental measurements of S. cerevisiae, and based on known properties

of the GFP. Specifically, the S. cerevisiae genome consists of m≔ 6310 protein-encoding genes

Oscillatory behavior at the translation level induced by mRNA levels oscillations
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with ORFs ranging from as low as 25 codons to as high as 4911 codons (see S4 Fig). The GFP

gene ORF consists of 240 codons (see more details in the Materials and methods section).

Table 1 lists the parameters used throughout the simulations and their source.

Let Lh denote the oscillating gene nominal mRNA levels and α its initiation rate. Recall that

the oscillating gene (or genes) can be either an endogenous gene or the GFP heterologous

Fig 1. Overview of the study and the model. (a) Study flow diagram. Red color indicates blocks/functions simulated

in this study. Dashed blocks specify measurements. Variables correspond to mRNA levels (~Lh) and various

measurements (za; �z ; �Ra; R̂ a; �ra; r̂ a). See the main text for details. (b) Topology of the computational model used in

this study, which includes m mRNAs and a shared free pool of ribosomes. Gi(z) denotes the initiation rate to mRNA i,
and Ri(t) denotes the translation rate of mRNA i at time t. (c) An example of the free ribosomal pool (top), the GFP

translation rate (middle) and the GFP mean ribosomal density (bottom) as a function of t 2 [0, 192] for a periodically

varying GFP mRNA levels with period T = 16.

https://doi.org/10.1371/journal.pcbi.1006055.g001
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gene. We periodically change the mRNA levels of the oscillating gene as follows:

‘hðtÞ ¼ Lhð1þ A sinð
2pt
T
ÞÞ; ð1Þ

where ℓh(t) denotes the oscillating gene mRNA levels at time t, A 2 [0, 1) is the normalized

amplitude, and T is the period time. Let LT denote the total number of (S. cerevisiae) mRNAs

in the cell (i.e. LT≔ 60, 000), and

~Lh ≔ 100
Lh
LT
;

the oscillating gene nominal mRNA levels in percentage of LT.

Let Ri denote the average steady-state translation rate of gene i, Ri
amp denote its steady-state

amplitude, and

Ri
a ≔ 100

Ri
amp

Ri
;

denote the steady-state translation rate amplitude of gene i in percentage of its average steady-

state translation rate Ri. Let

�Ra ≔
Pm

i¼1
Ri
a

m
;

denote the average (over all genes) steady-state translation rate amplitude (in percentage).

In the same manner let (see Fig 1(a))

• ri
a denote the steady-state mean density amplitude of gene i in percentage of its average

steady-state mean density ρi,

• �ra denote the average (over all genes) steady-state mean density amplitude, in percentage of

the average steady-state mean density,

• R̂a denote the variance (over all genes) of the steady-state translation rate amplitude, in per-

centage of the average steady-state translation rate,

• r̂a denote the variance (over all genes) of the steady-state mean density amplitude, in per-

centage of the average steady-state mean density,

• �z denote the average free ribosomal pool at steady-state in percentage of the total ribosomal

pool, and

• za denote the steady-state free ribosomal pool amplitude, in percentage of the average

steady-state free pool.

Table 1. Computational model parameters.

Parameter Value Source

Total Ribosomal pool 200, 000 [2]

Total mRNA pool 60, 000 [46]

Median initiation rate 0.8 mRNA/sec [47]

Median codon decoding rate 6.4 aa/sec [48]

https://doi.org/10.1371/journal.pcbi.1006055.t001
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See an example of these parameters in S5 Fig. The variance parameters provide indication

of how the individual genes amplitude vary relative to the average. A large [small] variance

implies that the genes amplitudes are widely [closely] scatter relative to the average.

As the intent in this paper is to analyze the impact of oscillations on the translation process,

due to the shared, limited ribosomal resource, we believe that quantifying the above parame-

ters under different conditions is essential in understanding the impact on the translation

process.

In the following sections we present numeric measurements of the impact of periodically

modifying the mRNA levels of endogenous genes or the GFP gene (or its mutations) on the

above parameters over all the S. cerevisiae genes.

The effect of endogenous gene mRNA levels on translation rate oscillations

At the first step, we aim at evaluating the impact of fluctuating mRNA levels of a S. cerevisiae
endogenous gene set on the translation of the entire S. cerevisiae transcriptome. Fig 2 panels

(a) and (b) depict the results as a function of the number of oscillating endogenous genes. In

the figure we plot both the effect of the average/typical oscillating gene set, and the effect of the

Fig 2. The effect of endogenous gene mRNA levels. (a) za, �Ra, and �ra as a function of the number of oscillating genes

chosen incrementally from a mRNA levels-sorted list of genes (see details in the Materials and methods section),

(dashed-line), and genes chosen randomly from the gene list (solid-line), for A = 1/2. Note that the results for za and �ra
when oscillating a typical gene set are very similar (the solid-line for za cannot be distinguished from the solid-line �ra)

(b) The corresponding variances. (c) za, �Ra, and �ra as a function of the normalized amplitude A 2 [0.1, 0.9] when

oscillating the cell cycle related genes. (d) The corresponding variances.

https://doi.org/10.1371/journal.pcbi.1006055.g002
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oscillating set with maximal mRNA levels (see the Materials and methods section for more

details).

As can be seen, oscillating the mRNA levels of a typical large set of 1, 000 S. cerevisiae genes

with normalized amplitude A = 1/2 is expected to typically induce an amplitude of about 9%

on the rest of the genes translation rates; the maximal effect of a set of 1, 000 S. cerevisiae genes

is very high and close to 50%. During the life cycle of a cell large sets of genes may fluctuate/

oscillate together (e.g. due to a common regulatory mechanism) at the transcription level and

the results reported here demonstrate that these oscillations should have non-negligible effect

on the rest of the genes at the translation levels. Note that the results for za and �ra when oscil-

lating a typical gene set are very similar (the solid-line for za cannot be distinguished from the

solid-line for �ra).

