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Abstract: Nanoparticles possess unique features due to their small size and can be composed of
different surface chemistries. Carbon quantum dots possess several unique physico-chemical and
antibacterial activities. This review provides an overview of different methods to prepare carbon
quantum dots from different carbon sources in order to provide guidelines for choosing methods
and carbon sources that yield carbon quantum dots with optimal antibacterial efficacy. Antibacterial
activities of carbon quantum dots predominantly involve cell wall damage and disruption of the
matrix of infectious biofilms through reactive oxygen species (ROS) generation to cause dispersal of
infecting pathogens that enhance their susceptibility to antibiotics. Quaternized carbon quantum
dots from organic carbon sources have been found to be equally efficacious for controlling wound
infection and pneumonia in rodents as antibiotics. Carbon quantum dots derived through heating
of natural carbon sources can inherit properties that resemble those of the carbon sources they are
derived from. This makes antibiotics, medicinal herbs and plants or probiotic bacteria ideal sources
for the synthesis of antibacterial carbon quantum dots. Importantly, carbon quantum dots have been
suggested to yield a lower chance of inducing bacterial resistance than antibiotics, making carbon
quantum dots attractive for large scale clinical use.

Keywords: nanoparticles; precursor; reactive oxygen species; photodynamic activity; biofilm; infec-
tion; size control; dispersal; antibiotics; synergy

1. Introduction

The spread of antibacterial-resistant infections is considered to be one of the largest
threats to public health [1]. Concerns particularly arise from prolonged use and overuse
of antibiotics, both in clinical and in agricultural practices [2,3]. Since bacteria can adapt
quickly to many hostile environmental conditions, including antibiotic exposure, antibiotic
resistance is rampant [4], and occurring faster and faster after the market introduction of a
new antibiotic. Clinically, antibiotic-resistant bacterial infections are highly challenging
to treat, often resulting in morbidity and mortality [5]. New, innovative antibacterial
agents on a non-antibiotic basis, or that can bypass bacterial mechanisms of developing
antibiotic-resistance [6], are therefore urgently needed.

Nanoparticles possess many unique features due to their extremely small size. Nanopar-
ticles can be composed of highly different surface chemistries and generally range in size
from several nanometers to hundreds of nanometers (for comparison, a gold atom has
a diameter of one third of a nanometer), yielding large surface areas and highly diverse
shapes. These unique features can also provide nanoparticles with antibacterial activity.
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Carbon quantum dots have a diameter of less than 10 nm. Carbon quantum dots can
be classified according to their structure and composition. Graphene dots consist of a single
or a few graphene layers [7,8], and polymer dots are aggregated or cross-linked polymer
structures around a hollow or carbon core [9–11]. Carbon nanodots are carbon-based
quantum dots [12,13]. All carbon quantum dots possess sp2 or sp3-hybridized carbon
domains that provide stability and special optical features, including giant Stokes shifts in
photoluminescence and a strong dependence of emission color on excitation wavelength,
depending on their size, core structure and composition [14]. Carbon quantum dots are
widely investigated for possible application in bio-imaging, drug delivery, biosensors,
cancer therapy and antibacterial applications [15–19].

Carbon quantum dots can be obtained through a variety of methods (Table 1). Size
control is critical in the synthesis of carbon quantum dots [20] and, collectively, it can be seen
from Table 1 that poor size control is the main problem in the synthesis of carbon quantum
dots. Accordingly, synthesis of carbon quantum dots is often followed by dialysis [21],
centrifugation [22] or filtration [23] to obtain a uniform size distribution.
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Table 1. Summary of methods to synthesize carbon quantum dots, including suitable carbon sources, their advantages and disadvantages.

Method Schematic Synthesis Advantages Disadvantages Reference

Acidic oxidation
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Table 1. Cont.

Method Schematic Synthesis Advantages Disadvantages Reference

Electrochemical synthesis

Antibiotics 2021, 10, x FOR PEER REVIEW 4 of 22 
 

La

ser 

ir-

ra-

di-

a-

tio

n 

 

Short 

reac-

tion 

time 

Poor size control [58–60] 

El

ec-

tro

ch

e

mi

cal 

sy

nt

he

sis 

 

Good 

size 

con-

trol 

Mainly inorganic 

sources, few available 

small molecule precur-

sors 

 

[12,61–66] 

N

an

or

ea

cto

r-

as-

sis

te

d 

sy

nt

he

sis 

 

Good 

size 

con-

trol 

Time consuming, nano-

reactor preparation is 

difficult, only liquid 

precursors 

[67–70] 

“Top-down” synthesis methods break down large carbon-rich materials as a carbon 
source, whereas “bottom-up” methods synthesize carbon quantum dots from small pre-
cursor molecules. Both the method applied as well as the carbon source or precursor used 
are determinant factors for the final physico-chemical and functional properties of carbon 
quantum dots, including their biocompatibility and antibacterial efficacy [71,72]. There-
fore, we first provide a more detailed description of the different synthesis methods listed 
in Table 1, and a summary of physico-chemical and functional properties, including anti-
bacterial activity of carbon quantum dots made using different methods and carbon 
sources, with the aim of providing guidelines for choosing methods and carbon sources 
that yield optimal antibacterial activity of carbon quantum dots. 

