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Viral vectors are rapidly being developed for a range of ap-
plications in research and gene therapy. Prototype foamy
virus (PFV) vectors have been described for gene therapy,
although their use has mainly been restricted to ex vivo
stem cell modification. Here we report direct in vivo trans-
gene delivery with PFV vectors carrying reporter gene con-
structs. In our investigations, systemic PFV vector delivery
to neonatal mice gave transgene expression in the heart,
xiphisternum, liver, pancreas, and gut, whereas intracranial
administration produced brain expression until animals
were euthanized 49 days post-transduction. Immunostaining
and confocal microscopy analysis of injected brains showed
that transgene expression was highly localized to hippocam-
pal architecture despite vector delivery being administered
to the lateral ventricle. This was compared with intracranial
biodistribution of lentiviral vectors and adeno-associated vi-
rus vectors, which gave a broad, non-specific spread through
the neonatal mouse brain without regional localization,
even when administered at lower copy numbers. Our work
demonstrates that PFV can be used for neonatal gene
delivery with an intracranial expression profile that
localizes to hippocampal neurons, potentially because of
the mitotic status of the targeted cells, which could be of
use for research applications and gene therapy of neurolog-
ical disorders.
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INTRODUCTION
Since the mid-1980s, recombinant DNA technology and the nascent
field of viral vectorology have been developed as therapeutic tools for
the treatment of inherited genetic diseases.1–6 Many viral vector sys-
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tems have been explored, with each providing a unique set of charac-
teristics that can be exploited for a specific purpose.7

Two of the most widely used viral vectors in research and clinical gene
therapy are based on lentiviruses (LVs) and adeno-associated viruses
(AAVs). LV vectors have been widely used for their ability to integrate
into target cell genomes, which has been key to their recent success in
stem cell gene therapy.8–12 AAV vectors have shown burgeoning po-
tential for in vivo gene therapy, demonstrating safe and efficient
transduction of the human brain by intracranial administration.13

Furthermore, systemic AAV delivery can deliver body-wide gene
expression in humans14,15 and many animal models, with some vec-
tor serotypes able to cross the blood-brain barrier.16,17

Notwithstanding the recent successes of AAVs and LVs, these vectors
suffer drawbacks thatmitigate continued exploration of alternative sys-
tems. AAVs are restricted to transgene payloads below 5.2 kb,18–20

which restricts fine-tuning of therapeutic cassettes with additional
regulatory genetic sequences, such as promoters, enhancers, andmicro-
RNA recognition sequences. Additionally, AAV vectors do not
commonly integrate into target cell genomes; thus, vector copies are
lost after repeated cell divisions.21 LV vectors can package considerably
larger genes than AAVs and efficiently integrate their DNA into host
chromosomes, which has made them a popular choice for stem cell
The Authors.
vecommons.org/licenses/by/4.0/).
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Figure 1. Whole-Body Luciferase Activity Detected in Mice Injected with

PFV-CMV-Luciferase by Multiple Routes of Delivery

Neonatal mice were injected on the day of birth either intraperitoneally (n = 4),

intravenously (n = 1), or subcutaneously (n = 4) and subsequently imaged 13 days

and 49 days post-injection to track body-wide luciferase expression. The mean

luciferase activity detected in each animal is plotted as an individual dot plot (black

dots, day 13 values; white circles, day 49 values) with overlaid boxplots representing

75% confidence intervals of the dotplot distribution (blue boxes) and median lines

(red lines). Data show that intraperitoneally delivered luciferase expression remained

on day 49 despite expression falling from day 13 (p = 0.0433 by Kruskal-Wallis test).