One phenomena that involves large scale gene expression oscillation is the cell cycle pro-

cess. Ref. [17] identified 800 protein-encoding transcripts in S. cerevisiae that are cell cycle reg-

ulated, i.e. genes whose transcript levels vary periodically during the cell cycle process. These

genes are involved in different cell cycle related functions such as cell cycle control, DNA repli-

cation, DNA repair, budding, glycosylation, nuclear division and mitosis. We evaluate the

effect of oscillating these genes on the translation of the rest of the genes as a function of the

normalized amplitude A 2 [0.1, 0.9]. These are depicted in Fig 2 panels (c) and (d). It may be

noticed that the amplitudes increase linearly with A, and that the amplitude of the free ribo-

somal pool and the translation amplitudes are very similar. Note that the variance of the

steady-state mean density amplitude hardly change as a function of A, whereas the variance of

the steady-state translation rate amplitude increases from zero to about 0.12 for A = 0.9. This

suggests that the steady-state mean density amplitudes of all S. cerevisiae genes vary much less

than the corresponding steady-state translation rate amplitudes. Since ri
a measures the average

of the steady-state density amplitudes of gene i, it is indeed expected that its variance over all

genes will be less than the variance of the steady-state translation rate amplitudes over all

genes.

The effect of heterologous gene mRNA levels and initiation rate on

translation rate oscillations

Next, we aim at understanding the effect of oscillating the mRNA levels of a heterologous gene

on the free ribosomal pool, and on the translation rate and ribosomal density of the endoge-

nous genes. Note that there are many synthetic systems where the mRNA levels of a single het-

erologous gene occupy dozens of percentages of the total number of mRNAs in the cell (see,

e.g., [49, 50]). This analysis should specifically provide some intuition related to the effect of

synthetic gene expression oscillation circuits on the translation of the rest of the genes. (Note

that there are many examples of synthetic genes with oscillatory mRNA levels [36, 51–57]). It

should also teach us about the effect of fluctuations in the expression levels of highly expressed

heterologous genes on the expression levels of the rest of the genes. To this end, we add to our

whole-cell model a heterologous GFP gene with periodically varying mRNA levels.

Fig 3 depicts the average steady-state translation rate amplitude (�Ra) and mean density

amplitude (�ra) for different (typical) values of GFP nominal mRNA levels ~Lh and initiation

rates α for A = 1/2, T = 16, and �z ¼ 30%. It may be seen that both �Ra and �ra increase with

both α and ~Lh. This is expected since increasing α or ~Lh increases the dynamic assignment of

ribosomes to the GFP mRNAs, which in turn increases the impact of ribosomes assignment to

the S. cerevisiae genes via the shared pool. For example, for ~Lh ¼ 30%, �Ra [�ra] ranges from

about 2.5% [2.5%] to about 13.5% [14%]. Another observation is that the impacts on �Ra and �ra

are very similar. This suggests that by measuring the periodic amplitude of the translation

Oscillatory behavior at the translation level induced by mRNA levels oscillations
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rates at steady-state one can reasonably conclude the average amplitude of the mean ribosomal

densities at steady-state.

Fig 3 also depicts �Ra and �ra as a function of A 2 (0, 1/2] for α = 0.8, ~Lh ¼ 20%, T = 16, and

�z ¼ 30%. It may be noticed that the translation rate and ribosome density increase linearly

with A 2 (0, 1/2]. Similar observations were made for several other values of ~Lh and α. We con-

clude that highly expressed heterologous genes can have an effect of up to about 20% on the

amplitude of the translation rate and ribosome density of the rest of the endogenous genes.

This should be considered when designing the properties of a synthetic circuit. Note that by

the analysis done in the previous section, oscillations of large number of endogenous genes

should also affect the heterologous genes.

The effect of the codon compositions of a heterologous gene on the

translation rate oscillations

In this section different synonymous substitutions are introduce to the heterologous GFP gene

to study their effect, separately, on the translation of the endogenous genes. The goal here is to

evaluate the effect of the coding region (and thus the induced ribosomal density and transla-

tion rate) on translation oscillation. In brief, we consider various variants of the GFP coding

region; all of them code the same GFP protein but with different codons (a detailed description

Fig 3. The effect of heterologous gene mRNA levels and initiation rates. (a) �Ra as a function of ~Lh and different

values of α, for A = 1/2, T = 16, and �z ¼ 30%. (b) �ra as a function of ~Lh and different values of α, for A = 1/2, T = 16,

and �z ¼ 30%. (c) �Ra as a function of A for α = 0.8, ~Lh ¼ 20%, T = 16, and �z ¼ 30%. (d) �ra as a function of A for α =

0.8, ~Lh ¼ 20%, T = 16, and �z ¼ 30%.

https://doi.org/10.1371/journal.pcbi.1006055.g003
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of each synonymously mutated GFP can be found in the Materials and methods section). The

mutated GFP genes considered are:

1. GFP_HIGH_RD: designed for high ribosomal density (RD) and high “traffic jam”.

2. GFP_LOW_RD: designed for low ribosomal density and smooth “traffic flow”.

3. GFP_MDN_RD: designed for “median” ribosomal density.

4. GFP_SPD_TR: designed for high translation rate (TR) by utilizing synonymous codons

with minimal decoding times.

5. GFP_SLW_TR: designed for low translation rate by utilizing synonymous codons with

maximal decoding times.

