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Parkinson’s disease (PD) is a progressive neurodegener-

ative movement disorder and in most patients its aetiol-

ogy remains unknown. Molecular genetic studies in

familial forms of the disease identified key proteins

involved in PD pathogenesis, and support a major role

for mitochondrial dysfunction, which is also of signifi-

cant importance to the common sporadic forms of PD.

While current treatments temporarily alleviate symp-

toms, they do not halt disease progression. Drugs that

target the underlying pathways to PD pathogenesis,

including mitochondrial dysfunction, therefore hold

great promise for neuroprotection in PD. Here we sum-

marize how the proteins identified through genetic

research (a-synuclein, parkin, PINK1, DJ-1, LRRK2 and

HTRA2) fit into and add to our current understanding of

the role of mitochondrial dysfunction in PD. We highlight

how these genetic findings provided us with suitable

animal models and critically review how the gained

insights will contribute to better therapies for PD.
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Parkinson’s disease (PD) is the most common neurodegener-

ative movement disorder with a prevalence of 1.8% in
individuals of 65 years and older (de Rijk et al. 2000). Resting

tremor, bradykinesia and rigidity are the cardinal clinical char-
acteristics of PD. Neuropathological examination shows sev-

eral affected brain regions, but the loss of dopaminergic
(DAergic) neurons in the substantia nigra pars compacta

(SNpc) is believed to be the most crucial (Braak et al. 2004).
At the time of clinical presentation approximately 50–70% of

DAergic neurons in the nigrostriatal system have been lost
(Orth & Schapira 2002). Surviving neurons may contain Lewy

bodies, intracytoplasmic protein aggregates mainly composed
of a-synuclein (SNCA) (Spillantini et al. 1997). And these Lewy

bodies are a second neuropathological feature of PD. Current
treatments for PD, with levodopa as the most commonly used

drug, are focused on the symptomatic improvement of motor
features related to the above mentioned loss of DAergic

neurons (Schapira 2005). More importantly levodopa, notwith-
standing its symptomatic benefits, does not cure PD, nor does

it halt the development of additional features during the course
of PD, such as autonomic dysfunction, gait disturbance,

freezing and dementia (Olanow et al. 2004).
Mitochondrial dysfunction has long been implicated in PD

pathogenesis; this hypothesis arose with the discovery that

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produced
PD-like symptoms in designer drug abusers (Langston et al.

1983). Its metabolite, 1-methyl-4-phenylpyridinium (MPPþ), is
actively transported into DAergic neurons by the dopamine

transporter. Within these neurons MPPþ enters mitochondria,
and selectively inhibits mitochondrial respiration at complex I of

the electron transport chain (Krueger et al. 1990). Chronic
infusion of rotenone, a highly selective complex I inhibitor, also

reproduced behavioural (e.g. hypokinesia and rigidity) and
neuropathological features of PD in rats (Betarbet et al. 2000;

Sherer et al. 2003). These neurotoxins and neurotoxic animal
models of PD renewed interest in possible environmental

causes of PD, as similar compounds in the environment might
play a causative role in the disease. In addition, genetic defects

causing familial forms of PD have been identified in the last
decade. Despite the rarity of these familial forms of PD (5–10%

of the PD population) the identification of PD-linked genes has
fuelled our understanding of possible pathogenic mechanisms

of PD, and placed ubiquitin-proteasome system (UPS) dysfunc-
tion, oxidative stress and mitochondrial dysfunction at centre

stage. Mutations or polymorphisms in both mitochondrial DNA
(mtDNA) and nuclear DNA were implicated in causing PD or in

affecting PD risk. Of the nuclear genes, mutations in SNCA,
PARK2 (also known and hereafter referred to as parkin), PINK1

(PTEN induced putative kinase 1), PARK7 (also known and
hereafter referred to as DJ-1), LRRK2 (leucine-rich repeat

kinase 2) and HTRA2 (high temperature requirement A2)
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provide direct or indirect evidence for a major role of mitochon-
drial dysfunction in PD.

