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Abstract: The chirality quantification is of great importance in structural biology, where the differ-
ences in proteins twisting can provide essentially different physiological effects. However, this aspect
of the chirality is still poorly studied for helix-like supramolecular structures. In this work, a method
for chirality quantification based on the calculation of scalar triple products of dipole moments
is suggested. As a model structure, self-assembled nanotubes of diphenylalanine (FF) made of
L- and D-enantiomers were considered. The dipole moments of FF molecules were calculated using
semi-empirical quantum-chemical method PM3 and the Amber force field method. The obtained
results do not depend on the used simulation and calculation method, and show that the D-FF
nanotubes are twisted tighter than L-FF. Moreover, the type of chirality of the helix-like nanotube is
opposite to that of the initial individual molecule that is in line with the chirality alternation rule
general for different levels of hierarchical organization of molecular systems. The proposed method
can be applied to study other helix-like supramolecular structures.

Keywords: dipeptides; diphenylalanine; helical structures; peptide nanotubes; self-assembly;
molecular modeling; dipole moments; polarization; chirality

1. Introduction

Self-assembly of biomolecules such as amino acids, nucleotide bases, phospholipids,
and oligo- and polypeptides is the basis for the formation of DNA, molecular motors,
viruses, and many other biological systems [1–4]. Biomimetic self-assembly is also a
promising bottom-up approach for nanomaterials design in nanobiotechnology [5,6].
Helical self-organizing structures of different levels of hierarchical organization is an often
result of such self-assembly [1,4,5,7,8]. Among them, α-helices, a common type of regular
secondary structure of many proteins, are the simplest and most energetically favorable
structures [1,6]. For natural proteins consisting of L-amino acids, a chirality sign alterna-
tion from the “left-handed” type to the “right-handed” is observed at different levels of
hierarchical organization [9–12]. In the case of DNA, the sequence of the chirality sign
is “right-handed deoxyribose carbohydrate”–“left-handed nucleotides”–“right-handed
DNA double helix”–“left-handed superhelix” with the increasing complexity of their level
of organization. This feature of chirality is one of the key points in the hierarchy and
self-organization of any biological system [9–12].
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Despite the concept of chirality, in its qualitative sense, being widespread in natural
sciences, its quantitative aspects (the magnitude and sign of chirality) are still poorly
studied [13–24]. In structural biology, it is of great importance to obtain the quantitative
estimates of the magnitude of chirality and the chirality sign to compare both molecular
constructs with the same symmetry type and those with different types of the symmetry.
The problem still lacks a solution, although many studies have been performed in the field.
The detailed analysis of these studies can be found in [23].

Recently, a new method for the chirality quantification based on the scalar triple
product of three consecutive vectors connecting Cα carbon atoms of neighboring amino
acid residues in the polypeptide helical or superhelical structures was proposed [21–24].
Despite this approach being successfully applied to a variety of proteins [24] taken from
the Protein Data Bank [25], until now it has not been used for helix-like supramolecular
structures such as peptide nanotubes.

Peptide nanotubes (PNTs) is an important example of helix-like self-organizing
supramolecular systems [5,26,27]. Peptides and their derivatives were recognized recently
as biological and bio-inspired building blocks for the construction of various advanced
functional materials for nanotechnology and biomedicine [28,29]. Short, linear peptides
containing aromatic amino acid residues such as phenylalanine (F, H-Phe-OH) attract
special attention due to their ability to mimic the self-organizing behavior of more complex
proteins [26].

The simplest aromatic dipeptide capable to form helix-like nanotubes is diphenylala-
nine (FF, H-Phe-Phe-OH) [30–40]. Each turn of such helix PNT consists of six FF molecules
(Figure 1). Fast self-assembly of such PNTs occurs in aqueous media, and the variation
of external conditions allows tuning the PNT’s growth rate, length, and their physical
properties [33,38,39,41–45]. FF PNTs possess a wide range of useful functional proper-
ties [41,46–48] that make them promising material for various applications in nanotechnol-
ogy [33,41,46–50], nanoelectronics [28,35,48,51,52], and biomedicine [34–36,47,50,53–55].
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Figure 1. Images of molecular crystals composed of: (a) L-FF PNTs (space group P61), and (b) D-FF PNTs (space group 
P65). Hexagonal unit cells are marked with green, red, and white lines. The individual PNTs in crystal are highlighted by 
yellow circles. Atom colors: oxygen—red, nitrogen—blue, carbon—grey, and hydrogen—white. 