Consistent with this, subcutaneously delivered luciferase was present on day 49

despite a fall in expression from day 13 (p = 0.0209 by Kruskal-Wallis test). Data for

the single mouse receiving intravenous injection are shown.
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therapy.22–24 However, like all retroviruses, LV vectors are confounded
by the risk of insertional mutagenesis, which is a concern in clinical
translation.25 In a recent clinical trial for b-thalassemia stem cell ther-
apy, LV vector integration into the HMGA2 proto-oncogene led to
transcription of a truncated mRNA and benign clonal dominance.26

Foamy virus (FV) vectors are derived from a subfamily of retroviruses
known as Spumaretroviridae, possessing several distinguishing prop-
erties that show potential for gene therapy. Like AAVs, wild-type FV
infections are not associated with pathology.27 Prototypic FV (PFV)
vectors are derived from an FV strain isolated from a human, although
sequence analysis of PFV indicates that it is a chimpanzee isolate.28–30

PFV vectors have several distinguishing properties that could be ex-
ploited for gene therapy, such as a large packaging capacity that can
accommodate payloads greater than 9 kb,31 a reverse transcription
pathway that occurs before target cell entry,32,33 dormancy of the pre-
integration complex in quiescent cells,34 and very limited seropreva-
lence in humans.35 PFV vectors have been developed for gene transfer,
showing broad cellular tropism that is ascribed to their use of heparin
sulfate glycosaminoglycan as a means of cell entry.36,37 They are
particularly effective at transducing stem cells, showing promise for
ex vivo treatment of inherited diseases.38–43 As with other retroviral
vectors, PFV vector proviruses integrate into the host genome as
part of normal transduction. It has been suggested that PFV vectors
may even have a safer integration profile than LV vectors and murine
leukemia virus (MLV) retroviral vectors because they tend to integrate
outside of active transcription units.44

The use of PFV vectors in vivo has recently been demonstrated in
gene transfer to the regenerating limb tissue of salamanders and for
transduction of juvenile pig liver by hydrodynamic injection.45,46

Additionally, PFV vectors have been used to deliver their genomic
RNA as mRNA in vivo.47 However, broader use of PFV vectors for
permanent in vivo transgene delivery remains largely unexplored in
mammals.

Here we investigated the in vivo transduction characteristics of PFV
vectors by delivering transgenes to neonatal mice via intracranial,
intravenous, intraperitoneal, and subcutaneous routes of administra-
tion. Systemic PFV vector delivery gave expression in a range of
visceral organs, whereas intracranial administration gave a region-
specific expression profile localized to hippocampal architecture.
This hippocampal expression pattern was not observed in mice that
received intracranial LV and AAV vectors via the same route of de-
livery, even when administered at lower doses than PFV vectors.
Thus, our data introduce PFV vectors as unique gene transfer agents
for use in research and gene therapy, and their discrete brain expres-
sion profile provides a novel approach for accurate manipulation of
brain function.

RESULTS
PFV vectors were packaged with either EGFP or luciferase (Luc)
driven by the cytomegalovirus (CMV) promoter. PFV-EGFP and
PFV-luciferase vectors were delivered to neonatal outbred CD1
mice by intraperitoneal (i.p.), intravenous (i.v.), subcutaneous (s.c.),
and intracranial (i.c.) injection on the day of birth.

Intravenous PFV Administration to Neonatal Mice Produces

Expression in Visceral Organs

Whole-body bioluminescent images were captured and quantified
13 days and 49 days after neonatal intraperitoneal, intravenous, and
subcutaneous administration of PFV-Luc (Figure 1). For intraperito-
nealy-treated animals, the mean total flux was calculated as 2.6 ±

1.3� 108 photons/s 13 days post-injection. Expression from intraper-
itonealy-injected animals remained detectable 49 days post-injection,
at which point mean flux was detected at 4.0 ± 6.6 � 107 . Subcuta-
neously-injected animals gave a mean flux of 1.1 ± 0.7 � 107 on
day 13 and 1.7 ± 1.1 � 106 on day 49. Intravenous injection was
poorly tolerated; three of the four PFV-luciferase cohorts died before
the first imaging time point. The remaining animal gave a mean lucif-
erase reading of 8.4 � 107 on day 13, which was detected at 1.3� 106

on day 49.

PFV-EGFP-injected animals were dissected after 11 days to investigate
tissue tropism in greater detail (Figure 2). Intravenous delivery gave
expression in the heart, liver, lung, and spleen, whereas intraperitoneal
injection transduced the xiphisternum, liver, pancreas, and gut.

