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Abstract

Background: The current work aimed to assess whether Gynostemma pentaphyllum (GP), a Chinese herbal
medicine, structurally modifies the gut microbiota in rats during non-alcoholic fatty liver disease (NAFLD) treatment.

Methods: High-fat diet (HFD)-induced NAFLD rats were orally administered water decoction of GP or equal
amounts of distilled water per day for 4 weeks. Liver tissues were examined by histopathological observation,
while intestinal tissues were examined by both histopathological and ultrastructural observations. The levels of
fasting blood glucose (FBG), fasting serum insulin (FINS), total cholesterol (TC), triglycerides (TG), high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT) and
aspartate transaminase (AST) were measured by enzymatic method. The levels of toll-like receptor 4 (TLR-4),
tumor necrosis factor-alpha (TNF-q), interleukin-1-beta (IL-13) and interleukin-6 (IL-6) in both serum and
hepatic tissues were measured by RT-gPCR. The protein expression level of TLR-4 in hepatic tissues was
detected by western blot. The gut microbiota was assessed by 16S rRNA-based microbiota analysis.

Results: GP maintained intestinal integrity and reversed gut dysbiosis in high-fat diet (HFD)-induced NAFLD
rats. This also reduced the ratio of Firmicutes to Bacteroidetes, enriching the abundance of beneficial bacteria
(Lactococcus spp.) and inhibiting the abundance of pathogenic bacteria (Ruminococcus spp.) in the gut. The
levels of pro-inflammatory cytokines (TNF-a, IL-13 and IL-6) and the expression of TLR4 were downregulated
(P <0.05), while the insulin resistance index, HOMA-IR showed improvement by GP treatment (P < 0.05). Liver
function indicators (ALT and AST) were remarkably decreased (P < 0.07). Besides, GP treatment reduced TG and
LDL-C levels (P < 0.05), and increased HDL-C level (P < 0.05) compared with NAFLD group.

Conclusion: The structural alterations of gut microbiota induced by GP are associated with NAFLD alleviation.
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resistance
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Background

Nonalcoholic fatty liver disease (NAFLD) is defined as the
presence of significant hepatic lipid accumulation (at least
in 5% of hepatocytes) in the absence of competing liver
disease etiologies, including chronic viral or autoimmune
hepatitis, Wilson’s disease, and heavy alcohol consump-
tion [1, 2]. NAFLD represents a group of ailments, ranging
between simple steatosis and non-alcoholic steatohepatitis
(NASH), which at times lead to cirrhosis [3]. It is consid-
ered one of the main factors causing liver disease world-
wide, with a prevalence of around 25-45% [4]. In addition,
NAFLD is increasingly recognized as the liver disease
component of metabolic syndrome (MetS) [5], and is
associated with a broad spectrum of diseases including
obesity, type 2 diabetes (T2D), hyperlipidemia, hyperten-
sion, cardiovascular disease (CVD), and cancer [6, 7]. As a
result, NAFLD patients have an increased risk for both
liver and MetS morbidity and mortality [8], causing sub-
stantial economic and clinical burden to society [9].

NAFLD pathogenesis remains incompletely understood.
The “multiple hit” hypothesis provides a relatively accur-
ate explanation, wherein multiple insults act jointly in
individuals with genetic predisposition to trigger NAFLD
as well as associated complications. Such hits include
insulin resistance, nutrition, gut microbiome, hormones
secreted by the fat tissues, and genetic and epigenetic fac-
tors [10]. Recently, considerable evidence suggests gut
microbiome dysbiosis has a critical function in NAFLD
progression [11]. Dysbiosis increases gut permeability to
bacterial products, promotes energy absorption, aggra-
vates insulin resistance (IR), facilitating systemic bacterial
translocation and hepatic inflammation [12].