Good size control Mainly inorganic sources, few available
small molecule precursors [12,61–66]

Nanoreactor-assisted synthesis

Antibiotics 2021, 10, x FOR PEER REVIEW 4 of 22 
 

La

ser 

ir-

ra-

di-

a-

tio

n 

 

Short 

reac-

tion 

time 

Poor size control [58–60] 

El

ec-

tro

ch

e

mi

cal 

sy

nt

he

sis 

 

Good 

size 

con-

trol 

Mainly inorganic 

sources, few available 

small molecule precur-

sors 

 

[12,61–66] 

N

an

or

ea

cto

r-

as-

sis

te

d 

sy

nt

he

sis 

 

Good 

size 

con-

trol 

Time consuming, nano-

reactor preparation is 

difficult, only liquid 

precursors 

[67–70] 

“Top-down” synthesis methods break down large carbon-rich materials as a carbon 
source, whereas “bottom-up” methods synthesize carbon quantum dots from small pre-
cursor molecules. Both the method applied as well as the carbon source or precursor used 
are determinant factors for the final physico-chemical and functional properties of carbon 
quantum dots, including their biocompatibility and antibacterial efficacy [71,72]. There-
fore, we first provide a more detailed description of the different synthesis methods listed 
in Table 1, and a summary of physico-chemical and functional properties, including anti-
bacterial activity of carbon quantum dots made using different methods and carbon 
sources, with the aim of providing guidelines for choosing methods and carbon sources 
that yield optimal antibacterial activity of carbon quantum dots. 

Good size control Time consuming, nanoreactor preparation
is difficult, only liquid precursors [67–70]



Antibiotics 2021, 10, 623 5 of 22

“Top-down” synthesis methods break down large carbon-rich materials as a carbon
source, whereas “bottom-up” methods synthesize carbon quantum dots from small pre-
cursor molecules. Both the method applied as well as the carbon source or precursor
used are determinant factors for the final physico-chemical and functional properties of
carbon quantum dots, including their biocompatibility and antibacterial efficacy [71,72].
Therefore, we first provide a more detailed description of the different synthesis methods
listed in Table 1, and a summary of physico-chemical and functional properties, including
antibacterial activity of carbon quantum dots made using different methods and carbon
sources, with the aim of providing guidelines for choosing methods and carbon sources
that yield optimal antibacterial activity of carbon quantum dots.

2. Methods for Synthesizing Carbon Quantum Dots

In the forthcoming sections, we will describe the different methods for synthesizing
carbon quantum dots listed in Table 1 in more detail.

2.1. Acidic Oxidation

Acidic oxidation is a relatively simple method in which mainly inorganic carbon
sources are oxidized by exposure to HNO3, H2SO4, NaNO3, KMnO4 or other oxidizers
at temperatures up to 140 ◦C. Reaction times to break down a carbon source into carbon
quantum dots range from 12 to 48 h [21,24–36]. The acidic conditions combined with high
temperatures necessitate extreme care when applying acidic oxidation to synthesize carbon
quantum dots. Different carbon sources, such as coal [25,27], fullerene C60 [26], carbon
nano-powders [24,29,30,34], carbon fibers [35], candle soot [21] and graphite [31–33] can
be applied for acidic oxidation, resulting in carbon quantum dots. Typically, cleavage
occurs at carbon-carbon bonds, introducing negatively charged, oxygen-containing groups,
such as C-O, C=O or O-H, onto the surface of the resultant carbon quantum dots (Figure
1). Thus prepared, carbon quantum dots are hydrophilic and highly suitable for further
chemical modification [25,26]. In order to obtain a uniform size distribution and remove
acid residues and molecular intermediates, carbon quantum dots synthesized by acidic
oxidation usually need purification (Figure 2) [45].
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Figure 2. Purification of carbon quantum dots, obtained by oxidation of cysteine using citric acid
under hydrothermal conditions, via column chromatography: (A) Different fractions obtained in
the purification of carbon quantum dots by chromatography. (B) FTIR spectra of dried free-floating
fluorophores (TPDCA) first leaving the chromatography column and carbon quantum dots synthe-
sized during acidification for 3 h at 150 ◦C (mild acidification). (C) FTIR spectra of different fractions
of carbon quantum dots synthesized during acidification for 6 h at 200 ◦C (moderate acidification),
obtained after different retention times in the chromatography column. Note the disappearance of
the absorption bands due to free-floating fluorophores. Reproduced with permission from Ref. [45],
copyright Royal Society of Chemistry, 2019.

2.2. Pyrolysis

Pyrolysis can be applied to synthesize carbon quantum dots by heating carbon sources
to reaction temperatures up to 1500 ◦C [42]. Pyrolysis allows one to synthesize carbon quan-
tum dots within several hours, but with a highly variable yield ranging from 0.01% [37] to
51% [19], depending on the carbon source and treatment conditions applied. Pyrolysis can
typically use widely different carbon sources, ranging from silicon carbide [42], flour [43],
gentamicin sulfate [39], ammonium citrate [19] or dopamine [38], together with spermi-
dine, citric acid or dicyandiamide [41]. In pyrolysis, carbon quantum dots result from
intermolecular dehydration, carbonization and condensation, and the resulting carbon
skeleton is held together by chemical groups such as –SO2, –HSO3 and –H2PO4 [44].

2.3. Hydrothermal Synthesis

Hydrothermal synthesis can either be applied as a top-down or bottom-up method to
prepare carbon quantum dots, using natural biomass, graphite, polymers or small organic
molecules as carbon sources. In hydrothermal synthesis, carbon sources are heated in an
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aqueous suspension to reaction temperatures ranging from 120 ◦C to 260 ◦C. Hydrothermal
synthesis of carbon quantum dots is commonly performed in an autoclave, requiring
between 4 h and 24 h [22,23,46–51,53]. Hydrothermally obtained carbon quantum dots do
not possess a uniform size (Figure 3) and require dialysis or filtration to obtain a uniform
size distribution.
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Figure 3. Dialysis of carbon quantum dots hydrothermally synthesized using graphite powders to
obtain quantum dots with a uniform size distribution: (A) TEM micrographs and size distribution of
carbon quantum dots that passed through a dialysis bag, showing smaller particles with a uniform
size distribution. (B) TEM micrographs and size distribution of carbon quantum dots that did not
pass through a dialysis bag, showing larger particles with a wide size distribution. Reproduced with
permission from Ref. [52], copyright Elsevier, 2014.

2.4. Microwave-Assisted Synthesis

Microwave-assisted synthesis is applied in combination with acidic oxidation or hy-
drothermal synthesis methods as a convenient way to achieve the desired high-reaction tem-
peratures [21,54–57]. Compared with conventional heating systems, microwave-heating
is more targeted at the carbon source, which shortens the reaction times from several
days [29] to hours [57] or even minutes [21].