In this review we aim to highlight the recent genetic data
on mtDNA polymorphisms and the nuclear-encoded SNCA,

parkin, PINK1, DJ-1, LRRK2 and HTRA2, and focus on the
relevance of these genes for mitochondrial function. Path-

ogenic theories focus on a combination of genetic and
environmental risk factors, and thus we will also briefly

consider environmental exposures relevant to mitochon-
drial dysfunction in PD. Our current understanding of the

mitochondrial pathway to PD provided us with tools to
create better animal models, as well as interesting entry

points for therapy. These entry points will be discussed
along with therapeutic drugs acting on them. Some of the

drugs are already in clinical use; others are still in the
primary stages of evaluation, but show great promise for

modifying PD progression.

Mitochondria

Function and structure

The primary function of mitochondria is the generation of

cellular energy in the form of adenosine 50-triphosphate (ATP)
by oxidative phosphorylation. In addition to energy production

mitochondria play a role in the metabolism of e.g. amino acids

and lipids, as well as intermediate metabolic pathways,
calcium homeostasis and free radical scavenging.

Mitochondria are intracellular double membrane-bound
structures (Fig. 1), and are partitioned in four main compart-

ments: outer mitochondrial membrane (OMM), intermem-
brane space (IMS), inner mitochondrial membrane (IMM) and

matrix. The five complexes – I [NADH (nicotinamide adenine
dinucleotide, reduced form) ubiquinone oxidoreductase], II

(succinate ubiquinone oxidoreductase), III (ubiquinone-
cytochrome c reductase), IV (cytochrome oxidase) and V

(ATP synthase) – of the mitochondrial respiratory chain, also
called the electron transport chain, are all located in the IMM.

Two mobile electron carriers, coenzyme Q (ubiquinone) and
cytochrome c, are located in the IMM and IMS, respectively.

The transport of electrons down the respiratory chain is
energetically favourable. The released energy is used by

complexes I, III and IV to transport protons from the matrix
to the IMS, thus creating a proton and electrochemical gradient

across the IMM. This gradient forms the basis of the inner
mitochondrial transmembrane potential (DCm) and is exploited

by complex V of the respiratory chain to drive ATP synthesis.
The mitochondria contain their own genome. mtDNA is

a multicopy, maternally inherited, 16.5-kb circular double
stranded DNA molecule without any histone coating. mtDNA

is extremely compact (93% coding sequence) and the majority
of proteins required to build and maintain functional mitochon-

dria is therefore encoded by nuclear DNA, synthesized in the
cytosol and imported into mitochondria, where they are

targeted to one of the four mitochondrial compartments.

Oxidative stress

Oxidative stress is the result of an imbalance between

excessive production of reactive oxygen species (ROS) and

limited antioxidant defences. Mitochondria generate most of
the ROS as a byproduct of oxidative phosphorylation. An

estimated 2% of the oxygen (O2) consumed by mitochondria
is converted to superoxide anion (O2

��) (Beal 2003), which is

a precursor of most other ROS (Turrens 2003) (Fig. 2). These
ROS can lead to oxidative damage of proteins, DNA and lipids

(Raha & Robinson 2000).
Numerous studies indicated the involvement of ROS and

oxidative stress in PD pathogenesis, including reduced
amounts of the thiol-reducing agent glutathione (Pearce

et al. 1997) and elevated concentrations of iron (Fe) (Kienzl
et al. 1995) in SN of PD patients. Loss of neuromelanin-

containing DAergic cells is characteristic for PD and the dark
brown pigment neuromelanin attracted attention to the auto-

oxidation of dopamine, as it consists primarily of products of
dopamine redox chemistry (Wakamatsu et al. 2003). Normal

Figure 1: Mitochondrial structure and composition of the

mitochondrial respiratory chain. The mitochondrial respiratory

chain is a sequence of complexes found in the IMM that accepts

electrons from electron donors such as NADH or succinate,

shuttles these electrons across the IMM and creates a proton

and electrochemical gradient. This gradient forms the basis of the

inner mitochondrial transmembrane potential (DCm) and is used

to drive ATP synthesis by complex V of the respiratory chain.

