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Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a progressive increase in pulmonary arterial pressure
leading to right ventricular failure and death. Activation of the endothelin (ET)-1 system has been demonstrated in plasma and
lung tissue of PAH patients as well as in animal models of PAH. Recently, peroxisome proliferator-activated receptor 𝛾 (PPAR𝛾)
agonists have been shown to ameliorate PAH. The present study aimed to investigate the mechanism for the antivasoconstrictive
effects of rosiglitazone in response to ET-1 in PAH. Sprague-Dawley rats were exposed to chronic hypoxia (10% oxygen) for 3
weeks. Pulmonary arteries fromPAH rats showed an enhanced vasoconstriction in response to ET-1. Treatmentwith PPAR𝛾 agonist
rosiglitazone (20mg/kg per day) with oral gavage for 3 days attenuated the vasocontractive effect of ET-1.The effect of rosiglitazone
was lost in the presence of L-NAME, indicating a nitric oxide-dependent mechanism. Western blotting revealed that rosiglitazone
increased ETBR but decreased ETAR level in pulmonary arteries from PAH rats. ETBR antagonist A192621 diminished the effect
of rosiglitazone on ET-1-induced contraction. These results demonstrated that rosiglitazone attenuated ET-1-induced pulmonary
vasoconstriction in PAH through differential regulation of the subtypes of ET-1 receptors and, thus, provided a newmechanism for
the therapeutic use of PPAR𝛾 agonists in PAH.

1. Introduction

Pulmonary arterial hypertension (PAH) is characterized by a
progressive increase of pulmonary vascular resistance, lead-
ing to right ventricular failure and death [1]. ET-1 plasma
level was elevated in the patients and experimentalmodels for
PAH [2, 3]. Expression of ET-1 was increased in lung tissues
of PAH patients, predominantly in pulmonary arteries [4, 5].
ET-1 has 2major subtypes of receptors: ET-A receptor (ETAR)
is expressed on vascular smooth muscle cells (SMCs) and
mediates vasoconstriction, whereas ET-B receptor (ETBR) is
predominantly expressed in endothelial cells (ECs), where it

primarily mediates vasodilatation and the clearance of ET-
1. Expression of ETAR was upregulated in the lung tissues
and pulmonary arteries from PAH patients with a well-
established pathophysiological role [6–8]. However, a role of
ETBR was rather controversial with the reports of unaltered,
increased, or decreased expressions in the vessel tissues from
various PAH conditions [9–15].

Emerging evidence suggests that peroxisomeproliferator-
activated receptor-𝛾 (PPAR𝛾) agonists might have therapeu-
tic role in treating PAH [16]. PPAR𝛾 regulates the tran-
scription of genes involved in glucose and lipid metabolism,
inflammation, as well as vascular remodeling [17–19]. The
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Figure 1: (a) Representative recordings of ET-1-induced contractions of pulmonary arteries from normoxia-, chronically hypoxic- (CH-), or
rosiglitazone- (RSG-) treated CH-rats. (b) RSG ameliorated ET-1-mediated vasoconstriction in pulmonary arteries from the rats with PAH.
Data were mean ± SEM from 5 to 7 rats. ∗𝑃 < 0.05 CH + RSG versus CH group.

expression of PPAR𝛾 was reduced in the lungs from the PAH
patients and the rat models [20, 21]. Similarly, mice with
deletion of PPAR𝛾 in SMCs or ECs developed PAH. Phar-
macological activation of PPAR𝛾 ameliorated PAH. [21–25].
In ECs, PPAR𝛾 activators inhibited thrombin- or oxidized
low-density lipoproteins- (LDL-) induced ET-1 production
[26, 27]. In particular, we recently observed that PPAR𝛾 ago-
nist rosiglitazone attenuated ET-1-induced vasoconstriction
through upregulation of ETBR in ECs [28]. However, whether
the regulation of ETBR accounts for the ameliorative effect
of PPAR𝛾 agonists in PAH arteries remains to be elucidated.
In the present study, we examined the role of rosiglitazone
on ET-1-induced vasocontraction of pulmonary arteries in rat
PAH models and the underlying mechanism.