Table 2 lists the steady-state translation rate R and mean densities ρ of each mutated GFP

modeled to include initiation rate equals to 0.8 (which is the median initiation rate of the S.
cerevisiae genome [47]). The table also lists two metrics (η and ~Z) for ranking the codon decod-

ing times of the coding region (named decoding time measure (DTM)). The DTM provides a

score of how fast the ORF can be decoded; a value of zero means that it is composed of the

fastest synonymous codons, and a larger value of DTM indicates that slower codons are used

in the ORF. Specifically, in η all codons contribute equally to the DTM, whereas in ~Z the

codon impact on the DTM increases as we move closer to the 3’-UTR end of the gene (see the

Materials and methods section for more details).

The following may be concluded from Table 2:

• The maximal [minimal] steady-state mean density is in the case of GFP_HIGH_RD

[GFP_LOW_RD]. This is expected since GFP_HIGH_RD [GFP_LOW_RD] was

designed to create “traffic jam” [“traffic flow”] of ribosomes at steady-state. Specifically,

GFP_HIGH_RD uses 62% more ribosomal density at steady-state compared to the steady-

state density in GFP_LOW_RD. This implies that on average about 60% [37%] of the codons

in GFP_HIGH_RD [GFP_LOW_RD] are covered by ribosomes.

• The maximal [minimal] steady-state translation rate is in the case of GFP_SPD_TR

[GFP_SLW_TR]. This is expected since GFP_SPD_TR [GFP_SLW_TR] consists of codons

with minimal [maximal] decoding times. This implies that the maximal [minimal] steady-

state translation rate of the GFP protein (over all possible synonymous substitutions) is

0.1892 [0.1456] (i.e. we can increase the translation rate of the GFP gene by at most 30%

using synonymous substitutions).

• The steady-state translation rates of the mutated genes GFP_LOW_RD and GFP_HIGH_RD

are similar, although GFP_LOW_RD uses 38% less ribosomal density at steady-state.

• η correlates well with the steady-state translation rate.

Table 2. Mutated GFP genes translation properties.

Gene name ρ R η ~η

GFP (original) 0.4978 0.1667 0.0185 0.0372

GFP_HIGH_RD 0.6037 0.1498 0.0193 0.0458

GFP_LOW_RD 0.3734 0.1486 0.0206 0.0334

GFP_MDN_RD 0.3948 0.1489 0.0249 0.0432

GFP_SPD_TR 0.4935 0.1892 0 0

GFP_SLW_TR 0.4812 0.1456 0.0399 0.0792

https://doi.org/10.1371/journal.pcbi.1006055.t002
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Fig 4 depicts the translation normalized statistics as a function of the nominal mRNA levels

~Lh, for α = 0.8 and α = 3.2, for each of the GFP mutated genes, when translated (separately)

with the S. cerevisiae gene pool, for A = 1/2, T = 16, and �z ¼ 30%. Each data point in the

figure represents the corresponding statistics per 600 mutated GFP mRNAs (1% of the total S.

Fig 4. The effect of heterologous gene mRNA levels and elongation rates. (a) Block diagram of the current test. (b)

Normalized za as a function of ~Lh, α = 0.8 and α = 3.2 for A = 1/2, T = 16, and �z ¼ 30%. “ORG” denotes the original

(non-mutated) GFP. (c) Legend of the sub-figures. The up-to-down order corresponds to the performance ranking, per
~Lh value, in sub-figures (b), (d), and (e), i.e. HIGH results in the largest measurement values, followed by ORG, etc. (d)

Normalized �Ra (upper figure) and normalized �ra (lower figure) as a function of ~Lh, α = 0.8 and α = 3.2 for A = 1/2,

T = 16, and �z ¼ 30%. (e) Normalized R̂ a (upper figure) and normalized r̂ a (lower figure) as a function of ~Lh, α = 0.8 and

α = 3.2 for A = 1/2, T = 16, and �z ¼ 30%.

https://doi.org/10.1371/journal.pcbi.1006055.g004
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cerevisiae mRNA levels), i.e. we divide the statistics values by the corresponding ~Lh and multi-

ply by 600. This represents the impact on the translation process per a unit of 600 GFP

mRNAs (a normalized measure can then be used to compare results between different values

of ~Lh).

We first observe that the normalized statistics increase with α for each ~Lh value. This is

obviously expected since large values of α imply high periodic variations of assigned ribo-

somes to the GFP mRNAs, and thus also to the S. cerevisiae genes mRNAs (due to the shared

pool), and so we expect the amplitudes of the free pool, translation rates and mean densities

to increase. We also note that the statistics variations over the different mutations increase

with α. For example, for ~Lh ¼ 25%, the normalized za varies between 0.55% and 0.67%

(in case of α = 3.2), and between 0.35% and about 0.4% (in the case of α = 0.8). This is

expected since, for example, a low value of αmeans that the initiation is the rate limiting fac-

tor, and in this case the GFP ORF mutations (affecting the elongation rates) less affect the

parameters.

In addition, it may be seen that the normalized statistics maintain a particular ranking for

different ~Lh values: they achieve their maximal values when oscillating the GFP_HIGH_RD

mutation, are reduced when oscillating the GFP original gene, and achieve their minimal val-

ues when oscillating the GFP_LOW_RD mutation. For example, for ~Lh ¼ 10% and α = 3.2,

the normalized �Ra is about 0.57% when oscillating GFP_HIGH_RD, is about 0.55% when

oscillating GFP, and is about 0.45% when oscillating GFP_LOW_RD. This correlates with the

mean steady-state ribosomal densities of these mutations, as well as with their non-homoge-

neous DTMs (~Z). This suggests that mRNAs with “traffic jams” at steady-state (i.e. mRNAs

that occupy large number of ribosomes at steady-state) have a substantial impact on the trans-

lation of the other genes via the shared ribosomal pool.