Traditional Chinese Medicine has been employed in
Asia for many thousand years [13]. Much attention has
been paid to its remarkable efficacy and low side effects
in treating MetS, especially NAFLD [14, 15]. Gynos-
temma pentaphyllum (GP), one of the popular herbs,
has been used in traditional medicine since ancient
times in treating various diseases, such as hyperlipemia,
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hyperglycemia, hepatitis, gastroenteritis [16]. We and
others have demonstrated that GP has functions in pro-
tecting against NAFLD and other components of MetS
[17, 18]. Cell culture and animal models have indicated
the important role of GP in lipid reduction, glucose
regulation [19, 20], as well as liver protection [21, 22].
Our preliminary study in high-fat diet (HFD) rats dem-
onstrated that GP can effectively reduce blood lipid
levels and protect liver function, negatively correlating
with the content of gypenoside (saponins isolated from
GP). However, it remains unclear regarding the mech-
anism of how GP alleviates NAFLD.

Hence, in this study, we explored the effect of GP on
NAFLD (HFD induced) rats using dilinoleoyl phosphat-
idylcholine (DLPC) as a contrast [23, 24].

Methods

Drug preparation

The GP material was obtained from the First Affiliated
Hospital of Zhejiang Chinese Medical University (pur-
chased from Huadong Medicine Co., Ltd., Date of Produc-
tion: 20160706, Hangzhou, China) and identified by the
Director of traditional Chinese pharmacy of the hospital,
Mrs. Wen-Xia Zheng. GP was decocted twice with 4000 ml
deionized water, 1 h each time, followed by concentrating it
to 2g per milliliter (2g/ml) under normal pressure and
making into a liquid extract. The quality of the GP was
controlled by HPLC -MS analysis (Fig. 1). The collection,
processing and usage of GP were performed according to
the Guidelines for clinical use of the Pharmacopoeia of the
People’s Republic of China.

Animal experiments

Experimental animals

The rats were bought from Zhejiang Laboratory Animal
Center (Production License Number: SCXK (Zhe)2014—
0001, Use License Number: SYXK (Zhe)2014—0008). Ani-
mal experiments were approved and performed in accord-
ance with the guidelines of the Ethics Committee of the first
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Fig. 1 High-performance liquid chromatography chromatogram of sample (a) and standard (b) solutions. 1: Ginsenoside Rb3, 2: Ginsenoside Rd.




Shen et al. BMC Complementary Medicine and Therapies

affiliated hospital of Zhejiang Chinese medical University,
Hangzhou, China (Approval Number: 2017-k-098). Sixty
male adult pathogen-free Sprague-Dawley (SD) rats, weigh-
ing 180-220 g were selected for this study. The rats were
randomly divided into control group (n=10, Control),
model group (n =10, NAFLD), positive drug group (n = 10,
DLPC), high dosage group (n =10, GPH), middle dosage
group (n = 10, GPM) and low dose group (n = 10, GPL).

Molding

The rats were acclimatized to the housing conditions
for 7 days, with free access to water and standard chow
diet in laboratory conditions (18—24 °C, day-night cycle
of 12h with light changes at 6:00am and 6:00 pm).
After that, the rats were fed with chow diet or high-fat
diet for another 4 weeks before drug administration.
Animals in the control group were administered with
standard chow consisting of 67% carbohydrate, 10%
fat, 23% protein, providing a total calorie of 3.6 kcal/g.
While the animals in the model group, the positive
drug group and the high, middle and low dosage
groups were continuously fed on HFD consisting of
52% carbohydrate, 30% fat, 18% protein, which provided a
total calorie of 4.8 kcal/g [25]. According to our previous
studies and preliminary experiments, indices such as body
weight, intake and activities, fasting blood glucose (FBG),
total cholesterol (TC), triglycerides (TG), high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), alanine transaminase (ALT) and
aspartate transaminase (AST) to confirm the success of
model establishment.