2. Materials and Methods

2.1. Animals, Cell Culture, and Reagents. Male Sprague-
Dawley rats were used and the experiments were conducted
in accordance with the National Institutes of Health (NIH)
Guide for the Care and Use of Laboratory Animals with the
approval by the institutional committee. Polyclonal rabbit
anti-ETBR antibody was from Abcam. Polyclonal rabbit anti-
ETAR was from Santa Cruz Biotechnology. ET-1 and 𝑁G-
nitro-L-arginine methyl ester (L-NAME) were from Sigma-
Aldrich Co., rosiglitazone was from GlaxoSmithKline, and
A192621 was from Abbott Laboratories.

2.2. Chronic Hypoxia Induced PAH in Rat. Rats were exposed
to normobaric hypoxia (10% oxygen) or normoxia (21%
oxygen) for 3 weeks and then treated with rosiglitazone
(20mg/kg per day) or water with oral gavage for 3 days.

2.3. Isometric TensionMeasurement. Left lungswere removed
and placed in oxygenated Krebs-Henseleit solution. Pul-
monary arteries were carefully dissected from adjacent con-
nective tissue and cut into several ring segments of ≈2mm
long for measuring isometric force. Organ chambers (Multi
Myograph System, Danish Myo Technology A/S) were filled
with (37∘C) Krebs solution containing (in mmol/L) 119.0
NaCl, 4.7 KCl, 2.5 CaCl

2
, 1.0 MgCl

2
, 25.0 NaHCO

3
, 1.2

KH
2
PO
4
, and 11.0 D-glucose.The Krebs solution in the organ

bath was initially open to room air, being bubbled withmixed
95% O

2
and 5% CO

2
. Each ring was suspended between

2 tungsten wires (diameter, 40𝜇m) in the chamber under
optimal resting tension (2.5mN as previously determined for
the pulmonary arteries) and left for 90-minute equilibration.
Vasoreactivity was measured to compare contractions in
response to ET-1 (1 to 50 nmol/L) in the absence and presence
of L-NAME (100 𝜇mol/L). The effects of antagonist of ETBR
were tested on ET-1-induced contractions.

2.4. Western Blot Analysis. Pulmonary arteries were dis-
sected, frozen in liquid nitrogen, and homogenized in RIPA
lysis buffer containing protease inhibitors. Protein lysates
separated on 12.5% sodium dodecyl sulfate polyacrylamide
gels (SDS-PAGE) and transferred to PVDF membranes,
which were blocked with 5% nonfat milk in Tris-buffered
saline-Tween (0.2%) (TBS-T) for 1 h, incubated overnight
with primary antibody and then horseradish peroxidase-
(HRP-) conjugated secondary antibody, and visualized with
ECL reagent.

2.5. Statistical Analysis. Results represent mean ± SEM.
Comparisons among groups involved ANOVA followed by
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Figure 2: (a) Representative recordings of ET-1-induced contractions pretreated with L-NAME (100𝜇mol/L) in pulmonary arteries from
normoxia-, CH-, or RSG-treated CH-rats. (b)The effect of RSG on ET-1-mediated vasoconstriction was abrogated in the presence of L-NAME
(100𝜇mol/L). Data were mean ± SEM from 5 to 7 rats.

ETBR

𝛽-Actin

Normoxia CH CH + RSG

Figure 3: Rosiglitazone upregulated ETBR expression in rats with
PAH. Western blotting was performed with the protein samples
extracted from the pulmonary arteries of normoxia-, CH-, or RSG-
treatedCH-rats. Data shown are representative of three independent
experiments.

unpaired Student’s t-test.𝑃 < 0.05was considered statistically
significant.