2.5. Laser Irradiation

Laser irradiation can be a top-down or bottom-up method to synthesize carbon quan-
tum dots by pulsed, high energy laser irradiation of carbon sources, such as graphite [59,73],
benzene [58] or toluene [60], reducing the time required for synthesis to several hours or
even minutes. Carbon quantum dots derived using laser ablation usually need centrifuga-
tion or filtration to remove large nanoparticles.

2.6. Electrochemical Synthesis

In electrochemical synthesis of carbon quantum dots, a counter electrode and a work-
ing electrode made of an appropriate carbon source, such as graphite rods [12,64,65], carbon
fibers [63] or multi-walled carbon nanotubes [62], are used. As an electrolyte solution, a
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degassed solution of acetonitrile supplemented with 0.1 M tetrabutylammonium [62], wa-
ter [64] or phosphate solutions [65] has been applied. Upon application of a voltage across
the electrodes, carbon quantum dots can be top-down exfoliated from the carbon source
constituting the working electrode. As a major advantage, the size of carbon quantum dots
can be precisely controlled by adjusting the electrode potential and current density (see
Figure 4A).
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Electrochemical synthesis can also be employed bottom-up using alcohols or vitamin
C as precursor molecules to synthesize carbon quantum dots under constant voltage
conditions through molecular crosslinking and dehydration [61,66]. A higher applied
potential resulted in larger carbon quantum dots (Figure 4B), which is in contrast to using
bulk carbon materials, as the small molecules would undergo crosslinking and dehydration
to form carbon quantum dots.

2.7. Nanoreactor-Assisted Synthesis

Size control is one of the major challenges in the synthesis of carbon quantum dots.
This has stimulated the development of templates for the synthesis of carbon quantum
dots in a confined volume (“nanoreactors”). Nanoreactors are mostly mesoporous silica
nanoparticles because they possess high thermal stability, uniform pore size distribu-
tion and large pore volume [67–70]. Nanoreactor-assisted synthesis is usually performed
through bottom-up pyrolysis, after the absorption of precursor molecules which are dis-
solved in a fluid phase into the nanoreactor. The release of the synthesized carbon dots
can be achieved, e.g., by exposure of the nanoreactor to alkaline solutions, necessitating
dialysis to purify the resulting carbon quantum dot suspension. Nanoreactor construction
can be difficult and time-consuming to prepare, but the use of nanoreactors directly yields
highly monodisperse carbon quantum dots with narrow size distribution (Figure 5).
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soft–hard template nanoreactor consisting of Pluronic P123 micelles and mesoporous silica. Carbon
quantum dots were synthesized from: (A) 1,3,5-trimethylbenzene, (B) diaminebezene, (C) pyrene
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3. Physico-Chemical and Functional Properties of Carbon Quantum Dots

Carbon quantum dots have physico-chemical and functional properties, including
antibacterial activity, that depend on the carbon source or precursor molecules used. In this
section, we will briefly overview physico-chemical and functional properties characteristic
to carbon quantum dots derived from different sources, including the coating of carbon
nanoparticles to enhance their functionality. In Section 4, we will deal with the antibacterial
activities of carbon quantum dots.

3.1. Carbon Quantum Dots Derived from Organic Carbon Sources

Organic reagents can be employed in various methods for the preparation of carbon
quantum dots (see Table 1), and range from polyamine [19,21,37,38], quaternary ammo-
nium salt [47,74], gentamicin [39], poly(sodium-4-styrene sulfonate) [46], polyvinylpyrroli-
done [46], metronidazole [49] citric acid and polyethyleneimine [75], vitamin C [61] to
benzene [58], polyoxyethylene−polyoxypropylene−polyoxyethylene Pluronic 68 and phos-
phoric acid [76]. The quantum yield of carbon dots prepared from organic sources using
heating-based carbonization increases with increasing reaction temperature (Figure 6A) [37].
However, when carbonization temperatures become too high, carbon quantum dots ob-
tained can become difficult to suspend [37–39].

Carbon quantum dots can bear similarity to the organic reagents that they are de-
rived from (Figure 6B) [19,21,37–39,48]. Similarities disappear, however, when reaction
temperatures become too high. Accordingly, carbon quantum dots derived from amide-
and amine-rich sources have a more positive surface charge than carbon dots derived from
acids and sulfonate groups [19,21,37,38,46,49,77]. Zeta potentials of carbon quantum dots
synthesized from tri-basic citric acid and dicyandiamide under hydrothermal conditions
were pH dependent. Below the lowest pKa of citric acid (2.94), citric acid-derived carbon
quantum dots were positively charged due to protonation (Figure 6C) while, above pH
3 and its two higher pKa values (4.28 and 5.21), carbon quantum dots became negatively
charged [77].
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Figure 6. Physico-chemical properties of carbon quantum dots prepared from organic reagents: (A) Fluorescence spectra of
carbon quantum dots pyrolytically synthesized from spermidine at different temperatures. Reproduced with permission from
Ref. [37], copyright American Chemical Society, 2017. (B) Similarities in infrared absorption spectra between gentamicin sulfate
and carbon quantum dots (CQDT) derived through calcination at different temperatures (T), demonstrating preservation of
the active structure of gentamicin sulfate. Reproduced with permission from Ref. [39], copyright Royal Society of Chemistry,
2020. (C) Zeta potentials at different pH of carbon quantum dots hydrothermally synthesized from tri-basic citric acid and
dicyandiamide. Reproduced with permission from Ref. [77], copyright Royal Society of Chemistry, 2014.

3.2. Carbon Quantum Dots Derived from Inorganic Carbon Sources

Carbon nanopowders and graphite are the most common inorganic carbon sources
used for the synthesis of carbon quantum dots. Inorganic carbon sources can be applied in
a wide variety of synthesis methods (Table 1).