Complexes I, II and III generate ROS (indicated by grey stars). NO

inhibits respiration by reversible binding to the oxygen binding site

of complex IV (not shown) and is likely to be a physiological

regulator of respiration. When cells are under oxidative stress,

ROS will accumulate, react with NO, and form peroxynitrite

(ONOO�); a strong oxidant thought to be responsible for the

‘pathological actions’ of NO. ONOO� inactivates the respiratory

complexes (dotted lines), stimulates proton leakage through the

IMM and might inhibit complex I by tyrosine nitration (for review

see Brown & Borutaite 2002).

Abbreviations: DCm, inner mitochondrial transmembrane poten-

tial; ADP, adenosine 50-diphosphate; CoQ, coenzyme Q; Cyt C,

cytochrome c.
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metabolism of dopamine, partly accomplished by monoamine
oxidases (MAO), produces hydrogen peroxide (H2O2) (Maker

et al. 1981). From this reaction alone, DAergic neurons are
exposed to oxidative stress. In addition, dopamine can be

oxidized to a dopamine quinone. This oxidation occurs spon-
taneously, is accelerated by the presence of transition metal

ions, or can be enzyme-catalysed. The resulting dopamine

quinone covalently modifies cellular macromolecules, which
may serve as a mechanism for dopamine induced neurotox-

icity (Stokes et al. 1999).

Apoptosis

Apoptotic cell death is characterized by marked nuclear and
cellular shrinkage, membrane blebbing, chromatin condensa-

tion, nuclear fragmentation and the budding off of apoptotic
bodies (Kerr et al. 1972). Apoptosis is triggered by a number

of insults including e.g. misfolded proteins, ROS and mito-
chondrial complex inhibition (Bredesen et al. 2006), and is

executed via two main pathways (Fig. 3), which eventually
converge at the level of effector caspases activation and the

subsequent cleavage of apoptotic substrates. Firstly, the
death receptor (or extrinsic) pathway, which is initiated by

activation of cell-surface death receptors (e.g. Fas), and
secondly, the mitochondrial (or intrinsic) pathway, character-

ized by the release of mitochondrial pro-apoptotic proteins
(e.g. cytochrome c) (Hengartner 2000).

The pivotal event in the mitochondrial pathway is mito-
chondrial outer membrane permeabilization (MOMP) that

leads to the release of several IMS proteins, such as
cytochrome c, apoptosis inducing factor (AIF), endonuclease

G, second mitochondria-derived activator of caspases (Smac)

and HTRA2 (van Loo et al. 2002). MOMP can occur via two
mechanisms: the first one involves the opening of the

permeability transition (PT) pore, a protein complex at the
contact site between OMM and IMM (Zamzami & Kroemer

2001), whereas the second mechanism appears to be medi-
ated by direct action of Bcl-2 family members on the OMM

(Green & Kroemer 2004). Cytochrome c, released from

mitochondria following MOMP, assists in the formation of
the apoptosome (a complex consisting of cytochrome c,

apoptosis protease-activating factor 1, procaspase 9 and
ATP/deoxyATP). Apoptosome oligomerization activates cas-

pase 9, which then triggers activation of caspase 3 and other
caspases in an amplication cascade ultimately causing cell

death (Li et al. 1997).
Inhibitors of apoptosis (IAPs) can still inhibit active cas-

pases (Holley et al. 2002), but the IAP-mediated block may in
turn be released by proteins as Smac (Du et al. 2000) or