Drug administration

From week 5, the GP treatment groups were orally ad-
ministered water decoction of GP at concentrations of 6
gkg 'd™!, 3gkg "d"! and 1.5gkg ".d"" once a day
for another 4 weeks based on the conversion formula be-
tween human per 70 kg and rats per 200 g (1: 0.018) and
our preliminary experiments. The rats in the positive
drug group were orally administered DLPC at a concen-
tration of 22.8 mg-kg™ '-d” ', while the control group and
the model group were administered equal amounts of
distilled water per day for 4 weeks.

Specimen collection

After 8 weeks of HFD, the animals were fasted for 8 h.
Next day, blood was drawn from the caudal vein, and
then the rats were euthanized by cervical dislocation.
The blood was centrifuged at 3000 rpm for 15 min, and
the serum was stored at — 80 °C. After laparotomy, the
liver, the contents from the cecum and the ileum and
the colon besides the cecum were removed. The con-
tents (about 1.0g) of the cecum from each rat were
taken, maintained in tubes with glass beads, and stored
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at — 80 °C. Part of the liver and the colon and terminal
ileal tissues were fixed with neutral formaldehyde, and
then the paraffin slices were prepared. Others were
stored at — 80 °C.

Biochemical analyses

Biochemical assessments of serum lipids, glucose, enzymes,
insulin and cytokines were performed in the central labora-
tory (The first affiliated hospital of Zhejiang Chinese med-
ical University, Hangzhou, China).

The index of lipids in the serum, including TC, TG,
HDL-C and LDL-C and the marker enzymes for liver dam-
age and disease, including ALT and AST were measured by
commercial enzymatic kits (Jiancheng Bioengineering Inst.,
Nanjing, China).

The index of fasting serum insulin (FINS), tumor ne-
crosis factor-alpha (TNF-a), interleukin-1-beta (IL-1f)
and interleukin-6 (IL-6) levels were measured by com-
mercial ELISA kits (MultiSciences, Shanghai, China).

FBG was determined with a glucose meter (Sinocare,
Changsha, China) by collecting the blood from the tip of
the tail vein. Homeostasis model assessment of insulin
resistance (HOMA-IR) was calculated using the formula:
fasting glucosex fasting insulin/22.5 [26].

Histopathology observation

HE staining

Liver or intestinal mucosal specimens were formalin-
fixed, paraffin-embedded, and cut into sections (4-pm
thickness), which underwent staining with hematoxylin
(Servicebio, Wuhan, China; 5 min) and eosin (Servicebio;
2 min). A light microscope (Nikon, Tokyo, Japan) was
employed for observations, with 8 sections assessed per
rat.

ORO staining

Liver cryosections (thickness, 6 um) underwent staining
with ORO (Servicebio) for 20 min, and then counter-
stained with hematoxylin (Servicebio) for 1 min. A light
microscope (Nikon) was employed for observations, with
8 sections assessed per rat.

Ultrastructural observation

Intestinal mucosal sections were fixed in 2.5% glutaralde-
hyde (Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) for 24 h and 1% osmic acid (Sinopharm Chemical
Reagent Co., Ltd) for 2h, dehydrated through a graded
series of ethanol (Sinopharm Chemical Reagent Co., Ltd)
and acetone solution (Sinopharm Chemical Reagent Co.,
Ltd), embedded in Epon812 (Servicebio), sectioned with
ultramicrotome (Leica, Weztlar, Germany), and stained
with uranyl acetate (Sinopharm Chemical Reagent Co.,
Ltd) followed by lead citrate (Sinopharm Chemical Re-
agent Co., Ltd), then observed with transmission electron
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microscopy (Hitachi, Tokyo, Japan). A total of 20 tissue
sections were analyzed for each animal.

Real-time quantitative reverse-transcription PCR

Fifty mg liver tissue was weighed, and then the mRNA
expression levels of toll-like receptor 4 (TLR-4), TNF-a,
IL-1B and IL-6 were detected by quantitative real-time
reverse-transcription PCR (Additional file 1: Table S5)
according to the previously published RT-qPCR methods
[27].

Western blotting (WB)

Twenty mg liver tissue was weighed, and the protein
expression level of TLR-4 was detected by WB as de-
scribed previously [28].