3. Results

3.1. RosiglitazoneAmeliorated ET-1-MediatedVasoconstriction
in Rats with PAH. To investigate the effect of rosiglitazone
on vasoconstriction of pulmonary arteries induced by ET-
1, pulmonary arteries from normoxia-, chronic hypoxia-
(CH-), and rosiglitazone-treated CH-rats were dissected
from groups of animals for isometric tension measurement
responding to ET-1. The ET-1-induced contractions in pul-
monary arteries were elevated in PAH rats compared to the
normoxic rats. Treatment with PPAR𝛾 agonist rosiglitazone
(20mg/kg per day) reversed the vasocontractive effect of ET-1
(Figure 1). However, this effect of rosiglitazone was abolished
by the treatment with the inhibitor of endothelial nitric
oxide synthase (eNOS) L-NAME, indicating aNO-dependent
mechanism (Figure 2).

3.2. Rosiglitazone Increased ET
𝐵
R Protein Levels in Pulmonary

Arteries from PAH Rats. To understand the mechanism for
the effect of rosiglitazone on ET-1-induced vasocontraction
in pulmonary arteries, we examined the protein level of
ETBR with Western blotting. As shown in Figure 3, ETBR
protein level was unaltered in the pulmonary arteries from
CH-induced PAH rats. However, rosiglitazone treatment
increased the expression of ETBR. In contrast, it reduced the
expression of ETAR (Supplemental Figure 2 available online
at http://dx.doi.org/10.1155/2014/374075).

3.3. Inhibitory Effect of Rosiglitazone Is Abolished by ET
𝐵
RAn-

tagonist. To examine the functional role of ETBR in mediat-
ing the rosiglitazone effect on ET-1-induced vasoconstriction,
pulmonary arteries were dissected fromnormoxia-, CH-, and
rosiglitazone-treatedCH-rats tomeasure the ET-1-responsive
isometric tension in the presence or absence of A192621,
a selective ETBR antagonist. In normoxic and PAH rats,
A192621 (10 nmol/L) did not significantly alter the ET-1-
induced contraction (Figures 4(a) and 4(b)). However, in the
rosiglitazone-treated pulmonary arteries, A192621 abolished
the ameliorative effect on the ET-1-induced vasocontraction
(Figure 4(c)).

4. Discussion

The vascular effects of ET-1 are mediated by 2 pharmaco-
logically distinct G protein-coupled receptors, ETAR and
ETBR [29]. ETAR is mostly expressed in SMCs and mediates
the vasoconstrictive and proliferative effects of ET-1 [30].
However, ETBR expressed in ECs mediates endothelial-
dependent vasodilatation by stimulating the production of
NO and prostacyclin, prevents apoptosis, and promotes the
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Figure 4: The ameliorative effect of RSG on ET-1-induced contractions was abrogated by ETBR antagonist. Concentration-dependent
contractions to ET-1 pretreated with ETBR antagonist A192621 (10 nmol/L) in pulmonary arteries from normoxia- (a), CH (b), or RSG-treated
CH (c) rats. Data were mean ± SEM from 5 to 8 rats. ∗𝑃 < 0.05 versus control.

clearance of ET-1 [31, 32]. ETBR is present in low densities
on vascular smooth muscle cells where its activation induces
vasoconstriction [33, 34]. Since ETBR elicits vasodilation
and vasoconstriction, its vascular functions in pulmonary
arterial hypertension need to be further characterized. ETBR-
deficient rats developed exacerbated PAH after exposure
to chronic hypoxia, characterized by elevated pulmonary
arterial pressure, diminished cardiac output, increased right
ventricular hypertrophy, and increased total pulmonary
resistance. Plasma ET-1 level and mRNA of ET-converting
enzyme-1 (ECE-1) were much higher in lungs from ETBR-
deficient rats compared with control rats. In ETBR-deficient
rats, the pulmonary vessels showed less endothelial NO
synthase (eNOS) and NO production, supporting a role of
NO in ETBR-mediated vasodilation in the pulmonary vascu-
lature [35]. Other studies in monocrotaline (MCT) induced