The normalized za, �Ra and �ra seem to slightly decrease with ~Lh, implying that the non-nor-

malized parameters increase sub-linearly with ~Lh. Oscillating the mRNA levels of the GFP

gene increases and decreases periodically the assigned number of ribosomes to the GFP

mRNAs, which in turn decreases and increases periodically the amount of free ribosomes,

respectively. This affects the actual initiation rate to the mRNAs. However, due to the finite,

shared pool of ribosomes, the oscillation effect caused by an increase in mRNA levels admits a

linear region which is eventually saturated (similar to most physical systems). Finally, it may

be observed that the corresponding variances increase with both ~Lh and α, indicating, as

expected, that for large oscillating mRNA levels, and/or initiation rates, the variations of the

amplitudes over all genes increase. Note that the variance values are few order of magnitudes

less than the corresponding average values; for example, for ~Lh ¼ 20% and α = 3.2, R̂a [r̂a] is

about 0.7% [0.03%] of the corresponding average values.

In general, both the steady-state translation rate and the mean density of the mutated or

the original GFP gene affect the parameters. For example, the effect of the gene GFP_SPD_TR

on the statistics is less severe than the effect of the gene GFP_MDN_RD, even-though

GFP_SPD_TR consumes more (by 25%) ribosomes at steady-state (see Table 2). However, the

steady-state translation rate of GFP_SPD_TR is larger (by about 26%) than the steady-state

translation rate of GFP_MDN_RD, thus ribosomes in the GFP_SPD_TR mutation case are

released faster to the pool and thus are available more for translating other genes.

In addition, we can observe a ‘diminishing marginal utility’ effect: the results depicted in

Fig 4 suggest that oscillating a larger number of mRNAs of the mutated GFP gene decreases

the amplitude of the free pool and of the genes translation rate and mean density per GFP
mRNA level. This effect is partially due to the limited and shared ribosome pool.

Oscillatory behavior at the translation level induced by mRNA levels oscillations
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Fig 5 depicts the translation normalized statistics when oscillating the mutated

GFP_HIGH_RD gene for several values of the average steady-state free ribosomal pool �z . It

may be seen that za decreases with �z , whereas �Ra and �ra are slightly affected by �z . For example,

for ~Lh ¼ 30% and α = 0.8, the normalized za decreases from about 1.4% for �z ¼ 10% to about

0.4% for �z ¼ 30%, whereas both the normalized �Ra and �ra hardly vary and are equal to about

0.32% and 0.34%, respectively. One possible explanation for this is as follows: As �z decreases

(i.e. as less ribosomes are free thus more are assigned to the mRNAs) the effective initiation

rates to the mRNA increases. This increases the oscillation amplitude induced by the

GFP_HIGH_RD mRNAs, and thus the relative effect on �z increases (recall that za denotes the

free pool oscillation amplitude relative to �z). On the other hand, an increase in the effective ini-

tiation rates increases both the steady-state translation rates and mean densities of all the S. cer-
evisiaemRNAs, and so the effect on �Ra and �ra is small. However, as suggested by Fig 5, the

corresponding variances increase slightly as �z decreases, implying that the amplitude

Fig 5. The effect of the average ribosomal pool. (a) Block diagram of the current test. (b) Normalized za as a function

of ~Lh of GFP_HIGH_RD, for α = 0.8, A = 1/2, T = 16, and different values of �z . (c) Legend of the sub-figures. The

right-to-left order corresponds to the performance ranking, per ~Lh value, in sub-figures (b), (d), and (e), i.e. �z ¼ 10%

results in the largest measurement values, followed by �z ¼ 15%, etc. (d) Normalized �Ra (upper figure) and normalized

�ra (lower figure) as a function of ~Lh of GFP_HIGH_RD, for α = 0.8, A = 1/2, T = 16, and different values of �z . (e)

Normalized R̂ a (upper figure) and normalized r̂ a (lower figure) as a function of ~Lh of GFP_HIGH_RD, for α = 0.8,

A = 1/2, T = 16, and different values of �z .

https://doi.org/10.1371/journal.pcbi.1006055.g005
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variations over all genes do not change much as �z decreases from 30% to 10%. Note that,

again, the variance values are few order of magnitudes less than the corresponding average val-

ues (for example, for ~Lh ¼ 20%, R̂a [r̂a] is about 1.0% [0.05%] of the corresponding average

values).

The results depicted in Fig 5 suggest that the fluctuations of the translation rates and mean

ribosomal densities are hardly affected by the affinity of ribosomes to the mRNA molecules

(this affinity may be controlled by initiation efficiency, for example). However, the fluctuations

of the free ribosomal pool increase as more ribosomes are translating the mRNA molecules.

As another example, Table 3 depicts the (non-normalized) statistics when oscillating the

mutated GFP_HIGH_RD gene for A = 0.35, T = 16, α = 0.8, ~Lh ¼ 20%, and for several values

of the average free ribosomal pool at steady-state �z . The same conclusions can be derived here

as well.

In summary, the current subsection teaches us that when designing highly expressed heter-

ologous genes that are expected to fluctuate/oscillate we should carefully choose their codons

composition: to induce low effect on the other genes we should minimize the ribosome den-

sity, and on the other hand high ribosomal density results in large effect on the other genes. As

was demonstrated here the exact profiles that maximize/minimize ribosome densities are not

simply the ones with optimal/slowest codons along the coding region, respectively; thus, it is

important to develop models and algorithms for engineering and manipulating ribosome den-

sity of endogenous and heterologous genes.

The results reported here with the heterologous gene may be further validated experimen-

tally in the future using in-vitro and/or in-vivo systems with oscillating GFP proteins [51].