The effect of chirality of FF molecules on the self-assembly and properties of PNTs 
has recently been studied in detail both experimentally and by computer simulation 
[37,38,42,56–59]. Lattice cell parameters for PNT made of “right-handed” FF molecules 
(H-D-Phe-D-Phe-OH, abbreviated hereafter D-FF) are close to those for PNTs made of 
“left-handed” FF molecules (H-L-Phe-L-Phe-OH, abbreviated hereafter L-FF), but their 
space groups are different [38]. Due to the difference of FF monomers chirality, the L-FF 
PNTs belong to the P61 space group, whereas D-FF PNTs belong to the P65. This P61–P65 
pair is one of 11 pairs of enantiomorphic space groups [60] that are distinguished by the 
twisting direction of their 6-fold screw axis [61]. It was also shown that “left-handed” L-

Figure 1. Images of molecular crystals composed of: (a) L-FF PNTs (space group P61), and (b) D-FF PNTs (space group P65).
Hexagonal unit cells are marked with green, red, and white lines. The individual PNTs in crystal are highlighted by yellow
circles. Atom colors: oxygen—red, nitrogen—blue, carbon—grey, and hydrogen—white.

The effect of chirality of FF molecules on the self-assembly and properties of PNTs has
recently been studied in detail both experimentally and by computer simulation [37,38,42,56–59].
Lattice cell parameters for PNT made of “right-handed” FF molecules (H-D-Phe-D-Phe-OH,
abbreviated hereafter D-FF) are close to those for PNTs made of “left-handed” FF molecules
(H-L-Phe-L-Phe-OH, abbreviated hereafter L-FF), but their space groups are different [38].
Due to the difference of FF monomers chirality, the L-FF PNTs belong to the P61 space
group, whereas D-FF PNTs belong to the P65. This P61–P65 pair is one of 11 pairs of
enantiomorphic space groups [60] that are distinguished by the twisting direction of their
6-fold screw axis [61]. It was also shown that “left-handed” L-FF molecules form “right-
handed” helix-like PNTs, whereas “right-handed” D-FF molecules form “left-handed”
PNTs distinguished with their intermolecular interaction energies, self-assembly kinetics,
and characteristic lengths [30,38].
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In this work, we demonstrated that the method for chirality quantification proposed
recently for protein helical structures [23,24] can be adopted for analysis of helix-like
self-assembled PNTs. For the calculation of magnitude and sign of the chirality of L-FF
and D-FF PNTs a set of sequential vectors of individual dipole moments of FF molecules
comprising the turn of each helix of PNTs was used. The dipole moments were calculated
using the HyperChem software [62].

2. Models Details and Computational Methods
2.1. Main Models and Used Software

Recently, we studied the structure and properties of empty L-FF and D-FF PNTs, as
well as those with inner cavity filled with water molecules [56,57]. As water molecules do
not affect the chirality of the PNTs, in this work, we considered empty (anhydrous) PNTs
to simplify the calculations. The initial models of the PNTs were constructed using the
same approach as in [56,57] based on X-ray crystallographic data for L-FF PNT (CCDC
16337, work [31]) and for D-FF PNT (CCDC 1853771, work [38]) taken from Cambridge
Crystallographic Data Center (CCDC) [63]. The structural optimization and calculations
were carried out using the density functional theory (DFT) methods (in Vienna Ab initio
Simulation Package (VASP) program [64]), taking into account the Van der Waals inter-
actions by “PBE + D3” method. The resulted molecular structures visualized by CCDC
Mercury [65] are presented in Figure 1, whereas their main crystallographic parameters are
summarized in Table 1.

Table 1. Experimental lattice cell parameters for L-FF [31] and D-FF [38] PNTs and inner cavity sizes
R1, R2 [56].