Gut microbiota analysis

Fecal specimens upon snap-freezing in liquid nitrogen
were stored at —80°C. DNA extraction was carried
out by the CTAB protocol. For cecal fecal specimens,
the 16S rRNA gene encompassing V3-V5 regions,
18S rRNA V4 and V9 regions, ITS1 and ITS2 regions
underwent amplification with Phusion® High-Fidelity
PCR Master Mix in GC Buffer (New England Bio-
labs). TruSeq® DNA PCR-free sample preparation kit
was used to prepare a library. Microbial sequencing
was performed on the HiSeq2500 Illumina platform
(PE250). High quality reads were obtained (QIIME
V1.9.1) and underwent clustering into OTUs on the
basis of 97% sequence similarity (Uparse v7.0.1001).
The nearest alignment space termination multi-aligner
was employed for aligning high-quality sequences
based on SILVA compatible database alignment, re-
moving non-aligned reads. Chimeric sequences de-
tected by the UCHIME algorithm were also excluded.
Read classification used a Bayesian classifier based on
the RDP database generated by our team. We re-
moved all reads not classifiable at the kingdom level.
For alpha diversity assessment, rarefaction analysis
and Shannon index calculation were carried out with
QIIME. Fast UniFracPCoA was carried out via phylo-
genetic tree construction and by inserting the repre-
sentatives of various OTUs, also with QIIME [29]. As
proposed previously [30], whether separation among
animal groups in the principal coordinate analysis
(PCoA) score plot is statistically significant was evalu-
ated by multivariable analysis of variance test with
statistically significant differences in physiological/bio-
chemical parameters.

Statistical analysis

Ten-replicate assays were presented as mean * stand-
ard deviation (SD). Differences in biochemical indica-
tors were examined by unpaired two-tailed Student’s

(2020) 20:34

Page 4 of 12

t-test. Multiple groups were compared by one-way
ANOVA with Newman—Keuls post hoc test. Next-
generation sequencing data were examined by the
Tukey’s test. P<0.05 indicated statistical significance.
In figures, different superscript letters indicate signifi-
cant differences (post hoc ANOVA). R 3.4.3 was used
for statistical analysis.

Results

GP prevents HFD-induced hyperlipidemia of NAFLD
Previous studies showed that the rats fed a HFD produced
high levels of TC, TG and LDL-C, while the production of
HDL-C was reduced [31, 32]. Using a rat NAFLD model,
we observed that the rats fed on HFD for 8 weeks led to
significant differences in the lipids levels when compared
with control group (Table 1). TC, TG and LDL-C levels
were significantly increased in the serum of NAFLD rats
when compared with control rats, whereas the HDL-C
level was significantly reduced. Meanwhile, for the middle
dose and high dose GP treated rats, the serum levels of
TC, TG and LDL-C were also reduced significantly when
compared with NAFLD rats. Significant increase in HDL
levels was observed in the medium dose of GP (GPM) and
high dose of GP (GPH) rats. GP treatment demonstrated a
dose-dependent effect, alleviating hyperlipidemia. DLPC
treatment reduced the serum TG and LDL-C levels, and
increased HDL-C level as expected. These findings sug-
gested that GP prevents HFD-induced hyperlipidemia in
rats (Table 1).

GP prevents HFD-induced non-alcoholic fatty liver
(NAFLD)

Previous studies have shown that NAFLD rats pro-
duced high levels of marker enzymes for liver damage
and disease, which included ALT and AST [31, 32].
The serum levels of the marker enzymes were mea-
sured. The results showed that ALT and AST in
NAFLD rats were higher when compared with control