However, we believe that with the current experimental approach it should be challenging to

directly study the coupling we reported here due to the following reasons. First, oscillating

endogamous systems probably includes various effects and feedbacks that may “cancel” or

blur the phenomena presented here. Second, in order to be able to measure, with the current

techniques, the effect reported here large portion of the mRNA molecules in the cell should

oscillate. Finally, this study analyzes oscillations during the translation stage. Thus, to study

them one should directly measure translation rate; the conventional experimental approaches

(e.g. RNA-seq, ribo-seq or approaches based on quantitative mass spectrometry) measure vari-

ables that are expected to be related/correlated with the translation rate but are not the actual

translation rate.

Our results should be specifically considered when designing large intra-cellular circuits

with many components/genes. In such cases, among others, the oscillation in transcription

levels of some parts of the circuit should affect the other part of the circuit. We provide here

some initial guidelines related to this topic. First, if we are not interested in cross-talk between

the different oscillating genes we should engineer their transcript to minimize the induced

oscillations (e.g. designing codon profiles that minimize ribosome density and if possible

decrease their initiation rate). Second, in some cases we may want to design genes that induce

Table 3. Statistics as a function of the average free pool at steady-state for A = 0.35, T = 16, α = 0.8, and ~Lh = 20%.

�z za �Ra �ρa

30% 5.4706% 4.3655% 4.6672%

25% 6.4515% 4.4146% 4.7452%

20% 7.3070% 4.4660% 4.8269%

15% 11.4549% 4.4055% 4.7880%

10% 18.1985% 4.3827% 4.7901%

https://doi.org/10.1371/journal.pcbi.1006055.t003
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oscillations on the rest/other genes; in these cases, we will design them accordingly (e.g. high

initiation rate and ribosome density). Third, our (or similar) models can be used to estimate

potential “noise” due to oscillation cross-talk. These estimations can be considered when

designing the circuit and assuring its performance.

The goal of this study is to understand and carefully quantify the impact of oscillations over

wide range of conditions and parameters (e.g., large range of A, ~Lh, α, �z , and different GFP

mutations). This is important, as the severity of the oscillations impact (in terms of its pheno-

typic or biological-significant effect) is, in general, gene and condition specific. It might

depend on the function of the genes (e.g. structural genes, transcription factors, signaling pro-

teins, etc.), the exact condition (e.g. initiation rate, mRNA levels), the organisms type, etc.

The computational model used in this study is deterministic, enabling rigorous analysis of

its properties using tools from systems and control theory. In addition, it was shown to admit

high correlation with the stochastic TASEP model of translation (e.g. see [45]), and further-

more using it to simulate large-scale translation with competition is simple. The processes in

the cell are stochastic in nature, and future study may employ stochastic whole cell models to

study the effect of oscillations in a “noisy” environment. In S6 Fig we provide initial results

that suggest that noise in the model parameters should not affect our conclusions.

It is important to emphasize that the results reported here are relevant also in cases where

the time scales of translation and cell cycle differ. Note that it has been suggested that transla-

tion of cell cycle related genes is regulated by periodically varying tRNA levels [18]. This

implies, among others, that the time scales are quite similar. Specifically, the translation time

in general can be longer than the cell cycle period. For concreteness, consider the case of S. cer-
evisiae. The cell cycle period in S. cerevisiae is less than 87 minutes [58]. Cell cycle period can

be much shorter in eukaryotes; for example, it was reported that the duration of cell cycle in

early embryo of the fruit fly D. melanogaster is only eight minutes [59]. The translation rate in

S. cerevisiae was estimated to be higher than 0.956 codons per second (the slowest codon is

CUU) [60] with average rate over all codons of 10 codons per second (in mouse the average

codon translation rate was estimated to be about five codons per second [61]). In practice, this

rate can be much slower due to strong folding of the mRNA molecule and interaction of the

translated amino-acid peptide with the exit channel of the ribosome [62, 63]. In S. cerevisiae
the ORF length is between 75 and 14, 733 nucleotides. The longest gene corresponds to an

upper bound on the translation time of a gene, which is about 82 minutes (assuming a lower

bound on translation rate of one codon per second, which may be lower in practice), an esti-

mated translated time of this protein based on mean codon translation time is 8.2 minutes. In

mammals the mean codon decoding time is five codons per second, and the longest human

protein (Titin–TTN), which consists of 33, 000 amino acids, corresponds to estimated transla-

tion time of 110 minutes. This suggests that periodically varying mRNA levels in cell cycle

related genes may be similar to the time scale of mRNA translation.

We will conclude with the main lessons from the analysis performed here based on our

whole-cell computational model: 1) Competitions for limited resources in the cell lead to

indirect couplings between the gene expression stages, and these couplings must be consid-

ered when analyzing the cellular economy of the cell; 2) A whole-cell computational model

of translation that takes into account fundamental properties of translation, with parameters

estimated based on experimental measurements, can comprehensively quantify the effect

of oscillations on the ribosomal densities and translation rates of all genes; 3) Careful consid-

erations must take place when designing highly express heterologous genes that are expected

to fluctuate, as their codon compositions and translation initiation rates may have high

effect on all genes translation rate. We demonstrate specific cases with high and low effect on

Oscillatory behavior at the translation level induced by mRNA levels oscillations
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fluctuations; 4) Quantitative estimation (based on parameters estimated from experimental

data) of the magnitude of these oscillations in endogenous and heterologous genes is pro-

vided here; and 5) The conclusions reported here in general should also be relevant to other

aspects of gene expression and/or intracellular phenomenon. For example, when considering

oscillations in tRNA levels, the number of DNA copies of a virus, intracellular transport fac-

tors, etc.