L-FF D-FF

Space group P61 P65

a, Å 24.0709 23.9468

b, Å 24.0709 23.9468

c, Å 5.4560 5.4411

V, Å3 2737.7 2702.2

R1, Å 15.3 15.2

R2, Å 12.2 12.1

2.2. Models of FF Nanotubes

The molecular structures of both L-FF and D-FF PNTs were converted using Open-
Babel software [66] from *.cif to *.hin format for their further analysis and calculations
of their polar properties with various molecular mechanical and quantum-mechanical
semi-empirical methods in HyperChem package [62] (Figure 2). These structures contain
two coils of the helix arranged along with the c axis. Each coil consists of 6 FF molecules
(258 atoms) and coils are separated with a lattice constant c around 5.45 Å [56]. The repe-
tition of the coils along the c-axis leads to the formation of PNT with the corresponding
chirality: right-handed helix for L-FF and left-handed helix for D-FF (Figure 3).
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It is known that water molecules in PNT nanochannels can affect both the structure
and properties of the PNTs [41,44,56,57]. Therefore, in this work we considered in more
detail the empty (anhydrous) nanotubes (Figure 1) to better understand how the dipole
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moments of FF molecules form the helix-like PNT with different chiralities and quantify
the chirality.

The dipole moments, Di, of L-FF and D-FF molecules and corresponding helix-like
structures were calculated using the semi-empirical quantum-mechanical method PM3
in the restricted Hartree-Fock approximation (RHF) and molecular mechanical force field
method Amber from the HyperChem package [62]. Previous studies [37,38,42] have
shown that for the dipole moments and energy calculated with other methods AM1 and
BIOCHARM are similar to those obtained by PM3 and Amber. Therefore, in this work
we used only PM3 and Amber methods. The calculated values of the dipole moments
for individual L-FF and D-FF molecules are presented in Table 2. They are similar to the
results obtained and analyzed earlier [30,37,38,42], and correspond well to the molecules’
orientation in experimentally observed helix-like structures.

Table 2. The dipole moments and some other structural parameters of individual L-FF and D-FF molecules calculated by
PM3 method.

Molecule Dx,
Debye

Dy,
Debye

Dz,
Debye

Dtot,
Debye

Van der Waals
Volume, Å3

Polarization,
C/m2

Total
Energy, a.u.

RMS
Gradient,

a.u./Å

L-FF 11.645 1.115 0.899 11.733 291.919 0.134 −133.959 ~0.06

D-FF −11.630 1.052 1.113 11.730 291.977 0.134 −133.959 ~0.07

3. Results and Discussions

In contrast to α-helix proteins, supramolecular PNTs are comprised of individual
FF molecules held by relatively weak hydrogen bonds [31–33]. Therefore, the chirality
quantification method developed earlier for protein structures [21–24] cannot be directly
applied for PNTs and requires some adaptations.

Briefly, the original method considered a helical polypeptide chain consisting of n
amino acid residues, and a set of (n − 1) vectors vi was built between each two adjacent
Cα atoms in amino acid residues (Figure 4). For each three consecutive vectors, their scalar
triple product was calculated:

([v1, v2], v3) = (y1z2 − y2z1)x3 + (z1x2 − z2x1)y3 + (x1y2 − x2y1)z3, (1)
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The sum of all these scalar triple products (see Equation (2)) allowed us to estimate the
chirality sign. If χtotal is positive, the structure is right-handed; for left-handed structures,
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χtotal is negative [23,24]. This method has been validated for almost 1000 proteins [23,24]
taken from the Protein Data Bank [25].

χtotal = ∑n−3
i=1 ([vi, vi+1], vi+2) (2)

In this work, the abovementioned approach was adopted for analysis of supramolec-
ular FF PNTs. Instead of vectors between adjacent Cα atoms, a scalar triple product of
dipole moments Di of the successive individual FF molecules constituting a turn of the
PNT helix-like nanotube was used. The origin of Di vectors is taken relative to the center
of mass of the corresponding molecules. The absolute value of each dipole moment Di is

Di = |Di| =
√

D2
x,i + D2

y,i + D2
z,i, (3)

where Dx,i, Dy,i, and Dz,i are the components of the i-th vector Di in the Cartesian coordi-
nates. Similar to Equation (2), the sum of the scalar triple products of the dipole moments
related to the PNT’s chirality can be written as:

ctotal = ∑n−2
i=1 ([Di, Di+1], Di+2). (4)

It is necessary to note that the summation here is taken over i in the range from
1 to (n − 2), whereas in Equation (2), the i range is from 1 to (n − 3). This is because in
supramolecular helixes i numerates the individual molecules instead of the Cα atoms in
proteins. The ctotal can be normalized over the average value of the total dipole momentum

of the PNT’s coil, Dav = 1
6

6
∑

i=1
Di, to find a universal measure of the chirality:

cnorm =
ctotal

D3
av

. (5)