HTRA2 (Martins et al. 2002). Two other proteins released
from mitochondrial IMS during MOMP (AIF and endonucle-

ase G) translocate to the nucleus and induce chromatin
condensation and DNA fragmentation, independent of cas-

pase activation (Li et al. 2001; Susin et al. 1999).
The c-Jun N-terminal kinase (JNK) signal-transduction path-

way is also important for the execution of apoptosis in
response to different stress stimuli (Davis 2000). JNK is part

of a sequential kinase-signalling cascade involving three
kinases. Mitogen-activated protein kinase (MAPK) kinase

activates JNK, whereas MAPK kinase activation is mediated
by MAPK kinase kinases, including the mixed lineage kinase

(MLK) family in neurons. The activation of the JNK pathway
rapidly induces its downstream target activating protein-1

transcription factor c-Jun, which plays a major role in the

Figure 2: ROS. These include (1) free radicals (containing highly reactive unpaired electrons), such as superoxide (O2
��), nitric oxide

(NO�) and hydroxyl radical (OH�); and (2) other molecular species, such as hydrogen peroxide (H2O2) and peroxynitrite (ONOO�). O2
�� is

converted to H2O2, either spontaneously or through a reaction catalysed by SOD (Fridovich 1995). H2O2 may in turn be fully reduced to

water, by catalase or glutathione reductase/peroxidase, or partially reduced to hydroxyl radicals (OH�). The latter reaction (Fenton

reaction) occurs in the presence of reduced transition metals (e.g. Fe2þ), which may again be re-reduced by O2
��, propagating the

process (Liochev & Fridovich 1994). Alternatively O2
�� can also react with NO radicals (NO�; produced by nitric oxide synthase during

conversion of arginine to citrulline) to form peroxynitrite (ONOO�) (Beckman & Koppenol 1996).
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transcription of several pro-apoptotic genes (Ham et al. 2000).
JNK acts as an effector of apoptosis through mitochondrial-

dependent processes, as it catalyses the phosphorylation of
antiapoptotic (Schroeter et al. 2003) and pro-apoptotic (Bhakar

et al. 2003; Papadakis et al. 2006) Bcl-2 family members,
induces release of cytochrome c (Schroeter et al. 2003) and

Smac (Chauhan et al. 2003) and mediates a partial collapse of
the mitochondrial membrane potential (Schroeter et al. 2003).

Another distinct pathway of apoptosis arises through increased
expression of glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) and its translocation from the cytoplasm to the
nucleus (Ishitani et al. 1996; Sawa et al. 1997). In this pathway

nitric oxide (NO) is the initial trigger to cell death (Hara et al.
2005).

Although an increased immunoreactivity for effectors of
the mitochondrial apoptotic pathway (e.g. caspase 3) (Tatton

2000), an increased activation of JNK downstream targets

(Hunot et al. 2004), as well as nuclear accumulation of
GAPDH (Tatton 2000) have been detected in post-mortem

SN of PD patients, there is still no clear consensus concerning
the contribution of apoptosis to loss of DAergic neurons in PD

(Tatton et al. 2003b). Necrosis (or passive cell death) repre-
sents a form of non-apoptotic cell death, but is not likely to

play a major role in PD (Kostrzewa 2000) because necrosis is
associated with energy failure, cell swelling and rupture

followed by an inflammatory response; features that are
largely absent in PD (Dickson 2007). Another form of non-

apoptotic cell death that has gained interest in recent years is
autophagic cell death, resulting from excessive levels of

cellular autophagy. Autophagy complements the UPS path-
way as it degrades long-lived proteins, protein aggregates and

organelles (e.g. damaged mitochondria) through a lysosomal
degradation pathway (Rubinsztein 2006). Whereas the

survival-promoting role of autophagy in nutrient starvation is
well accepted, its role in cell death is more controversial

(Eskelinen 2005). Cross-talk between apoptotic and autopha-

gic pathways has been reported, but their molecular interde-
pendence is not yet clear (Ferraro & Cecconi 2007). However,