Intracranial PFV Administration to Neonatal Mice Gives Discrete

Hippocampal Transgene Expression that Is Not Seen with LV

and AAV Vector Technologies

Neonatal mice received a unilateral intracranial injection of PFV-
luciferase, with bioluminescence quantified at two time points (Fig-
ure 3A). 11 days post-injection, we detected luciferase expression in
Molecular Therapy: Nucleic Acids Vol. 12 September 2018 627
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Figure 2. EGFP Fluorescence Imaging of Mice Receiving Systemic Injections of PFV-CMV-EGFP

Stereoscopic imaging on day 11 post-injection revealed EGFP expression in transduced visceral organs following intravenous and intraperitoneal vector delivery.

(A) Intravenous PFV injection demonstrates EGFP fluorescence in the heart, lung, liver, and spleen (all 20� magnification). (B) Intraperitoneal vector injection gave EGFP

fluorescence in the liver (20� magnification), small intestine (30� magnification), xiphisternum (30� magnification), and liver, pancreas, and gut (10� magnification).
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the brains of all animals, with some expression detectable in the spinal
cord (mean value of 5.1 ± 1.8 � 106 photons/s). Subsequent imaging
49 days post-injection showed that luciferase expression remained in
the brain but was no longer detectable in the spinal cord (mean value
of 6.2 ± 2.3� 105 photons/s). Brain expression produced 8.2-fold less
bioluminescence signal at the later time point (p = 0.0495 by Kruskal-
Wallis test) (Figure 3B).

We suspected that the higher expression level on day 11 may have
been produced by transient expression from plasmid DNA carried
over from PFV vector production. We investigated this by injecting
1.5 mg (equivalent to total plasmid used to transfect a whole 10-cm
dish of producer cells) of naked plasmid DNA expressing a luciferase
expression cassette, but the resulting bioluminescence was indiscern-
ible from uninjected controls 11 days post-injection (Figure S3).

To investigate the intracranial localization of PFV expression, we
administered PFV-EGFP to the brains of newborn mice on post-natal
day 1, with unilateral intracranial injections aimed toward the ante-
628 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
rior horn of the lateral ventricle on the left side of the brain. Post-mor-
tem analysis 11 days post-injection showed EGFP fluorescence
through the top of the skull to the left of bregma, which was the
approximate site of injection (Figure 3C). Dissected brains were
further analyzed by immunostaining to investigate intracranial PFV
biodistribution (Figures S1A and S2). Focused evaluation of the
stained brain regions revealed that EGFP expression was localized
to the hippocampus (Figure 4A). Further magnification revealed
dense expression localized to the dentate gyrus, with staining detected
throughout the associated architecture.

LV and AAV vectors are commonly used for brain gene therapy, hav-
ing demonstrated widespread transduction of the mouse brain in a
variety of applications.16,17,48–50 Thus, we sought to compare the
intracranial biodistribution of PFV-EGFP vectors with AAV and
LV vector technologies.

LV-EGFP vectors were delivered at a lower dose (4.2 � 106 genome
copies) than PFV-EGFP vectors (2.5 � 107 genome copies), but LV
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Figure 3. Transgene Expression in the Mouse Brain

13 Days after Neonatal Intracranial PFV Injections

(A) Bioluminescent imaging shows expression in the

brain, and some in the spinal cord, following intra-

cerebroventricular vector administration on post-natal

day 1. Images taken 49 days post-injection show

expression limited to the brain. (B) Luciferase expression

remained detectable until sacrifice at 49 days but was

significantly reduced compared with expression at

13 days (p = 0.0495 by Kruskal-Wallis test). The mean

luciferase activity detected in each animal is plotted as an

individual dot plot (black dots, day 13 values; white cir-

cles, day 49 values), with overlaid box plots representing

75% confidence intervals of the dot plot distribution (blue

boxes) and median lines (red lines). (C) Brain EGFP fluo-

rescence was detected through the skull, to the left of the

bregma, before subsequent sectioning. Scale bar,

1.25 mm.
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clearly showed greater diffusion from the lateral ventricle injection
site, with staining detected in a variety of brain structures (Figure 4B;
Figure S1B). However, administration of LV-EGFP to adult mice
limited vector diffusion through the brain, with expression restricted
to the hippocampus, piriform cortex, and olfactory bulb at lower
levels than observed after neonatal injection (Figure S4).