Graphite has been employed as a carbon source using acidic oxidation to yield carbon
quantum dots [31–33] bearing a negative charge with zeta potentials around −22 mV due
to the oxygen-containing groups on the surface. Quantum yields ranged from 12.5% to
33% depending on the nitrogen content. When the reaction was performed in the presence
of ammonia, nitrogen was introduced in carbon quantum dots. These nitrogen-doped
carbon quantum dots exhibited higher quantum yields than nitrogen free carbon quantum
dots, and were able to generate a higher amount of reactive oxygen species (ROS) under
photoexcitation [32]. Additionally, carbon quantum dots prepared from graphite have been
reported to possess peroxidase-like activity, which catalyzed H2O2 decomposition and
generate hydroxyl radicals [54].

3.3. Carbon Dots Derived from Natural Carbon Sources

Compared to synthetic carbon sources, natural carbon sources are ecologically friendly,
cost-effective and easy to obtain [23,78–81]. Natural carbon sources such as leaves [78],
paper [81], honey [82], flour [83] and bacteria [23] have all been applied to synthesize
carbon quantum dots. Natural carbon sources are mostly applied in pyrolysis, hydrother-
mal heating and microwave-assisted methods to synthesize carbon quantum dots (see
Table 1). Carbon quantum dots prepared from highly different natural carbon sources
roughly possess comparable elemental compositions. However, natural carbon sources
often contain non-carbon atoms that have replaced a carbon atom in the molecular structure
of the molecules. Typically, the presence of such hetero-atoms, including, e.g., nitrogen,
phosphorus or sulphur, can provide special properties to carbon quantum dots during
synthesis, without additional surface coating [32,33,77]. Using Artemisia argyi leaves as
the carbon precursor, carbon quantum dots were synthesized simulating smoking of the
leaves [78] that consisted mainly of carbon, oxygen and nitrogen (Figure 7A). Carbon
quantum dots derived from cigarette smoke, i.e., tobacco leaves, had a similar composition
as Artemisia argyi leave-derived carbon quantum dots [79]. Carbon quantum dots prepared
from flour under microwave-assist had a quantum yield of 5% and were mainly composed
of carbon, oxygen and nitrogen (Figure 7B), resulting in a slightly negative zeta poten-
tial of −4 mV [83]. Carbon quantum dots hydrothermally derived from the bacterium
Lactobacillus plantarum at a quantum yield of 10% were also mainly composed of carbon,
with oxygen and nitrogen as the main hetero-atoms, next to small amounts of phosphorus
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and sulphur (Figure 7C). These hetero-atoms yielded highly negatively zeta potentials of
−22 mV. Thus, it can be concluded that the similarity between carbon quantum dots and
their natural carbon sources is mainly due to the presence of hetero-atoms. Differences
in the prevalence of hetero-atoms are responsible for the different properties of carbon
quantum dots derived from natural sources.
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3.4. Surface Modification of Carbon Quantum Dots to Enhance their Functionality

Carbon quantum dots in the absence of surface modification can be weakly fluorescent,
or do not exhibit the functionality desired. Accordingly, carbon quantum dots can be
surface modified with organic molecules to generate strong fluorescence, photodynamic
effects and functionalities that include antibacterial activity. The photodynamic effect of
carbon quantum dots synthesized from carbon nanopowders by acidic oxidation could
be enhanced by amidation with 2,2′-(ethylenedioxy) bis(ethylamine), yielding positively
charged carbon quantum dots with a quantum yield between 7 and 27%, depending on the
effectiveness of surface passivation [24,29,30,34]. Carbon quantum dots hydrothermally
prepared from citric acid and polyethyleneimine were positively charged at pH 5.0 due
to the possession of cationic amino groups, and could be made negatively charged by
modification with 2,3-dimethylmaleic-anhydride [75].

4. Antibacterial Activities of Carbon Quantum Dots

Antibacterial activity is often misused as an expression, as it can relate to several
different mechanisms [19,21,46,47,54,61,74]. The mildest antibacterial activity relates to
growth inhibition, impeding multiplication of bacteria and allowing the host immune
system ample time to deal with infecting bacteria [23]. Killing is the strongest expression
of antibacterial activity and implies that a bacterium has permanently lost its ability to
be metabolically active and multiply [19,21,37,38,46,58,61,76]. Both growth inhibition and
killing can be preceded or accompanied by cell wall damage [39,47,78,84].

4.1. Bacterial Killing by Carbon Quantum Dots

Direct antibacterial activity of carbon quantum dots is due in a major part to oxidative
stress induced by ROS [85] generated by carbon quantum dots. In low concentrations,
ROS acts as a signaling molecule within cells in response to, e.g., a pathogen challenge.
Oxidative stress develops when the level of ROS generation exceeds the natural antioxidant
defense of a bacterium [86] and, when overly present, it causes oxidative damage to
nucleotides, lipids and proteins, leading to cell wall damage and bacterial death [21,46].
Hetero-atoms in carbon quantum dots enhance the generation of ROS due to extra free
electron incorporation in carbon dots [46]. The lifetime of ROS is generally short, depending
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on the type of ROS. As compared with other types of ROS, hydrogen peroxide has the
longest lifetime of about 1 ms. Other types of ROS have lifetimes in the µs-range [87]. As a
result, ROS can only diffuse over short distances up to several 100 nm, allowing diffusion
across lipid membranes. Nevertheless, these short lifetimes of ROS necessitate generation
in the close vicinity of its target pathogens for effective antibacterial activity. Nitrogen
hetero-atoms in carbon quantum dots will yield positively charged groups and enhance
the electrostatic double-layer attraction to negatively charged bacterial cell surface [46] that
will aid ROS generation close to target pathogens. Additionally, a positive charge on its
own, i.e., without ROS generation can cause antibacterial effects.