Figure 3: Schematic illustration of themajor pathways leading to apoptosis. Apoptosis occurs through twomain pathways. These

are the death receptor (extrinsic) pathway which originates through the activation of cell-surface death receptors, for example Fas, and

the mitochondrial (intrinsic) pathway which originates from mitochondrial release of cytochrome c. A distinct nuclear pathway of

apoptosis arises through increased expression of GAPDH and its translocation from the cytoplasm to the nucleus, whereas the JNK

signal-transduction pathway is activated in response to different stress stimuli. Bid, Bax and Bak represent pro-apoptotic Bcl-2 family

members; Bcl-2 and Bcl-xL are antiapoptotic.

Abbreviations: DCm, inner mitochondrial transmembrane potential; AP-1, activating protein-1; Apaf1, apoptotic protease-activating factor

1; dATP, deoxyadenosine 50-triphosphate; Cyt C, cytochrome c; endoG, endonuclease G; FasL, Fas ligand.
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mitochondria might represent the link at which apoptosis
and autophagy interact, because mitochondria generate apo-

ptotic signals, but are in turn removed by autophagy when
damaged.

Environmental exposures and PD

The finding that humans intoxicated with MPTP develop
a syndrome nearly identical to PD (Langston et al. 1983)

lended support to the hypothesis that substances in the
environment might contribute to PD aetiology. Indeed, epi-

demiological studies have implicated environmental risk fac-
tors such as rural living, consumption of well water and

pesticide exposure in increased risk of PD (Priyadarshi et al.
2001). Conversely, cigarette smoking and coffee drinking are

inversely associated with the risk for developing PD (Hancock
et al. 2007; Hernan et al. 2002).

Cigarette smoking represents a good example of the
relevance of an environmental toxin to mitochondrial function.

Cigarette smoke is composed of more than 4000 com-
pounds, but nicotine, the main alkaloid, seems to be partic-

ularly important. Nicotine reduces ROS generation from
mitochondria (Cormier et al. 2003), and prevented neurotoxin-

induced mitochondrial swelling and cytochrome c release
in vitro through inhibition of the mitochondrial PT pore (Xie

et al. 2005). The antioxidant properties of nicotine are likely
important as well; e.g. nicotine may be protective against PD

through complex formation with Fe2þ, thus yielding Fenton-
inactive Fe2þ (Fig. 2) and less oxidative stress (Linert et al.

1999). Chronic nicotine treatment was already shown to
reduce paraquat-mediated nigrostriatal damage in a rodent

model (Khwaja et al. 2007).

Genetics of PD

mtDNA genetics and PD

Studies using PD cybrids (cytoplasmic hybrids, through trans-

fer of mtDNA of PD patients into mtDNA depleted cells)
showed loss of complex I activity, increased O2 radical

production, and increased susceptibility to MPTP-induced cell
death (Swerdlow et al. 1996), suggesting that mtDNA abnor-

malities may be crucial in the pathogenesis of sporadic PD.
Several studies reported inherited mtDNA microdeletions or

single nucleotide mutations resulting in parkinsonism, typi-
cally as one feature of a multisystemic disorder, e.g. the

prominent parkinsonism associated with Leber’s hereditary
optic neuropathy caused by a single nucleotide mutation in

the complex I ND4 gene (Simon et al. 1999). There is,
however, less evidence for mtDNA involvement in non-

syndromic PD. Nevertheless, specific mtDNA haplotypes
were proposed to be implicated in PD risk (Autere et al.

2004; Ghezzi et al. 2005; Pyle et al. 2005; van der Walt et al.
2003). Interestingly, recent research into the extent of

mtDNA deletions in SN DAergic neurons showed increased
levels of clonally expanded somatic mtDNA deletions with

ageing (Bender et al. 2006b; Kraytsberg et al. 2006), resulting
in loss of mitochondrial function and cell death. The accumu-

lation of mtDNA deletions was higher in PD patients as

compared with age matched control individuals (Bender
et al. 2006b).