Individual dipole moments of FF molecules in one coil of helix-like PNTs were ob-
tained using semiempirical PM3 method in restricted Hartree–Fock (RHF) approxima-
tion and molecular mechanic Amber method (after PM3) implemented in HyperChem
software [62]. The results are presented below in Tables 3 and 4 for L-FF and for D-FF,
respectively. Schematic representation of the spatial arrangement of FF individual dipole
moments Di in two coils of PNTs are shown in Figure 5a,b for L-FF and in Figure 5c,d for
D-FF PNTs.

Table 3. Values of dipole moments for a coil of the helix-like L-FF PNT computed using PM3 (RHF) and Amber (after PM3)
methods. All values of dipole moments are given in Debye units.

i
PM3 RHF Amber

Di Dx Dy Dz Di Dx Dy Dz

1 24.022 14.576 −15.421 −11.261 23.458 14.901 −15.250 −9.781

2 22.549 −6.313 −18.923 −10.513 21.734 −6.280 −18.879 −8.748

3 22.389 −18.646 −3.636 −11.849 21.545 −18.698 −3.629 −10.070

4 22.381 −11.564 14.461 −12.573 21.530 −11.695 14.495 −10.801

5 22.441 7.555 17.308 −12.123 21.578 7.397 17.408 −10.384

6 22.587 18.767 2.568 −12.303 21.638 18.581 2.745 −10.742

Dcoil 70.851 4.376 −3.643 −70.622 60.752 4.206 −3.109 −60.526

Dav 22.728 0.729 −0.607 −11.770 21.914 0.701 −0.518 −10.088
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Table 4. Values of dipole moments for a coil of the helix-like D-FF PNT computed using PM3 (RHF) and Amber (after PM3)
methods. All values of dipole moments are given in Debye units.

i
PM3 RHF Amber

Di Dx Dy Dz Di Dx Dy Dz

1 22.523 −12.228 −15.267 −11.167 21.707 −12.299 −15.170 −9.475

2 22.340 7.302 −18.014 −11.072 21.527 7.210 −17.995 −9.360

3 22.372 19.234 −2.597 −11.125 21.520 19.168 −2.656 −9.416

4 22.475 11.905 15.905 −11.290 21.625 11.914 15.274 −9.612

5 22.629 −6.613 17.478 −12.761 21.703 −6.487 17.386 −11.256

6 23.855 −19.820 4.382 −12.531 23.271 −19.893 4.727 −11.112

Dcoil 69.971 −0.218 1.888 −69.945 60.253 −0.387 1.565 −60.231

Dav 22.704 −0.036 0.315 −11.658 21.892 −0.064 0.261 −10.038
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Figure 5. Schematic presentation of dipole moments Di in two coils of (a,b) L-FF and (c,d) D-FF PNTs:
(a,c) Z-plane projection, (b,d) Y-plane projection. For L-FF PNT dipole moments form a right-hand
helix, whereas for D-FF PNT form a left-hand helix. Red arrows show the directions of the total
dipole moments of the coil Dcoil.

It is important to note that, due to the helix-like structure of PNT, the dipole moment
Di of each next FF molecule in the coil is rotated by ~60◦ in the XOY plane. Therefore, at a
full vector rotation at 360 degrees in a coil, the components Di,x and Di,y almost compensate
for one another. Thus, the x and y components of the total dipole moment of the coil, Dcoil,
are much smaller than Dcoil,z, which is always oriented along the OZ axis and increases Dcoil
(Tables 3 and 4). As a result, the total dipole moment of a coil Dcoil is directed mainly along
OZ axis with slight deviations (Figure 5), which corresponds to the previously obtained
data [30,37,38,56,57].

It is worth noting that, in contrast to the original chirality quantification method
developed for proteins [21–24], where the vectors were built between the carbon atoms Cα

of each subsequent amino acid, in the current modification of the method, the vector of the
dipole moment of each FF molecule in the PNT is taken relative to the center of mass of the
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corresponding molecule. The origin of Di is a point in space defined by the vector rDi with
components {xDi; yDi; zDi} calculated as follows:

xDi =
{
∑N

j=1 mj·xj

}
/
{
∑N

j=1 mj

}
,

yDi =
{
∑N

j=1 mj·yj

}
/
{
∑N

j=1 mj

}
,

zDi =
{
∑N

j=1 mj·zj

}
/
{
∑N

j=1 mj

}
.