Positively charged carbon quantum dots prepared from spermidine [19,37] or qua-
ternary ammonium salts [47] have been demonstrated to adhere strongly to proteins,
porins and bacterial cell wall peptidoglycan, resulting in inhibition of cell wall synthesis
in Gram-positive and Gram-negative bacteria, persister cells and antimicrobial-resistant
bacteria. As a result, the minimal inhibitory concentrations (MICs) of carbon quantum
dots prepared from spermidine [19] or quaternary ammonium salts [47] for different
Gram-positive and Gram-negative pathogens were up to 250,000-fold lower than those of
spermidine (around 26 mg/mL), and up to 8-fold lower than those of ammonium salts
(around 16 µg/mL [88]), indicating that their carbonization enhances antibacterial activity
(also see Table 2). The MICs of these carbon quantum dots in terms of weight per unit
volume are therewith considerably lower than for antibiotics (MIC of MRSA for gentamicin,
rifampicin, penicillin and methicillin was 8, 8, >64 and >64 µg/mL, respectively, and the
MIC for ampicillin-resistant E. coli for gentamicin, rifampicin, penicillin and methicillin was
>64, 4, >64, >64 µg/mL, respectively [47]). Carbon quantum dots derived from Artemisia
argyi leaves killed only Gram-negative bacteria by inhibiting enzyme activity exclusively
related with Gram-negative bacterial cell wall synthesis [78]. After damaging the cell wall,
carbon quantum dots gain access to the interior of a bacterium to cause oxidative damage
to its DNA [21].
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Table 2. Summary of carbon quantum dots synthesized from different carbon sources, their antibacterial activity and efficacy (i.e., MIC values).

Carbon Source Synthetic Method Antibacterial Activity Bacterial Strains Used MIC *
(µg/mL) Ref.

From Organic Reagents

Polyamine, polyamine combined
with ammonium, dopamine

Pyrolysis,
microwave-assisted synthesis

Bacterial killing through cell wall damage;
ROS generation

Gram-positive
Staphylococcus aureus, Bacillus

subtilis, Salmonella enterica,
methicillin-resistant S. aureus

(MRSA)

0.9–8

[19,37,38]

Gram-negative
Escherichia coli, Pseudomonas

aeruginosa
0.9–8

Bis-quaternary ammonium salt Hydrothermal method

Bacterial killing through cell wall damage;
ROS generation; biofilm growth inhibition;

biofilm dispersal through electrostatic
interactions

Gram-positive
MRSA, S. aureus 2–4

[47]Gram-negative
E. coli, ampicillin-resistant E.

coli (AREC)
8

Dimethyloctadecyl- [3-
(trimethoxysilyl)propyl]ammonium

chloride
Hydrothermal method

Biofilm dispersal through electrostatic and
hydrophobic interaction with

Gram-positive bacteria

Gram-positive
S. aureus No MIC reported

[74]
Gram-negative

E. coli No activity

3-[2-(2-
aminoethylamino)ethylamino]propyl-

trimethoxysilane, glycerol,
quaternary ammonium compound

lauryl betaine

Pyrolysis Bacterial killing through cell wall damage

Gram-positive
S. aureus, Micrococcus luteus,

B. subtilis
8 – 12

[89]Gram-negative
E. coli, P. aeruginosa,

Proteusbacillus vulgaris
>200
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Table 2. Cont.

Carbon Source Synthetic Method Antibacterial Activity Bacterial Strains Used MIC *
(µg/mL) Ref.

Dimethyldiallyl ammonium chloride,
glucose

Pyrolysis

Acted on ribosomal proteins in
Gram-positive bacteria and

downregulated metabolization-related
proteins of Gram-negative bacteria

Gram-positive
S. aureus, MRSA,

Staphylococcus epidermidis,
Enterococcus faecalis

12.5–25

[90]

Gram-negative
E. coli, P. aeruginosa 25–50

Diallyldimethylammonium chloride,
2,3-

epoxypropyltrimethylammonium
chloride

Pyrolysis
Affected protein translation,

posttranslational modification and protein
turnover

Gram-positive
S. aureus, MRSA, S.
epidermidis, Listera

monocytogenes, E. faecalis

5 – 20

[91]
Gram-negative

E. coli, Serratia marcescens,
Salmonella paratyphi-β

No activity

Citric acid, L-glutathion, polyethene
polyamine

Pyrolysis Bacterial killing through cell wall damage;
ROS generation

Gram-positive
S. aureus, MRSA, L.

monocytogenes, E. faecalis
15–60

[92]Gram-negative
E. coli, P. aeruginosa, S.

marcescens, Drug-resistant P.
aeruginosa, Drug-resistant E.

coli

120–480

Citric acid combined with
aminoguanidine

Hydrothermal method Bacterial killing through cell wall damage;
biofilm growth inhibition

Gram-positive
S. aureus, B. cereus No activity

[84]Gram-negative
E. coli, Salmonella enteritidis,
Salmonella typhimurium, P.

aeruginosa

0.5–1
(P. aeruginosa),

>1000
(other strains)
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Table 2. Cont.

Carbon Source Synthetic Method Antibacterial Activity Bacterial Strains Used MIC *
(µg/mL) Ref.

Citric acid combined with branched
polyethyleneimine,

2,3-dimethylmaleic anhydride
Hydrothermal method

Biofilm dispersal through electrostatic and
hydrophobic interaction with

Gram-positive bacteria

Gram-positive
S. epidermidis No MIC reported [75]

Gentamicin sulfate Pyrolysis
Biofilm dispersal; bacterial killing through

cell wall damage; ROS generation and
maintenance of antibiotic features

Gram-positive
S. aureus

0.002
(at pH 5.5)

[39]
Gram-negative

E. coli
0.203

(at pH 5.5)

Ciprofloxacin hydrochloride Hydrothermal method Bacterial killing through maintenance of
antibiotic features

Gram-positive
S. aureus 1.0

[48]
Gram-negative

E. coli 0.025

Metronidazole Hydrothermal method Bacterial killing through maintenance of
antibiotic features

Gram-positive
S. mutans No activity

[49]Gram-negative
E. coli, Porphyromonas

gingivalis
No MIC reported

Vitamin C Electrochemical method Bacterial killing through cell wall damage

Gram-positive
S. aureus, Bacillus sp. WL-6, B.