PD genetics of nuclear-encoded proteins

Linkage analysis in extended families with highly penetrant
Mendelian forms of PD has been successful in identifying

specific disease-segregating mutations in previously
unknown genes implicated in PD pathogenesis. Mutations

in at least six genes were shown to cause familial parkinson-
ism: mutations in SNCA and LRRK2 account for autosomal

dominant forms of PD, whereas mutations in parkin, PINK1,
DJ-1 and ATP13A2 (Ramirez et al. 2006) show a recessive

mode of inheritance (mutations in the latter are characteristic
of Kufor-Rakeb syndrome, and will not be further discussed).

In general autosomal dominant inherited mutations are gain-
of-function mutations, while loss-of-function mutations are

usually linked to recessive phenotypes. The use of animal
models to evaluate gain- and loss-of-function mutations

helped greatly in the illumination of the biological functions
of the proteins encoded by these genes and yielded insights

into their causal role in PD pathogenesis. Transgenic mice
provide the ideal means to study possible disease-related

gain-of-function mutations, knockout strategies in turn pro-
vide the opportunity to study diseases related to loss-of-

function mutations.
The role of Mendelian genes in the common sporadic forms

of PD is less known. On the other hand, association studies of
candidate genes for PD try to define risk alleles that contrib-

ute to the sporadic forms of disease. Candidate gene studies
evaluate genes based on their location in previously deter-

mined linkage regions (positional candidate genes), or based

on a plausible biological function related to disease pathogen-
esis (functional candidate genes). Table 1 provides a general

overview of the genetic causes of PD with mitochondrial
involvement, whereas Fig. 4 depicts the proteins at their

cellular action level.

The inclusion protein SNCA
SNCA is the major constituent of Lewy bodies, the neuro-

pathological hallmark of PD (Spillantini et al. 1997). SNCA is
expressed throughout the brain (Solano et al. 2000) and is

particularly enriched in presynaptic nerve terminals (Goedert
2001). It has potential roles in synaptic plasticity (George et al.

1995), regulation of dopamine neurotransmission (Abeliovich
et al. 2000) and turnover of synaptic vesicles (Lotharius &

Brundin 2002). In spite of extensive studies, the exact cellular
function of SNCA remains unclear.

Missense mutations and multiplications of SNCA (4q21)
cause autosomal dominant PD (Chartier-Harlin et al. 2004;

Ibanez et al. 2004; Kruger et al. 1998; Polymeropoulos et al.
1997; Singleton et al. 2003; Zarranz et al. 2004), whereas

association studies showed that increased SNCA expression
because of variation in the SNCA promoter region conferred

risk for sporadic PD (Maraganore et al. 2006; Pals et al. 2004).
Inducible expression of human p.Ala30Pro SNCA in PC12

cells (rat pheochromocytoma cells) decreased proteasome
activity and increased sensitivity to mitochondria-dependent

apoptosis (Tanaka et al. 2001). More recently human
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p.Ala53Thr SNCA overexpressing transgenic mice were re-
ported to develop intraneuronal inclusions, as well as mtDNA

damage and degeneration (Martin et al. 2006). Pathogenic
p.Ala30Pro and p.Ala53Thr SNCA was also shown to be

poorly degraded by chaperone-mediated autophagy (CMA)
(Cuervo et al. 2004). Although these mutants bound with high

affinity to the lysosomal membrane, they were not trans-
located into the lysosome. In addition to inhibiting their own

degradation, they also blocked degradation of other CMA
substrates; which is consistent with a toxic gain-of-function of

these mutants.
On the other hand, loss of SNCA appears to have minimal

effects because SNCA knockout mice were viable and fertile.
Despite the lack of morphological abnormalities, these mice

displayed a modest decrease in total striatal DA levels
(Abeliovich et al. 2000), and a reduction in the reserve pool

of synaptic vesicles in the hippocampus (Cabin et al. 2002).