Materials and methods

Fluctuating mRNA levels in endogenous genes

We first sort the S. cerevisiae genes according to mRNA levels and evaluate the steady-state

mean density and translation rate amplitudes as a function of the number of oscillating genes

chosen sequentially from the sorted list of genes, starting from the gene with the largest

mRNA levels (dashed-lines in Fig 2, panels (a) and (b)). For example, when using p genes with

oscillating mRNA levels, the p genes with the largest mRNA levels are used. This provides a

bound on the maximal oscillating amplitudes when any arbitrary p S. cerevisiae genes are

oscillating.

The “typical” selected genes were chosen randomly from the S. cerevisiae gene pool. Here

the oscillation amplitudes and variances for each number of “typical” oscillating genes set is

averaged over 30 repetitions. The results of oscillating these genes are depicted, using solid-

lines, in Fig 2, panels (a) and (b).

The assumption in this study is that large set of genes can be regulated (oscillate) indepen-

dently of the ribosomal pool. This is motivated by: 1) The regulations at the translation and

transcription stages are not tightly coupled [64]; 2) There may be delays between the two stages

[65]; 3) In the case of heterologous genes (and the corresponding promoters and gene expres-

sion circuits) that are engineered by design there is no reason to assume that the ribosome

pool is also regulated.

Cell cycle genes

Ref. [17] identified 800 protein-encoding transcripts in S. cerevisiae that are cell cycle regu-

lated. We evaluate the parameters when oscillating 770 of these genes, as we lack mRNA mea-

surements for 30 of the reported 800 cell cycle related genes. The 770 cell cycle genes used are

listed in S1 Table. Table 4 lists the 30 genes we lack mRNA measurements for.

Whole-cell computational model overview

The ribosome flowmodel network with pool (RFMNP) [43] is a deterministic computational

model for large-scale simultaneous mRNA translation and competition for ribosomes. It is

based on combining several ribosome flowmodels with input and outputs (RFMIOs) [45, 66],

interconnected via a pool of free ribosomes. Each gene is modeled by a single RFMIO, and all

the RFMIOs are sharing the same pool of ribosomes. The dynamics of the system is expressed

Table 4. The 30 (out of 800) cell cycle related genes reported in [17] that we lack mRNA measurements for (and thus are not used in our simulations).

YJL195C YDL163W YJL018W YJL119C YCL012W YCRX05W

YJL067W YCL060C YIL025C YLR302C YNL171C YGR259C

YLR013W YLR458W YDL096C YCL062W YPR014C YIL168W

YKL177W YLR235C YPR076W YCLX09W YML033W YFL006W

YGR219W YLR236C YDR355C YCL013W YML035C-A YIL167W

https://doi.org/10.1371/journal.pcbi.1006055.t004
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by a set of ordinary differential equations that describes the time evolution of the ribosomal

densities in the different RFMIOs and the free pool. In this paper we utilize the RFMNP to

simulate a whole-cell S. cerevisiae simultaneous translation and competition for ribosomes.

Each of the S. cerevisiae gene (and the GFP gene) is modeled by a single RFMIO. We next

describe in details the RFMIO and the RFMNP.

The ribosome flow model with input and output (RFMIO)

The ribosome flowmodel (RFM) [45] is a deterministic mathematical model for mRNA transla-

tion that can be derived by a mean-field approximation of an important model from statistical

physics called the totally asymmetric simple exclusion process (TASEP) (see, e.g., [67] and [68]).

In the RFM, mRNA molecules are coarse-grained into n consecutive sites of codons. The state

variable xiðtÞ : Rþ ! ½0; 1�, i = 1, . . ., n, describes the normalized ribosomal occupancy level at

site i at time t, where xi(t) = 1 [xi(t) = 0] indicates that site i is completely full [empty] at time t.
The model includes n + 1 positive parameters that regulate the transition rate between the

sites: the initiation rate into the chain λ0, the elongation (or transition) rate from site i to site

(i + 1) λi, i = 1, . . ., n − 1, and the exit rate λn (see Fig 6).

The dynamics of the RFM with n sites is given by n nonlinear first-order ordinary differen-

tial equations:

_x1 ¼ l0ð1 � x1Þ � l1x1ð1 � x2Þ;

_x2 ¼ l1x1ð1 � x2Þ � l2x2ð1 � x3Þ;

_x3 ¼ l2x2ð1 � x3Þ � l3x3ð1 � x4Þ;

..

.

_xn� 1 ¼ ln� 2xn� 2ð1 � xn� 1Þ � ln� 1xn� 1ð1 � xnÞ;

_xn ¼ ln� 1xn� 1ð1 � xnÞ � lnxn:

ð2Þ

If we let x0(t)≔ 1 and xn+1(t)≔ 0, then (2) can be written more succinctly as

_xi ¼ hi� 1ðxÞ � hiðxÞ; i ¼ 1; . . . ; n; ð3Þ

where hi(x) ≔ λixi(1 − xi+1). This can be explained as follows. The flow of ribosomes from site i
to site i + 1 at time t is λixi(1 − xi+1). This flow increases with the density at site i, and decreases

as site i + 1 becomes fuller. This corresponds to a “soft” version of a simple exclusion principle.

Since the ribosomes have volume, the input rate to site i decreases as the number of ribosomes

in that site increases. Note that the maximal possible flow from site i to site i + 1 is the transi-

tion rate λi. Thus, Eq (3) simply states that the change in the density at site i at time t is the

input rate to site i (from site i − 1) minus the output rate (to site i + 1) at time t.

Fig 6. The RFM as a chain of n sites of codons. Each site is described by a state variable xi(t) 2 [0, 1], expressing the normalized ribosome occupancy

at site i at time t. λ0 is the initiation rate, and λi is the elongation rate from site i to site i + 1. Translation rate at time t is R(t)≔ λnxn(t).

https://doi.org/10.1371/journal.pcbi.1006055.g006
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The ribosome exit rate from site n at time t is equal to the protein translation rate at time t,
and is denoted by R(t)≔ λn xn(t).