Subtilis
No MIC reported

[61]
Gram-negative
E. coli, AREC No MIC reported

Poly-oxyethylene, -oxypropylene,
-oxyethylene Pluronic 68

Pyrolysis Bacteria killing through ROS production
upon blue light irradiation

Gram-positive
S. aureus, B. cereus No MIC reported

[76]
Gram-negative

P. aeruginosa No MIC reported
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Table 2. Cont.

Carbon Source Synthetic Method Antibacterial Activity Bacterial Strains Used MIC *
(µg/mL) Ref.

From Inorganic Carbon Sources

Carbon nanopowder,
2,2′-(ethylenedioxy) bis(ethylamine) Acidic oxidation

Bacterial killing through ROS production
upon visible light irradiation

Gram-positive
B. subtilis 64

[24,29,30,34,93]
Gram-negative

E. coli 64

Graphite Acidic oxidation Bacterial killing through ROS generation
under laser irradiation

Gram-positive
MRSA, S. aureus No MIC reported

[31–33]
Gram-negative

E. coli No MIC reported

Carbon fibers Acidic oxidation Biofilm dispersal through interference
with the self-assembly of amyloid peptides

Gram-positive
S. aureus No MIC reported [94]

From Natural Carbon Sources

Lactobacillus plantarum Hydrothermal methods Biofilm growth inhibition Gram-negative
E. coli No MIC reported [23]

Artemisia argyi leaves Smoking
Bacterial killing by cell wall damage

through cell wall-related enzyme
inhibition

Gram-positive
S. aureus, B. Subtilis No activity

[78]
Gram-negative

E. coli, P. aeruginosa, P. vulgaris No MIC reported

Cigarettes Smoking Bacterial killing through destruction of
DNA double helix structure

Gram-positive
S. aureus, AREC, B. subtilis No MIC reported

[79]Gram-negative
E. coli, kanamycin-resistant E.
coli, P. vulgaris, P. aeruginosa

No MIC reported

* MIC values for quantum carbon dots are based on weight per unit volume, but values may not be directly comparable with the traditional MIC value of antibiotics. MIC values of antibiotics refer to the weight
of dissolved molecules, while carbon quantum dots are nanoparticles with diameters that are larger than of molecules.
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The inheritance of antibacterially active chemical functionalities by carbon quantum
dots as derived, e.g., from carbonization of gentamicin sulfate (Figure 6B) forms another
mechanism of antibacterial activity by carbon quantum dots [39]. Based on a weight
comparison, MICs of gentamicin sulfate-derived carbon quantum dots by carbonization
at low temperature (150 ◦C) were roughly of the same order of magnitude as the MIC
of gentamicin against S. aureus (0.18 µg/mL) or E. coli (3 µg/mL). Carbonization at tem-
peratures above 190–200 ◦C caused loss of antibacterial activity. However, the MICs of
gentamicin-derived carbon quantum dots when carbonized at 180 ◦C were lower at an
acidic biofilm pH (see Table 2) those of gentamicin for S. aureus (0.2 µg/mL) and E. coli
(23 µg/mL) [39].

4.2. Carbon Quantum Dots as a Biofilm Dispersant

In infection, bacteria not only adhere to each other to form aggregates, but also to
mammalian cell surfaces, bone or tooth structures or prosthetic implant surfaces. Once it
has adhered, a bacterium adapts to its substratum surface and starts producing a protective
matrix composed of extracellular polymeric substances (EPS) that enwraps them into a
biofilm [94,95]. The biofilm-mode of growth protects the inhabiting bacteria against the
host immune system and antibiotic penetration [95,96]. Accordingly, disruption of the EPS
matrix may also be considered as a mechanism of antibacterial activity, as it causes detach-
ment of bacteria into a planktonic state (“biofilm dispersal”) that makes them amenable
to the host’s immune system and antibiotics [74,75,94]. Interestingly, dimethyloctadecyl-
[3-(trimethoxysilyl)propyl] ammonium chloride-derived carbon quantum dots not only
dispersed S. aureus biofilms but also killed biofilm inhabitants [74], but this occurred at
comparatively high carbon quantum dot concentrations of around 1000 µg/mL. Citric
acid/polyethyleneimine-derived carbon dots modified with 2,3-dimethylmaleic anhydride
exclusively dispersed biofilm of non-EPS producing S. epidermidis at concentrations of
125 µg/mL, but did not kill staphylococci up to at least 1000 µg/mL [75].

4.3. Carbon Quantum Dots and Induction of Resistance

In addition to antibacterial efficacies summarized for carbon quantum dots in Table 2,
it is important to notice that carbon quantum dots not only show good antibacterial activity
but also possess a reduced risk for the development of antibiotic resistance compared to
antibiotics (Figure 8) [39].

Antibiotics 2021, 10, x FOR PEER REVIEW 15 of 22 
 

at comparatively high carbon quantum dot concentrations of around 1000 µg/mL. Citric 
acid/polyethyleneimine-derived carbon dots modified with 2,3-dimethylmaleic anhy-
dride exclusively dispersed biofilm of non-EPS producing S. epidermidis at concentrations 
of 125 µg/mL, but did not kill staphylococci up to at least 1000 µg/mL [75]. 

4.3. Carbon Quantum Dots and Induction of Resistance 
In addition to antibacterial efficacies summarized for carbon quantum dots in Table 

2, it is important to notice that carbon quantum dots not only show good antibacterial 
activity but also possess a reduced risk for the development of antibiotic resistance com-
pared to antibiotics (Figure 8) [39].  