The ubiquitin E3 ligase parkin
Ubiquitously expressed parkin encodes an ubiquitin E3 ligase
(Shimura et al. 2000), which is a component of the UPS

(Ciechanover 1998). Parkin was localized in mitochondria of
proliferating cells and was also shown to play a role in

mitochondrial biogenesis by regulating both transcription
and replication of mtDNA (Kuroda et al. 2006).

Loss-of-function mutations in parkin cause autosomal
recessive juvenile parkinsonism (Kitada et al. 1998). Parkin

mutations may explain up to half of the patients with early
onset PD and a family history compatible with recessive

inheritance (Dekker et al. 2003). Mounting evidence suggests
that heterozygous parkin mutations may increase suscepti-

bility to late onset PD (Foroud et al. 2003; Oliveira et al. 2003;
Sun et al. 2006; West et al. 2002). A promoter deletion in

a family with a previously described heterozygous parkin exon
3-deletion recently extended the parkin mutation spectrum,

as this compound heterozygous mutation was reported to
result in complete absence of parkin expression (Lesage et al.

2007).
Drosophila parkin knockout mutants exhibited reduced

lifespan, locomotor defects resulting from apoptotic muscle
degeneration and male sterility. Mitochondrial structural

alterations were prominent features of both muscle and
germline pathology (Greene et al. 2003). Proteomics of mid-

brain from parkin knockout mice showed a decreased abun-

dance of proteins involved in mitochondrial respiratory chain
activity and protection against oxidative stress (Palacino et al.

2004).
Parkin overexpression models further support the role of

parkin in mitochondria. Parkin overexpression in PC12 cells
protected against ceramide-mediated cell death by delaying

mitochondrial swelling, subsequent cytochrome c release
and caspase 3 activation, and this protective effect was

abrogated by parkin mutations (Darios et al. 2003). In human
DAergic neuroblastoma cells (SH-SY5Y) parkin overexpression

Figure 4: PD genes and their relation tomitochondria. Aggregation of mutant or overexpressed SNCAmight be an upstream actor of

mitochondrial alterations. Parkin associates with the OMM and was shown to play a role in mitochondrial biogenesis by regulating both

transcription and replication of mtDNA. PINK1 has an N-terminal mitochondrial targeting motif and is localized to mitochondrial

membranes, whereas oxidation of a key Cys-residue in DJ-1 leads to its relocalization to mitochondria. LRRK2 resides diffusely

throughout the cytosol, but is partly associated with the OMM. HTRA2 resides in the IMS, wherefrom it is released upon apoptotic

stimuli.
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not only protected against apoptosis, but also decreased
cellular ROS levels (Jiang et al. 2004).

On the other hand, mitochondrial dysfunction and oxidative
stress can in turn affect parkin function, e.g. S-nitrosylation of

parkin diminishes its ubiquitin E3 ligase activity and compro-
mises its protective function (Chung et al. 2005). Such nitro-

sative stress combined with a single parkin mutation
could lead to haploinsufficiency and might be particularly

relevant for heterozygous parkin mutations associated with
sporadic PD.

The mitochondrial kinase PINK1
The ubiquitously expressed PINK1 consists of an N-terminal
mitochondrial targeting motif, a highly conserved serine–

threonine kinase domain and a C-terminal autoregulatory
domain (Silvestri et al. 2005). The PINK1 kinase is localized

to the mitochondrial membranes (Gandhi et al. 2006).
Homozygous PINK1mutations were first described in three

consanguineous families (Valente et al. 2004). PINK1 loss-of-
function mutations are estimated to account for 1–7% of

early onset PD (Tan et al. 2006). Heterozygous PINK1
mutations were also reported, and were threefold enriched

in sporadic PD patients compared with control individuals
(Abou-Sleiman et al. 2006). It is hypothesized that heterozy-

gous PINK1mutations are a risk factor for the development of
late onset PD (Khan et al. 2002).