Denote by x(t, a) the solution of (3) at time t� 0 for the initial condition x(0) = a. Since the

state-variables correspond to normalized occupancy levels, we always assume that a belongs to

the closed n-dimensional unit cube Cn ≔ fx 2 Rn : xi 2 ½0; 1�; i ¼ 1; . . . ; ng: Let int(Cn)

denote the interior of Cn. Ref. [69] showed that the RFM is a tridiagonal cooperative dynamical
system [70], and that this implies that (2) admits a unique steady-state point e = e(λ0,. . .λn) 2

int(Cn), that is globally asymptotically stable, that is, limt!1 x(t, a) = e, for all a 2 Cn (see also

[71]). In particular, the translation rate converges to the steady-state value R≔ λnen. We

denote by

r ≔
Pn

i¼1
ei

n

the steady-state mean ribosomal density along the mRNA.

The RFM can be extended into a single-input single-output (SISO) control system, by

defining the translation rate as the output, and by introducing a time-varying input control

u : Rþ ! Rþ representing the flow of ribosomes from the “outside environment” into the

mRNA (which is related to the rate ribosomes diffuse to the 5’end (in eukaryotes) or the RBS

(in prokaryotes) of the mRNA). This is referred to as the RFMwith input and output (RFMIO)
[66]. Thus, the equation for the change in the density at site 1 in the RFMIO becomes

_x1 ¼ l0uð1 � x1Þ � l1x1ð1 � x2Þ;

and all other equations for _xi, i = 2, . . ., n, are the same as in the RFM. The RFMIO can then be

written in a compact-form as

_x ¼ f ðx; uÞ;

y ¼ lnxn;
ð4Þ

where y denotes the output.

In this study, each S. cerevisiae gene is modeled by a RFMIO, where each RFMIO site con-

tains 10 consecutive codons (the ribosome footprint is assumed to be about 10 codons wide).

RFM network with a pool (RFMNP)

In [43], a network of m RFMIOs interconnected via a pool of free ribosomes (called the RFM
network with pool (RFMNP)) was introduced for analyzing large-scale translation while com-

peting for the available, limited ribosomal resource. Competition for the available ribosomal

resource leads to indirect coupling between the different mRNAs. For example, if more ribo-

somes bind to a certain mRNA molecule then the pool of free ribosomes in the cell is depleted,

and this may lead to lower initiation rates in the other mRNAs.

Let zðtÞ : Rþ ! Rþ denote the free ribosomal pool occupancy at time t. For an RFMNP

with m RFMIOs, let nj, i = j, . . ., m, denote the jth RFMIO dimension, yj≔ Rj(t) its output rate

at time t, and l
j
0
; . . . ; l

j
nj its transition rates. The input to the jth RFMIO is uj = Gj(z) where the

function Gjð�Þ : Rþ ! Rþ satisfies: (1) Gj(0) = 0; (2) Gj(z) is strictly increasing on Rþ; and (3)

for all z> 0 sufficiently small Gj(z) is linearly proportional to z. Typical examples are Gj(z) = z,
and Gj(z) = aj tanh(z/bj) with aj, bj> 0 (see S1 Fig and [43] for more details). Thus, the
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RFMNP is given by

_x1 ¼ f ðx1; u1Þ; y1 ¼ l
1

n1x1
n1 ;

..

.

_xm ¼ f ðxm; umÞ; ym ¼ l
m
nmx

m
nm ;

ð5Þ

and

_z ¼
Xm

j¼1

yj �
Xm

j¼1

l
j
0
ð1 � xj1ÞGjðzÞ: ð6Þ

Eq (6) implies that the change in the free pool, as a function of time, is the sum of all output

rates of the RFMIOs (input flow to the free pool) minus the total flow of ribosomes that bind

to the mRNA molecules (output flow from the free pool). The RFMNP is then a dynamical sys-

tem with ð1þ
Xm

j¼1
njÞ state-variables. Since the RFMNP is a closed system, the total number

of ribosomes HðtÞ≔ zðtÞ þ
Pm

j¼1

Pnj

i¼1
xjiðtÞ is conserved, that is H(t)�H(0) for all t� 0.

It was proven in [43] that for any given number of total ribosomal pool H(0), the RFMNP

admits a unique steady-state point that depends on the rates and H(0) but not on the initial

conditions. Furthermore, if one or more of the RFMIOs rates are time-periodic functions,

with a common minimal period T> 0, then the RFMNP entrains to the periodic excitations

in the l
j
is, i.e. every state-variable converges to a periodic solution with period T. This also

means that each of the translation rates and mean densities converge to periodic solutions

with period T. Thus, we do not need to evaluate different values of T, and the value T = 16 is

used throughout this paper (e.g. using T = 20 instead yields the same behavior but with peri-

odicity T = 20).

In this paper we simulate the RFMNP while periodically changing the mRNA levels of the

heterologous GFP gene or several endogenous genes. Assume, for example, that the GFP

mRNA levels are changing (periodically) between a minimal value of β1 > 0 and a maximal

value of β2 > β1. It is straightforward to verify that this is equivalent to an RFMNP with β2

copies of the gene GFP, while periodically changing the initiation rates of these copies.

Thus, [43] provides a rigorous proof to the periodicity we observed at steady-state in the

state-variables. Finally, the parameters of the model used here are based on [72]; see more

details below.

Codons decoding times

We use ribo-seq data to infer the codon decoding rates [73], and normalize these rates so

that the median codon elongation rate of all S. cerevisiae mRNAs becomes 6.4 codons per

second [48]. This holds for all endogenous genes and the GFP. The ribo-seq data and the

decoding rates are used also for inferring the initiation rates. The ribo-seq data and mRNA

levels were taken from [74]; the number of S. cerevisiae ribosomes used in the simulation is

200,000 [75], with 60,000 mRNAs [46], scaled according to the mRNA levels from [74].