 
Figure 8. Minimal Inhibitory Concentrations (MIC) as a function of the number of times bacteria have been serially pas-
saged in presence of increasing concentrations of gentamicin or gentamicin-derived carbon quantum dots. Carbon quan-
tum dots synthesized by calcination at different temperatures, T (sub-script), from gentamicin (GENT), induce less re-
sistance of (A) a Gram-positive S. aureus and (B) a Gram-negative E. coli strain than gentamicin used as a carbon source. 
Reproduced with permission from Ref. [39], copyright Royal Society of Chemistry 2020. 

Nitrogen-doped carbon quantum dots, hydrothermally synthesized from a bis-qua-
ternary ammonium salt, for instance, exhibited lower MIC than many common antibiot-
ics, while inducing less resistance within an MRSA strain than penicillin [47]. Reduced 
risk of antimicrobial resistance might arguably be the most promising feature of carbon 
quantum dots, as many new antimicrobials lose efficacy within shorter and shorter peri-
ods of time [97], making the market introduction and clinical application of new antibiot-
ics unlikely [98]. Carbon quantum dots probably evade mechanisms of bacterial resistance 
development by bacterial membrane disruption and ROS generation [46], instead of tar-
geting a specific stage in the metabolic pathway of bacteria [39]. On the downside of this, 
bacteria have been shown to upregulate their antioxidant defense mechanism for scav-
enging ROS causing oxidative stress [99]. Whether or not this is a prelude towards bacte-
rial resistance to ROS remains to be seen. 

4.4. Mechanisms of Antibacterial Activity of Carbon Quantum Dots 
The summary of antibacterial activities of carbon quantum dots presented in Table 2 

and the above discussion of their mechanism lead to the conclusion that the antibacterial 
mechanisms of carbon quantum dots mainly comprise cell wall damage (Figure 9A) [37] 
and disruption of the EPS matrix, causing biofilm dispersal (Figure 9B) [94]. Growth inhi-
bition (Figure 9C) [84] and killing (Figure 9D) [47] were reported as possible mechanisms 
of antibacterial activity of carbon quantum dots in a significantly smaller number of pa-
pers. Little is known about the molecular mechanism of antibacterial activity once carbon 

Figure 8. Minimal Inhibitory Concentrations (MIC) as a function of the number of times bacteria have
been serially passaged in presence of increasing concentrations of gentamicin or gentamicin-derived
carbon quantum dots. Carbon quantum dots synthesized by calcination at different temperatures, T
(sub-script), from gentamicin (GENT), induce less resistance of (A) a Gram-positive S. aureus and (B)
a Gram-negative E. coli strain than gentamicin used as a carbon source. Reproduced with permission
from Ref. [39], copyright Royal Society of Chemistry 2020.



Antibiotics 2021, 10, 623 18 of 22

Nitrogen-doped carbon quantum dots, hydrothermally synthesized from a bis-quaternary
ammonium salt, for instance, exhibited lower MIC than many common antibiotics, while
inducing less resistance within an MRSA strain than penicillin [47]. Reduced risk of antimicrobial
resistance might arguably be the most promising feature of carbon quantum dots, as many
new antimicrobials lose efficacy within shorter and shorter periods of time [97], making the
market introduction and clinical application of new antibiotics unlikely [98]. Carbon quantum
dots probably evade mechanisms of bacterial resistance development by bacterial membrane
disruption and ROS generation [46], instead of targeting a specific stage in the metabolic
pathway of bacteria [39]. On the downside of this, bacteria have been shown to upregulate their
antioxidant defense mechanism for scavenging ROS causing oxidative stress [99]. Whether or
not this is a prelude towards bacterial resistance to ROS remains to be seen.

4.4. Mechanisms of Antibacterial Activity of Carbon Quantum Dots

The summary of antibacterial activities of carbon quantum dots presented in Table 2
and the above discussion of their mechanism lead to the conclusion that the antibacterial
mechanisms of carbon quantum dots mainly comprise cell wall damage (Figure 9A) [37]
and disruption of the EPS matrix, causing biofilm dispersal (Figure 9B) [94]. Growth
inhibition (Figure 9C) [84] and killing (Figure 9D) [47] were reported as possible mecha-
nisms of antibacterial activity of carbon quantum dots in a significantly smaller number
of papers. Little is known about the molecular mechanism of antibacterial activity once
carbon quantum dots have gained intra-cellular access through cell wall damage. It is
likely that carbon quantum dots affect gene expression [90].

4.5. Gram-Positive vs. Gram-Negative Strains

The different mechanisms through which carbon quantum dots exert antibacterial
activities all act across both Gram-positive and Gram-negative bacterial strains. However,
antibacterial efficacies of carbon quantum dots have been suggested to be slightly stronger
for Gram-positive than for Gram-negative bacterial strains due to the possession of an
inner and outer lipid membrane by Gram-negative bacteria consisting of lipids, proteins
and lipopolysaccharides that make intracellular entry of carbon quantum dots more diffi-
cult [100]. This suggestion is confirmed by the generally higher MIC values of different
quantum carbon dots against Gram-negative strains in Table 2. Table 2 furthermore shows
that quite a number of carbon quantum dots from different sources selectively kill Gram-
positive bacterial strains by causing cell wall damage [74,89] or Gram-negative ones [78,84].
Carbon quantum dots synthesized from aminoguanidine and citric acid have been de-
scribed to highly selectively inhibit growth of Gram-negative P. aeruginosa by specific
interactions of aminoguanidine units on the quantum carbon dots and lipopolysaccharide
residues in the outer membrane of P. aeruginosa [84].