Table 1 GP prevents HFD-induced hyperlipidemia

TC (mmol/L) TG (mmol/L) LDL-C (mmol/L) HDL-C (mmol/L)
NAFLD 214+026 063+004 161+0.10 032£017
Control  1.26 + 0.24** 050 £ 0.07** 1.26 + 0.34% 047 £ 0.15**
DLPC  198+062 051 +008* 115+ 025 047 £021*
GPL 187 +£033 048 £007* 1.14 + 021* 039+ 0.12
GPM 169 + 028% 048 £ 0.07** 1.16 + 036" 0.51 + 0.08**
GPH 1.29 £ 027 049 £ 0.16" 1.14 £ 0.24** 0.54 + 0.09**

Serum concentrations of TC, TG, LDL-C and HDL-C in each group compared
with NAFLD group (n =10 for each group). Data are shown as mean +
standard deviation. Whereas * and ** represent statistically significant results
(P<0.05, P<0.01, respectively) based on Newman-Keuls post hoc one-way
ANOVA analysis. GPL: low dose of GP treatment; GPM: middle dose of GP
treatment; GPH: high dose of GP treatment
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various groups compared with the NAFLD group (n =10 for each group). Data are mean =+ standard deviation. *P < 0.05; **P < 0.01 (one-way
ANOVA with Newman—Keuls post hoc analysis). ¢ H&E staining of the liver tissue in the NAFLD, Control, DLPC, GPL, GPM and GPH groups
(magnification, 200x) (n = 10 for each group). Major histopathological changes induced by HFD in rat liver included hepatosteatosis, ballooning
and hiver inflammation. d Liver lipid content was determined by Oil-red O staining in the NAFLD, Control, DLPC, GPL, GPM and GPH groups
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rats. While GP treatment reduced both ALT and AST
levels significantly. DLPC improved ALT to some ex-
tent, but showed no remarkable effect on AST (Fig. 2a,
b, Additional file 1: Table S1).

As expected, both H&E staining and ORO staining re-
vealed the normal structure of liver in control rats, while

hepatic steatosis in NAFLD rats [31, 32]. However,
the extent of steatosis in the liver of GP treated rats
was remarkably reduced in a dose-dependent manner.
DLPC also alleviated hepatic steatosis to a certain ex-
tent (Fig. 2c, d). These findings suggested that GP
prevents HFD-induced NAFLD in rats.
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group are shown below the immunoblots
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GP reduces inflammation, endotoxemia and insulin
resistance
Previous studies have shown that NALFD rats produce
high amounts of pro-inflammatory cytokines in the liver
and serum, e.g., TNF-q, IL-1B and IL-6 [33]. We measured
the above cytokines in rats following 8 weeks of HFD with
or without GP or DLPC treatment. The results showed
that TNF-q, IL-1B and IL-6 amounts were higher in serum
and hepatic tissues of NAFLD rats compared with control
animals. Moreover, GP treatment resulted in decreased
TNEF-a, IL-1B and IL-6 amounts, while DLPC administra-
tion did not (Fig. 3a, b, Additional file 1: Table S2,S3).
“Metabolic endotoxemia” may promote inflammatory
reactions and insulin resistance in HFD-fed rats through
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TLR4 signaling [34, 35]. We examined the effects of GP
and DLPC on TLR4 protein amounts in the liver. Insulin
resistance was estimated using HOMA-IR. The results
showed that GP reduced endotoxemia and insulin resist-
ance in HFD-fed rats, while DLPC did not (Fig. 3¢, d,
Additional file 1: Table S4). These findings suggested
that GP reduced inflammation, endotoxemia and insulin
resistance in NAFLD rats.

GP maintains intestinal integrity

Given that gut microbiota dysbiosis in HFD-fed rats might
alter intestinal permeability and promote lipopolysaccharide
(LPS) release into the blood stream [36], whether GP and
DLPC modulate intestinal barrier integrity was investigated.