Thus, the correlations between the predicted ribosome densities from our model and mea-

sured ribosome densities in the analyzed conditions are very high (correlation coefficient

r> 0.7 for sites size of 10 codons) and is similar to the correlations between two experimen-

tal replications in the field [76]. Note that the large-scale measurements of mRNA levels and

ribosome profiling suggest that almost all genes have certain mRNA levels and ribosome

densities; this suggests that most of the genes are transcribed/translated at the same time but
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at (possibly extremely) different rates/levels (the differences among genes can be very signifi-

cant: up to four orders of magnitudes).

Modeling a single S. cerevisiae mRNA translation by the RFMIO

Let q≔ 10 denote the number of codons per RFMIO site. Given an S. cerevisiae gene ORF

consisting of K codons (excluding the stop codon), we model it using RFMIO with n sites as

follows. The mRNA is divided into (n + 1) pieces: the first piece contains (q − 1) codons (that

are also related to later stages of initiation [14]), pieces 2 to n contain each q non-overlapping

codons, and the last piece contains between q/2 and 3q/2 codons. For example, for q = 10 and

K = 146, the first piece contains 9 codons, pieces 2 to 14 contain each 10 codons, and piece 15

contains 7 codons, thus n = 14. The first piece corresponds to λ0, and pieces 2 to n + 1 corre-

spond to λ1 to λn, respectively, as described next.

The initiation rate (that corresponds to the first piece) is estimated based on the ribosome

density per mRNA level, as this value is expected to be approximately proportional to the initi-

ation rate when initiation is the rate limiting factor [45, 77]. We apply a normalization that sets

the median initiation rate of all S. cerevisiae mRNAs to 0.8 [47].

The RFMIO rates, per S. cerevisiae gene, are then set as follows:

• For all i 2 {1, . . ., n}, li ≔ 1=ð
PL

k¼1
tkÞ, where L is the number of codons in piece (i + 1), and

τk is the decoding time of the k’th codon in that piece (see S2 Table). Indeed L = q for i = 1,

. . ., n − 1, and q/2� L� 3q/2 for i = n.

• l0 ≔ 1=ðp� 1 þ
Pq� 1

k¼1
tkÞ, where p is the estimated initiation rate of the corresponding

mRNA, and τk is the decoding time of the k’th codon in the first piece.

Decoding-time measure (DTM)

Let τi denote the decoding time of codon i in the ORF, and let ψ(i) denote the minimum

among the decoding times of codon i and its synonymous mutations. Define the decoding-time
measure (DTM) of a gene by

Z ≔
PK

i¼1
ðti � cðiÞÞwi

K
; ð7Þ

where K denotes the number of codons in the ORF (excluding the stop codon), and wi> 0,

i = 1, . . ., K, is the weight given to the non-negative cost (τi − ψ(i)). The DTM then provides a

score of how fast the ORF can be decoded; a value of zero means that the ORF is composed

from the fastest synonymous codons, and a larger value of η indicates that slower codons are

used in the ORF. One might expect that in general η should be inversely proportional to the

steady-state translation rate. However, since η doesn’t provide information about the distribu-

tion of the decoding time costs along the ORF, this might not always hold. For example, a slow

codon in the middle of the ORF can impact the steady-state translation rate more than a slow

codon in the boundaries. Another possible interpretation of η is in describing the “speed-bud-

get” relative to the optimum (η = 0 corresponds to the fastest possible decoding times). Thus,

two genes with similar DTMs correspond to the same speed-budget.

In the case where w1 = . . . = wK = 1, the DTM is referred to as the homogeneous DTM. A

monotone-increasing weights describes the hypothesis that slower codons toward the 3’ UTR

increase ribosomal “traffic jams” on the mRNA, resulting in larger number of ribosomes on

the mRNA at steady-state (see S2 Fig).
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Mutated GFP genes

The GFP protein sequence is from gi:1543069. Recall that the GFP gene ORF consists of 239

codons (excluding the stop codon). The mutated GFP genes are generated by performing the

following synonymous substitutions relative to the GFP gene (see also S3 Fig):

1. GFP_HIGH_RD: the first 119 codons (corresponding to λ0, . . ., λ11) are synonymously

substituted with fast codons, and codons 120–239 (corresponding to λ12, . . ., λ23) are syn-

onymously substituted with slow codons. This is done to create a “traffic jam” in this gene,

where the total number of ribosomes along the mRNA at steady-state is high.

2. GFP_LOW_RD: the first 119 codons (corresponding to λ0, . . ., λ11) are synonymously

substituted with slow codons, and codons 120–239 (corresponding to λ12, . . ., λ23) are syn-

onymously substituted with fast codons. This is done to create a “traffic flow” in this gene,

where the total number of ribosomes along the mRNA at steady-state is low.

3. GFP_MDN_RD: codons 1–79 (corresponding to λ0, . . ., λ7) are synonymously substituted

with slow codons, codons 80–159 (corresponding to λ8, . . ., λ15) are synonymously substi-

tuted with median codons (i.e. in each synonymous group, the codon with the median

decoding time is chosen), and codons 160–239 (corresponding to λ16, . . ., λ23) are synony-

mously substituted with fast codons. This is done to create a more of a subtle “traffic flow”.

4. GFP_SPD_TR: all codons are synonymously substituted with fast codons. This is done to

create “fast traffic” in this gene, where the steady-state translation rate is maximal.

5. GFP_SLW_TR: all codons are synonymously substituted with slow codons. This is done to

create “slow traffic” in this gene, where the steady-state translation rate is minimal.
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