Quaternized carbon quantum dots prepared from dimethyl diallyl ammonium chlo-
ride and glucose as precursors had MIC values between 12.5 µg/mL and 25 µg/mL for
Gram-positive S. epidermidis, S. aureus, MRSA and E. faecalis, ranging up to 50 µg/mL for
Gram-negative E. coli and P. aeruginosa (also see Table 2) [90]. Proteomic analyses suggested
that the quaternized carbon quantum dots acted on ribosomal proteins in Gram-positive
bacteria and downregulated metabolization-related proteins of Gram-negative bacteria.
Real-time quantitative PCR confirmed differences in expression level of genes related to
these proteins in Gram-positive and Gram-negative strains.
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quantum dots, pyrolytically synthesized from spermidine. Reproduced with permission from Ref. [37], copyright American
Chemical Society, 2017. (B) Disruption of the EPS matrix of a S. aureus biofilm by carbon quantum dots synthesized from
carbon fibers by acidic oxidation, causing biofilm dispersal. Reproduced with permission from Ref. [94], copyright American
Chemical Society, 2019. (C) Growth inhibition of P. aeruginosa upon exposure to different concentrations of carbon quantum
dots, hydrothermally synthesized from aminoguanidine and citric acid. Reproduced with permission from Ref. [84],
copyright American Chemical Society, 2019. (D) Killing of stationary-phase MRSA upon exposure to nitrogen-doped carbon
quantum dots, hydrothermally synthesized from a bis-quaternary ammonium salt, as compared with killing achieved by
penicillin and gentamicin. MRSA were exposed to different concentrations of carbon quantum dots. Reproduced with
permission from Ref. [47], copyright American Chemical Society, 2019. (E) Pre-exposure of S. epidermidis ATCC12228
biofilms to carbon quantum dots without (C-dots) and with 2,3-dimethylmaleic-anhydride (DMMA) functionalization
(CDMMA-dots) yielded enhanced killing upon 72 h exposure to vancomycin at pH 5, as occurring in infectious biofilms.
* p < 0.05 and ** p < 0.01 indicate significant differences with respect to vancomycin in absence of prior carbon dot exposure
or prior exposure to C-dots (one way ANOVA). Reproduced with permission from Ref. [75], copyright ELSEVIER, 2020.

4.6. Synergistic Use of Carbon Quantum Dots Combined with Antibiotics or Photosensitizers

Although carbon quantum dots exhibit antibacterial activities as a stand-alone antimi-
crobial, clinical translation and market introduction often proceeds stepwise. Cell wall
damage inflicted by carbon quantum dots facilitates entry of antibiotics through pores
created into a bacterium to enhance killing. Matrix disruption and reduction of volumet-
ric bacterial densities in infectious biofilms by carbon quantum dots enhance antibiotic
penetration and killing in a biofilm (Figure 9E) [75]. Additionally, photoactivated carbon
quantum dots combined with commonly used photosensitizers, such as methylene blue
and toluidine blue, achieve higher ROS generation than photosensitizers alone under visi-
ble light illumination, thus resulting in an enhanced, synergistic killing of bacteria [34,58].
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This implies that combined use of carbon quantum dots with existing antibiotics might be
a good first step in clinical translation.

4.7. Use of Carbon Quantum Dots in In Vivo Studies

In vivo studies are either performed with respect to evaluating antibacterial efficacies
of carbon quantum dots or to establish their biosafety. Carbon is generally considered
non-toxic, and quaternized carbon quantum dots, for instance, showed no obvious toxic
side-effects during experimental treatment of infected wounds in rats [90] or pneumonia in
mice [91]. Systematic evaluation of the biosafety of photoluminescent carbon quantum dots,
synthesized through nitric acid oxidation, demonstrated no acute or sub-acute toxicity
nor genotoxicity [101]. Additionally, no abnormalities or lesions were observed in the
organs of mice. However, quantum dots intended for imaging purposes have sometimes
been found to be less harmless, but these quantum dots are usually not carbon based,
having a cadmium-telluride [102] or cadmium-selenium core [103]. Non-cytotoxicity of
cadmium-selenide quantum dots could be enhanced by polyethylene glycol coating.

In vivo evaluation of the antibacterial efficacy of carbon quantum dots, so far, has
pointed out that quaternized carbon quantum synthesized from organic sources were
equally efficacious in treating infection in rodents as antibiotics. The application of quat-
ernized carbon quantum dots to wounds infected by a combination of S. aureus and P.
aeruginosa in rats was equally efficacious as treatment with levofloxacin [90]. Additionally,
positively charged carbon quantum dots prepared by heating of polyethene polyamine
could be used to treat wounds infected by a combination of S. aureus and E. coli, with
an efficacy equal to levofloxacin [92]. Nasally applied quaternized carbon quantum dots
caused regression of MRSA-induced pneumonia in mice, with an efficacy similar to the
one of vancomycin, by affecting protein translation, posttranslational modification and
protein turnover in bacteria [91]. Collectively, we can conclude that quantum carbon dots
are bio-safe, while quaternized carbon quantum dots appear promising for the treatment
of infection, although their efficacy is not higher than that of antibiotics. Nevertheless, they
may be useful, as they appear to be efficacious against infections by antibiotic-resistant
strains.

5. Conclusions and Outlook

Carbon quantum dots can be effectively synthesized from both natural and synthetic
carbon sources using various experimental methods. Among the synthetic carbon sources
distinguished in this review, organic carbon sources more broadly cover the entire spectrum
of antibacterial activities distinguished here than inorganic carbon sources. By maintaining
critical, chemical functional groups of their source materials, carbon quantum dots can
acquire desired properties for antibacterial applications towards both Gram-positive and
Gram-negative bacterial strains. Carbon quantum dots derived through heating (pyrolysis,
hydrothermal methods or smoking) of antibiotics and natural carbon sources, such as
medicinal herbs and plants or probiotic bacteria, are ideal sources for the synthesis of
antibacterial carbon quantum dots, since essential properties of carbon sources are inherited
by carbon quantum dots. Quaternized carbon quantum dots have been found to be equally
efficacious for controlling infections in rodents as antibiotics. Antibacterial activity of
carbon quantum dots predominantly involves cell wall damage and disruption of the
matrix of infectious biofilms (“dispersal”) through the generation of ROS. Synergistic
antibacterial efficacy of carbon quantum dots, when combined with existing antibiotics and
the added advantage of antibiotic-derived carbon quantum dots to yield a lower chance
of inducing bacterial resistance than their source antibiotics, make carbon quantum dots
attractive for further clinical translation and large-scale clinical use.
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