Here, mj, xj, yj, and zj are the mass and coordinates, respectively, of the j-th atom in
the i-th FF molecule in the PNT, and N = 43 is the number of atoms in one FF molecule. For
example, the coordinates of the center of mass for the first FF molecule (i = 1) in a coil of
L-FF PNT (Figure 6) are:

xD1 = 2.35 Å; yD1 = −7.80 Å; zD1 = 1.02 Å.
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This point is the origin for the D1 dipole moment vector. Similarly, the origins for
other vectors Di can be calculated. As a result, dipole moments form a helix with a pitch
equal to c = 5.456 Å (for L-FF, c = 5.441 Å for D-FF PNTs), and the helix radius R is about
8.15 Å for L-FF PNT.

The obtained values of the dipole moments for L-FF and D-FF PNTs allow us to
quantify their chiralities following the Equations (4) and (5). The calculated magnitudes
of the PNTs chirality, ctotal, and the normalized chirality, cnorm, are presented in Table 5.
For each type of PNT, both PM3 and Amber methods ctotal demonstrate close values with
the divergence about 15%, whereas for cnorm the divergence is less than 5%. Therefore, cnorm
can be considered as a universal value for chirality quantification that does not depend on
the calculation method.
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Table 5. Magnitudes and signs of the chirality obtained for L-FF and D-FF PNTs for various calculating methods.

Type of PNT L-FF D-FF

Calculating Method PM3 Amber PM3 Amber

ctotal, Debye3 16,034.82 13,870.71 −14,497.03 −12,161.23

cnorm 1.37 1.32 −1.23 −1.16

Chirality sign positive positive negative negative

Chirality symbol D D L L

At the same time, the absolute value of cnorm for L-FF PNT is about 10% higher
than that for D-FF PNT. This difference exceeds the calculation error and thus shows the
difference in PNTs chiralities. Lower cnorm value observed for D-FF PNTs indicates that this
PNT is twisted tighter than L-FF. This is also confirmed by the lower volume of the D-FF
PNT unit cell (Table 1).

Following the original method [23,24], the sign of the cnorm corresponds to the PNT’s
chirality type. For L-FF PNT, cnorm is positive thus this PNT should be right-handed,
whereas negative cnorm value for D-FF PNT indicates its left-handed twisting. This result
is confirmed by the previous crystallographic studies [31,38] and the individual dipole
moments completely follow this arrangement (Figure 5). It is worth noting that the chi-
rality alternating observed earlier for natural proteins and DNA [9–12] preserves in the
supramolecular PNTs as well. The type of chirality of the helix-like PNT is opposite to that
of the individual dipeptide. This fact also can be a confirmation of the adequacy of the
proposed method for supramolecular PNTs chirality quantification.

4. Conclusions

A method for quantification of the chirality of self-assembled helix-like FF nanotubes
based on the scalar triple products of the individual FF molecules dipole moments is
described. The dipole moments were calculated for nanotubes comprised of L-FF and D-FF
molecules by quantum-chemical and molecular mechanics methods, and the independence
of the magnitude and the sign of the chirality on the calculation method is demonstrated.
The obtained magnitudes of the chirality for L-FF nanotubes are about 10% higher than
those of L-FF, which indicates that D-FF nanotubes are twisted tighter than L-FF. The alter-
nating of the chirality type observed earlier for natural proteins and DNA also preserves in
the supramolecular PNTs. The type of chirality of the helix-like PNT is opposite to that of
the individual dipeptide. This effect is in line with the chirality alternation rule, general
for different levels of hierarchical organization of molecular systems, and additionally
corroborates the validity of the proposed method.

The extension of the chirality quantification method to supramolecular helix-like
nanostructures opens new facilities for comparing both molecular constructs of the same
chirality type and those with different constructs. Moreover, it provides an opportunity
to reveal the physical basis for the chirality sign formation, which is associated with the
electrostatic dipole–dipole interaction of individual molecules. This approach can be
applied to study other helical and helix-like supramolecular structures.
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