AAV-EGFP was initially delivered to mice at a dose of 2.5� 1010 total
vector genomes, producing widespread expression that migrated
extensively from the injection site (Figure S1C). However, to account
for the 3 orders of magnitude difference between PFV and AAV vec-
tor doses, we additionally administered AAV-EGFP at a lower dose
(2.5 � 106 vector genome copies) to interrogate the importance of
vector genome copy number in the hippocampal localization of
PFV-EGFP. Surprisingly, the lower dose of AAV-EGFP continued
to exhibit broader expression than PFV-EGFP, suggesting that vector
genome copy number alone was not the exclusive reason for intracra-
nial biodistribution (Figure 4C).

To confirm the phenotype of EGFP-expressing cells, brain sections
were stained for EGFP and the neuron-specific marker NeuN, with
z stacks captured by confocal microscopy. Confocal images showed
that PFV-treated sections were localized to neurons of the dentate gy-
rus, aside from some non-specific labeling of blood vessels because of
suboptimal perfusion (Figure S5).

DISCUSSION
Viral vectors are rapidly being developed as gene therapy agents for
an increasing range of diseases. This naturally brings a growing de-
Molecular Therap
mand for broader functionality and diversity
of viral vectors and a need to thoroughly
examine novel and existing vector technologies
to fully understand their capabilities. Here we
have shown that PFV vectors are capable tools
for direct in vivo gene delivery, particularly in
the developing neonatal hippocampus, which adds a new dimension
to their role in the growing field of gene therapy.

The ability of PFV vectors to integrate into the host genome makes
them an appropriate choice for ex vivo gene therapy. PFV vectors
have been assessed extensively for ex vivo manipulation of hemato-
poietic stem cells and engraftment in disease models in rodent and
canine models.42,51 Our study provides a comprehensive examination
of their biodistribution and efficacy following in vivo gene delivery to
neonatal mice.

Our investigations were not only designed to show proof of concept
for neonatal gene therapy with PFV vector technology but also to
investigate the behavior of these vectors in postnatal tissues for phys-
iological research purposes. It has been reported that PFV vectors
absolutely require mitosis for efficient transduction of target cells,
but these vectors can form a stable transduction intermediate in
quiescent (G0) cells.34,52,53 In our investigations, we restricted our
studies to newborn mice because we expected that murine organs
would retain some degree of mitotic activity during postnatal
development.

Systemic injection of PFV vectors gave transgene expression in
several visceral organs, with luciferase expression detectable until
termination of the experiments 49 days post-injection. However,
our imaging data showed that EGFP-positive cells were sparsely
distributed throughout the transduced organs, suggesting inefficient
transduction. This was potentially due to the unique transduction
characteristics of PFV vectors and their requirement for mitosis.34
y: Nucleic Acids Vol. 12 September 2018 629
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Figure 4. Intracranial Biodistribution of PFV-EGFP,

LV-EGFP, and AAV-EGFP Vectors 11 Days after

Intracranial Injection into Neonatal Mice

(A) Administration of 2.5 � 107 PFV-EGFP vector genome

copies to the lateral ventricle gives EGFP immunostaining

localized to hippocampal cells (indicated by the blue ar-

row). Scale bar, 5 mm (i); 20� magnification (ii); 40�
magnification (iii). (B) Injection of 4.2 � 106 LV-EGFP

genome copies by the same route of delivery gives

staining in a variety of brain regions with extensive spread

from the cerebral ventricles. Scale bar, 5 mm (i); 40�
magnification (ii–v). (C) A dose of 2.5 � 106 AAV-EGFP

genome copies also shows indiscriminate spread of

vector expression, with signs of migration from the ven-

tricles, indicating that even low copy numbers of AAVs do

not demonstrate site-specific localization. Scale bars,

5 mm (i and ii); 40� magnification (iii and iv).
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It is possible that the EGFP-positive cells were those that remained
mitotically active in the early postnatal period. This has important
implications for therapeutic use of systemically delivered PFV vectors
because transduction efficiency may not reach the levels required for
gene restoration, even when administered to neonates. But PFV may
alternatively possess a useful property in its ability to target cells that
remain mitotically active during postnatal development.