Control

. 46 SOPREN b o KA

R

Fig. 4 GP maintains intestinal integrity in rats. a HE staining of ileal tissue in NAFLD, Control, DLPC, GPL, GPM and GPH groups (magnification,

o

100x) (n =10 for each group). Major histopathological changes induced by HFD in rat ileum were sparse and irregular microvilli of epithelial cells
with inflammatory cell infiltration, damaged tight junctions and desmosomes. b Transmission electron microscopy of ileum in NAFLD, Control,
DLPC, GPL, GPM and GPH groups (magnification, 30,000x) (n = 10 for each group). Red arrow: tight junctions; Yellow arrow: desmosomes
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In the control group, the microvilli of epithelial cells were
rich and regular, and the tight junctions were clear and
complete, with small gaps and abundant desmosomes. In
the NAFLD group, the microvilli of epithelial cells were
sparse and irregular, and the tight junctions were damaged,
with large gaps and loose or few desmosomes. Compared
with NAFLD group, the rats in GP and DLPC groups
showed more regular microvilli, improved tight junctions
and desmosomes, and smaller gaps. The former ones were
dose-dependent, showing a better result than the latter
(Fig. 44, b). These findings suggested that GP might im-
prove intestinal barrier integrity in NAFLD rats.

The gut microbiome is structurally modulated by GP
administration

We next examined gut microbiome compositions in
three animal groups, including the NAFLD, healthy
control and GP middle dose groups, pre- and post-GP
administration, respectively. A total of 750,000 accept-
able raw sequences (34,753 unique sequences) and 3222
OTUs were detected in 15 samples, with averagely
874 £ 101/sample. Although rarefaction diversity curves
showed no plateau, the diversity was mostly captured
(Fig. 5). PCA analysis revealed that compared with the
HFD-induced NAFLD model group, the GP treatment
group showed closer deviation towards the healthy ani-
mals, suggesting that gut microbiota structure in rats
showed divergence from baseline after a 4-week GP
treatment (Fig. 7a). The Venn diagram indicated that GP
treated and control rats shared more OTUs than
NAFLD rats (Fig. 6). Unique OTUs in NALFD rats were

triple the amounts in GP treated rats (Fig. 6). Shannon
index analysis showed that intestinal flora density in the
NAFLD group was significantly reduced, and GP treat-
ment resulted in recovered intestinal flora diversity com-
pared with control rats (Fig. 7b). The gut microbiota of
rats consisted of Bacteroidetes, Firmicutes, Proteobac-
teria, Elusimicrobia, Cyanobacteria, Fusobacteria, Acti-
nobacteria, Spirochaetes and Verrucomicrobia at the
phylum level. Of these, Bacteroidetes were the most
abundant organisms, followed by Firmicutes and Proteo-
bacteria (Fig. 7c). Several studies have indicated that
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Fig. 6 Venn plot of the number of OTUs in each group
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GP or not were assessed by next generation sequencing (n = 5/group). a PCA plots for various groups. b Shannon indexes. ¢ Taxonomic profiles
at the phylum level of gut bacteria in various groups. d Heat map reflecting the abundance levels of 35 OTUs representing the bacterial taxa
significantly affected by GP in HFD-fed rats. Red and blue colors indicate OTU level increase and decrease, respectively, in different groups
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elevated Firmicutes to Bacteroidetes (two main phyla) ra-
tio is associated with lipid metabolism disorder [37-39].
Lipid metabolism has an important function in NAFLD
[40]. Namely, GP treatment (GPM) decreased the Firmi-
cutes-to-Bacteroidetes ratio in HFD-fed (NAFLD) rats to
a value comparable to that of control rats (Fig. 7d). The
abundance levels of Elusimicrobia and Cyanobacteria
were both higher in GP and control rats in comparison
with HFD-fed rats (Fig. 7d). Besides, many bacterial spe-
cies showed increased amounts after GP administration
in comparison with the model group, indicating that GP
may enrich specific bacterial species (Fig. 7d). Moreover,
GP treatment increased the abundance levels of benefi-
cial bacteria such as Lactococcus spp. and decreased
those of the pathogenic bacteria, including Ruminococ-
cus spp. (Fig. 7d). Collectively, these results showed that
GP modulated the gut microbiome in HFD-fed rats,
yielding a microbiome composition comparable to that
of control rats.