PAH rats also showed that ETBR deficiency accelerated the
progression of PAH and neointimal lesion [36, 37]. Although
both ETAR antagonist (ambrisentan) and dual ETAR/ETBR
antagonist (bosentan) have been approved for treatment of
PAH [38], selective antagonists for ETAR and ETBR appeared
to have different effects on PAH. In a dog model for PAH,
ETBR antagonist RES-701-1 was found to increase pulmonary
arterial pressure whereas sarafotoxin S6c, an ETBR agonist,
decreased pulmonary arterial resistance [39]. In addition,
ETBR antagonist also elevated ET-1 concentrations in both
in vivo and in vitro studies [40]. These findings suggest that
activation of ETBR may play a protective role in the PAH.

In addition to three categories of FDA-approved treat-
ments including prostanoids, ET-1 receptor antagonists,
and phosphodiesterase 5 (PDE5) inhibitors, PPAR𝛾 ago-
nists thiazolidinediones (TZDs) including rosiglitazone and
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pioglitazone have shown beneficial effects in animal models
of PAH. In rodent PAH models induced by MCT or hypoxia
and those associated with insulin resistance, TZDs were
found to effectively reduce pulmonary arterial pressure and
right ventricular hypertrophy [21, 22, 24, 25, 41]. Recently,
we showed that rosiglitazone reversed pulmonary arterial
remodeling and inhibited vasoconstriction in response to
serotonin in the rat PAH models induced by MCT and
hypoxia. Although the molecular mechanisms underlying
the TZD effects on PAH development remain unclear, a
generally accepted hypothesis is that TZDs may act via their
receptor PPAR𝛾 to modulate the expression of key genes
involved in the pathogenesis of PAH such as ET-1, eNOS,
p27KIP1, adiponectin, apoE, MMP, and RhoA/ROCK. In
this study, we provided in vivo evidence that rosiglitazone
ameliorated ET-1-induced vasocontraction in the pulmonary
arteries of PAH rats (Figure 1). The ameliorative effect of
rosiglitazone was mediated via differential regulation of ET-1
receptors. In particular, the upregulation of ETBR might play
a major role because rosiglitazone treatment increased the
expression of ETBR in the pulmonary arteries (Figure 3) and
A192621, a selective antagonist of ETBR, abrogated the effect
(Figure 4). Conversely, rosiglitazone inhibited the induction
of ETAR in the pulmonary arteries of PAH rats (Supplemental
Figure 2). It is conceivable that rosiglitazone may have the
vasoprotective effects by altering the ratio of ETA/B receptors.
ETBR in ECs may increase Ca2+ influx and the activation of
eNOS, which leads to the production of NO and induction
of vascular relaxation. This notion is corroborated with
the result that the effect of rosiglitazone was abolished in
the presence of L-NAME, an inhibitor of eNOS (Figure 2).
Importantly, the induction of endothelial ETBR is considered
to be a PPAR𝛾-specificmechanism aswe previously identified
ETBR to be a direct target gene of PPAR𝛾 [28].

5. Conclusions

In conclusion, we demonstrated that rosiglitazone upregu-
lated the expression of ETBR, which mediated the decreased
vasoconstriction in the rat models of PAH. This finding
suggested a new mechanism for the protective role of PPAR𝛾
in the development of PAH.
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[40] T. Attinà, R. Camidge, D. E. Newby, andD. J.Webb, “Endothelin
antagonism in pulmonary hypertension, heart failure, and
beyond,” Heart, vol. 91, no. 6, pp. 825–831, 2005.

[41] Y. Liu, X.Y. Tian, G. Mao et al., “Peroxisome proliferator-acti-
vated receptor-gamma ameliorates pulmonary arterial hyper-
tension by inhibiting 5-hydroxytryptamine 2B receptor,”Hyper-
tension, vol. 60, no. 6, pp. 1471–1478, 2012.