PFV vector administration to the neonatal mouse brain gave CNS
expression on day 13, which fell 8.2-fold by day 49 post-injection.
Direct PFV injection into the CNS has previously been compared
with LV vectors in adult rats, where it has been reported that PFV vec-
tor transduction was less stable than LVs, potentially because of re-
strictions on PFV transduction of post-mitotic tissues.54

The expression pattern we observed in dorsal brain regions and the
spinal cord were most likely due to vector migration through cerebro-
spinal fluid. The comparatively low level of spinal cord expression on
day 13 potentially explains the absence of detectable expression in this
region on day 49, given that vector expression in other regions fell
substantially across this period.
630 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
The fall in expression seen in all tissues be-
tween days 13 and 49 could be attributed to
a number of factors. Bioluminescent signaling
regularly falls after neonatal luciferase gene
transfer,50,55,56 potentially because of expansion
of non-transduced cells, restricting biolumines-
cence from deeper transduced tissues. Addi-
tionally, subgenomic RNA copies are known
to be packaged into PFV vector particles dur-
ing production,47 which may have contributed
to higher expression levels at the early time
point. But our experiments showed that intra-
cranial administration of naked plasmid DNA
gave expression that was indistinguishable
from uninjected controls, indicating that early
expression was primarily derived from the contents of PFV vector
particles.

The discrete hippocampal expression profile is an interesting point
for more detailed discussion. An intracerebroventricular injection
into neonatal mice would normally permit vector spread to distant
brain regions. Indeed, we observed broad intracranial diffusion of
LV and AAV vectors following neonatal intracranial injection, even
when administering these vectors at lower doses than PFVs. It is likely
that the biodistribution of LV vectors in the neonatal brain was partly
influenced by age-related differences in brain structure, given that LV
diffusion was clearly more restricted when administered to adult
mouse brains.

However, despite neonatal brain architecture being somewhat
permissive to vector diffusion, our data showed that PFV vector
expression was highly localized to hippocampal structures, particu-
larly the dentate gyrus. When rationalizing a potential mechanism
for this expression pattern, it is important to note that PFV vector
transduction has shown dependence on the target cell cycle.52 In
quiescent cells, PFV capsids pause at the centrosome, and uncoating
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initiates when cells undergo mitosis.53 A study by Caprariello et al.54

showed that stable PFV vector expression was detected only in prolif-
erating cells, suggesting that PFV vectors require cell division for sta-
ble transduction. This is particularly relevant to our study because
hippocampal regions, such as the dentate gyrus, generate neurons
postnatally because of proliferation and differentiation of neuronal
stem cells.57,58 This results in a substantial increase in the size of
the dentate gyrus during the first 2 postnatal weeks.59–61 Thus, there
is a possibility that our PFV vector expression pattern relates to
unique transduction characteristics, with expression potentially
derived from transduction of neuronal progenitors of the dentate
gyrus. This would constitute an interesting feature of PFV vector
technology because neuronal stem cell pathways could be hijacked
and exploited for targeted transgene delivery.

Additionally, our immunostaining images show signs of EGFP
expression in microglia and choroid plexus epithelial cells. This
observation, along with evidence for PFV transduction of mesen-
chymal stem cells,43 suggests that the postnatal hippocampal expres-
sion pattern is attributed to transduction of multiple cell types in vivo.

It is often desirable to target discrete brain regions with gene transfer
vectors, but we have shown that LV and AAV vectors spread exten-
sively from an injection site and give widespread expression after
neonatal injection, meaning that anatomical accuracy is lost without
a region-specific promoter.48 This constitutes a potential advantage of
PFV technology in scenarios requiring expression localized to the
hippocampus, such as in the recent correction of an Alzheimer’s dis-
ease model by LV-mediated peroxisome proliferator-activated recep-
tor gamma (PPARg) coactivator 1a gene transfer.62 Of course, AAVs
may be engineered to confer brain region specificity with customized
promoters and regulatory elements, but restrictions regarding AAV
packaging capacity mostly hinder inclusion of extensive non-coding
sequences. Thus, PFV has the potential advantage of being able to
package large transgenes with multiple reporters while retaining re-
gion specificity.