Discussion

Traditional Chinese Medicine has been used for treating
several diseases for thousands of years in China. Neverthe-
less, Chinese herbs are highly complex with undefined
mechanisms, which prevents the identification of active
chemical components. Many studies have suggested that
Chinese herbs prevent or alleviate diseases by controlling
gut microbiome structure [41—44]. This research may pro-
vide a potential mechanism as to how GP alleviates
NAFLD.

As shown above, GP administration exerted
concentration-dependent effects in HFD-induced NAFLD
rats. GP treated rats showed significant improvement in
liver health by lowering ALT and AST levels, and decreas-
ing hepatic steatosis. Besides, we observed an improve-
ment in hyperlipidemia and hyperglycemia in GP treated
animals, corroborating a previous Australian study [45].
These data showed that GP can alleviate NAFLD and other
components of MetS, making it a promising candidate
medicine for NAFLD and the associated complications.

The current model of HFD-induced NAFLD is largely
explained by gut microbiota dysbiosis [46]. Pathogenic
bacteria are excessively grown, producing too much LPS
that exceeds hepatic clearance capacity, and therefore,
“metabolic endotoxemia” [47]. After activation by LPS,
TLR4 stimulates the production of inflammatory kinases
(such as JNK, IKK and p38), inhibits the phosphorylation
of insulin receptor substrates, and damages the insulin sig-
nal transduction pathway, resulting in the development of
IR and inflammation [48, 49]. In other words, dysbiosis in-
creases gut permeability to bacterial products and aggra-
vates IR, facilitating systemic bacterial translocation and
hepatic inflammation. As shown above, GP treatment im-
proved gut barrier integrity, reduced inflammation, and
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alleviated endotoxemia and IR in NALFD rats. These bene-
ficial effects might result from specific gut microbiome
changes.

High-quality experimental and some human studies have
confirmed the therapeutic effects of prebiotics and probio-
tics on NAFLD, via modulation of the gut microbiota [50].
However, no gut microbiota modulation by GP has been
reported to date. Previous studies have found that HFD in-
creases the ratio of Firmicutes to Bacteroidetes in NALFD
rats [51]. The present study confirmed these findings and
demonstrated that GP might exert anti-NAFLD effects by
lowering the Firmicutes-to-Bacteroidetes ratio. Besides, the
abundance levels of several beneficial bacteria such as Lac-
tococcus spp. were increased by GP; in contrast, the abun-
dance levels of pathogenic bacteria, such as Ruminococcus
spp., were decreased. Lactococcus was found to be reduced
by HED, and is negatively correlated with NAFLD [52, 53].
Ruminococcus ferments complex carbohydrates such as cel-
lulose, pectin, resistant starch etc. in some cases could be
pro-inflammatory [54]. Meanwhile, this study showed that
gut microbiota diversity was notably recovered, suggesting
that GP may exert hepatoprotective effects mainly by chan-
ging the Firmicutes-to-Bacteroidetes ratio, while changing
the amounts of several bacterial species. However, since the
host genotype can also influence gut microbiota structure,
it may not be appropriate to apply these results directly to
humans.

Conclusions

Overall, this work suggests that structural changes in the
gut microbiome after treatment with the Chinese herbal
Medicine GP contribute to NAFLD amelioration. Specific-
ally, GP administration resulted in enriched beneficial
bacteria and suppressed pathogenic bacteria in the gut. Al-
though it remains uncertain whether GP-associated gut
microbiome alterations directly contribute to improving
liver structure and function in NAFLD, this study provides
necessary evidence demonstrating the involvement of the
gut microbiota. Further studies are needed to clarify the de-
tailed mechanisms. One of them could be faecal transplant.
The effect of transfer of gut microbiota from GP-adminis-
tered rats to NAFLD rats without any treatments should be
analyzed to prove the significant association between the
suppressive effect of GP on NAFLD and the changes in the
composition of gut microbiota. Collectively, our results
show GP as a potential microecological modulator for treat-
ing NAFLD.
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