MATERIALS AND METHODS
Virus Vector Production

The replication-incompetent prototypic FV clone MD9, containing
the EGFP expression cassette, was used as described previously.36

A luciferase coding sequence was cloned into the vector using stan-
dard molecular cloning techniques. HEK293T cells (6 � 106) were
seeded into 10-cm dishes. After 24 hr, cells were transfected using
polyethyleneimine. The transfection mix contained 1.5 mg of the
PFV vector plasmid pMD9 and 1.5 mg (each) of the packaging plas-
mids pcoPE, pcoPG4, and pcoPP. 24 hr after transfection, 10 mM
sodium butyrate was added for 8 hr to boost cellular transcription.
After 48 hr, the supernatant was harvested, filtered (0.45 mm, Milli-
pore), and layered onto 6 mL of a sucrose cushion (20% in me-
dium). The supernatant was centrifuged in a Surespin 630 rotor
(Sorvall) at 116,000 � g at 4�C for 3 hr before storage at �80�C.
PFV-EGFP and PFV-luciferase were used at 1 � 1010 and
4 � 108 genome copies/mL, respectively.
Construction of the AAV-CMV EGFP vector (titer, 1� 1013 genome
copies/mL) and the LV-EGFP vector (titer, 8.4 � 108 genome
copies/mL) have been described previously.49,50 The LV-EGFP vector
that was administered to adult mice was produced by Oxford Ge-
netics (titer, 8.0 � 108 genome copies/mL). The maps of each vector
used in this study are detailed in Figure S6.

Animal Procedures

The outbred CD1 mice used in this study were supplied by Charles
River Laboratories. All animal experiments conducted within this
study were in agreement with the United Kingdom Home Office
guidelines, approved by the ethical review committee, and followed
the institutional guidelines at University College London.

Vector Administration

For neonatal intracranial injections, vectors were administered using
a 33G needle to deliver 2.5 mL of vector (5 mL in the case of LV vec-
tors) into the left lateral ventricle.63 On post-natal day 1, non-ran-
domized neonates were subjected to brief hypothermic anesthesia
and injected with viral vectors or plasmid DNA via the appropriate
route.

For adult intracranial injections, 32-day-old CD1 mice (two females
and onemale, approximately 20 g body weight) were initially anesthe-
tized with isoflurane and placed in a stereotaxic frame (Kopf
Instruments, USA) over a heat mat. Metacam (0.013 mg/kg) and bu-
prenorphine (0.02 mg/kg) were injected via subcutaneous injection.
One burr hole was drilled unilaterally at the following coordinates:
medium/lateral (ML), 1.00; anteroposterior, �0.2; dorsoven-
tral, �2.00. The coordinates were adjusted in proportion to the dis-
tance between the real bregma and lambda over an ML max of
4.00mm. 4.0� 106 vector genome copies were injected into the lateral
ventricle using a Hamilton syringe at a speed of 250 nL/min.

Plasmid DNA (Figure S3) was injected at a dose of 1.5 mg. Intravenous
injections were delivered via the superficial temporal vein in 20 mL
volumes. Intra-peritoneal injections were delivered in 200-mL vol-
umes. Subcutaneous injections were delivered in 2.5-mL volumes
administered under the skin of the left flank. Experimental groups
were blinded during the course of in vivo investigations. Each pup
received unique identification with a subcutaneous footpad tattoo.

All experiments were carried out under United Kingdom Home
Office license PPL 70/8030 and approved by the ethical review com-
mittee of University College London.

Whole-Body and Macroscopic Imaging

Mice injected with the PFV-luciferase vector were subsequently
imaged 13 and 49 days after injection by whole-body bioluminescence
imaging (IVIS) (Caliper Life Sciences, Hopkinton, MA, USA) as
described previously.55 Those that received PFV-EGFP were sacri-
ficed on day 11 and examined for direct EGFP expression using a ste-
reoscopic fluorescence microscope (MZ16F, Leica Microsystems,
Wetzlar, Germany) as described previously.56 Images were captured
Molecular Therapy: Nucleic Acids Vol. 12 September 2018 631
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using a digital microscope camera (DFC420, Leica Microsystems,
Milton Keynes, UK) and software (Image Analysis, Leica Microsys-
tems). Mice that received intracerebral injections of double-stranded
DNA (dsDNA) plasmid were imaged 5 days and 11 days post-injec-
tion, with luciferase activity normalized to the bioluminescent signal
produced by replicate 1 of the uninjected group.

Tissue Preparation

Mice that received neonatal intracranial injections were euthanized
by terminal anesthesia 11 days after vector injection before fixing
the skinned cranium in 4% paraformaldehyde solution for 24 hr.
The brain was carefully excised and fixed for a further 24 hr before
transfer to 30% sucrose in 50 mM Tris-buffered saline (TBS).

Adult mice receiving intracranial injections were perfused under ter-
minal anesthesia (sodium pentobarbital) 13 days after vector injection
with PBS-heparin (0.8 mg/mL), followed by 4% paraformaldehyde
(PFA) in PBS (Santa Cruz Biotechnology). The brains were then
removed and left in 4% PFA and PBS overnight at 4�C.

For each sample, 40-mm frozen sections were cut using a Microm
HM 430 freezing microtome (Thermo Fisher Scientific, Loughbor-
ough, UK).

Free-Floating Immunohistochemistry

Sections were rinsed with TBS three times for 5 min between each
step. Endogenous peroxidase activity was quenched by incubating
the sections in 1% hydrogen peroxide in TBS for 30 min. Blocking
was carried out for 30 min in a solution of 15% normal goat serum
(NGS; Vector Laboratories, Burlingame, CA, USA) in TBS-T (TBS so-
lution containing 0.3% Triton X-100). Sections were incubated over-
night at 4�C with rabbit anti-EGFP antibody (1:10,000, ab183734,
Abcam, Cambridge, UK), followed by 2 hr with goat anti-rabbit
immunoglobulin G (IgG) (Vector Laboratories, PI-1000) at 1:1,000;
both antibodies were diluted with 10% NGS in TBS-T. Sections
were then incubated for 2 hr in Vectastain ABC (avidin-biotin) solu-
tion (ABC, Vector Laboratories, Peterborough, UK) prepared at
1:1000 in TBS 30 min before use. Sections were incubated in the
dark in a 0.05% solution of diaminobenzidine (DAB), prepared by
dissolving a 10-mg DAB tablet (Sigma, D5905) into 20 mL TBS. After
mixing well and filtration through a 0.45-mm syringe filter, 6 mL of
30% hydrogen peroxide was added. Sections were transferred onto
gelatin-coated slides in a rostral-caudal order and allowed to dry over-
night. They were dehydrated in a series of industrial methylated
spirits (IMSs) and placed in HistoClear solution for 20 min before
applying coverslips using DPX mounting medium (VWR).

Immunofluorescence and Scanning Confocal Microscopy

Free-floating brain sections were subjected to fluorescent immuno-
histochemistry. Antibodies against EGFP and the neuron-specific
marker NeuN were used. Sections were initially blocked for 30 min
in TBS-T and 15% NGS and then incubated at 4�C overnight with
rabbit anti-EGFP (1:4,000) and mouse anti-NeuN (1:500; ABN91,
Millipore, Billerica, MA, USA) antibodies made up in TBS-T and
632 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
10% NGS. The sections were rinsed three times for 5 min in TBS
and then incubated with goat anti-rabbit Alexa 488 (1:1,000, Thermo
Fisher Scientific, A-11008) and goat anti-mouse Alexa 546 (1:1,000,
Thermo Fisher Scientific, A-11030) for 2 hr. Sections were again
rinsed three times in TBS solution and then incubated with DAPI
(1:2,000, Invitrogen). Sections were then mounted onto gelatin-
coated slides, and coverslips were mounted with Fluoromount G
(Southern Biotech, Birmingham, AL, USA). Slides labeled with
immunofluorescence were then analyzed, and Z stacks were captured
using a laser-scanning confocal microscope (Leica SP5, Leica
Microsystems).

Statistical Analysis

All statistical analyses were carried out usingMATLAB 2015a. A two-
tailed Welch’s t test was used to compare mean bioluminescence
values. This statistical test is robust for datasets without equal vari-
ance or sample size. Mouse sample sizes were limited to three or
four animals per experimental group for in vivo investigations.
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