Downregulation of PINK1 expression by small interfering
RNA (siRNA) decreased SH-SY5Y cell viability and increased

apoptosis (Deng et al. 2005). RNA interference-mediated
inactivation of the PINK1 homologue in Drosophila resulted

in progressive loss of DAergic neurons. This neurodegenera-
tion was suppressed by human antioxidant superoxide dis-

mutase (SOD) 1, which suggests that PINK1 inactivation can
induce neuronal death via an oxidative stress pathway (Wang

et al. 2006). Notably, PINK1 inactivation in Drosophila leads
to a phenotype that shares marked similarity with that of

Drosophila parkin knockout mutants, including shortened

lifespan, apoptotic muscle degeneration, male sterility and
defects in mitochondrial morphology. Transgenic expression

of parkin markedly ameliorated all PINK1 loss-of-function
phenotypes, but not vice versa, suggesting that PINK1 and

parkin function, at least in part, in the same pathway, with
PINK1 functioning upstream of parkin (Clark et al. 2006; Park

et al. 2006; Yang et al. 2006).
Overexpression of wild type PINK1 in SH-SY5Y cells

attenuated neuronal apoptosis by reducing the release of
cytochrome c and subsequent activation of caspases under

basal and apoptotic stress conditions. However, PD-related
mutations and an artificial kinase-dead mutant abolished this

protective effect (Petit et al. 2005). Most likely, the PINK1
kinase exerts its neuroprotective effect by phosphorylating

specific mitochondrial proteins and in turn modulating their
functions. However, the physiological substrates of PINK1

remain unknown.

The antioxidative DJ-1
DJ-1 is expressed in a variety of tissues, including brain, and is

partially localized to the mitochondrial matrix and IMS (Zhang
et al. 2005a). DJ-1 is a H2O2 responsive protein, suggesting

a function as antioxidant (Mitsumoto & Nakagawa 2001). DJ-1
acts as a redox sensor within cells and the acidification of

a key Cys-residue (Cys106) seems to have an important
signalling function. The same Cys-residue is also important

for relocalization of DJ-1 to mitochondria (Canet-Aviles et al.
2004).

Recessively inherited DJ-1 missense and exonic deletion
mutations were first identified in two European early onset

PD families (Bonifati et al. 2003). Additional loss-of-function
mutations have since been identified (Abou-Sleiman et al.

2003, 2004; Hague et al. 2003; Hedrich et al. 2004a). Loss-of-
function mutations in DJ-1 are rare and are estimated to

account for 1% of early onset PD (Lockhart et al. 2004). Single
heterozygous DJ-1 mutations were also found (Clark et al.

2004; Hedrich et al. 2004a), but as for heterozygous muta-
tions in parkin and PINK1, their effect remains elusive.

DJ-1 downregulation by siRNA in neuronal cell lines
enhanced cell death by oxidative stress (Yokota et al.

2003). In Drosophila inhibition of DJ-1a, a Drosophila homo-
logue of the human DJ-1, resulted in cellular accumulation

of ROS, hypersensitivity to oxidative stress as well as
dysfunction and degeneration of DAergic neurons (Yang

et al. 2005). Knockout flies of DJ-1a and DJ-1b, the two DJ-1
homologues in Drosophila, displayed a selective sensitivity

to environmental toxins such as paraquat and rotenone
(Meulener et al. 2005). DJ-1a and DJ-1b are prominently

localized to enlarged and swollen mitochondria, implicating

that the localization of DJ-1 to mitochondria is a protection
mechanism against oxidative stress (Park et al. 2005). DJ-1-

deficient mice show no gross anatomical or neuronal
abnormalities and have normal numbers of SN DAergic

neurons (Chen et al. 2005; Goldberg et al. 2005; Kim et al.
2005), however, their nigrostriatal pathway is dysfunctional

(Chen et al. 2005; Goldberg et al. 2005), leading to higher
dopamine concentrations and possibly more cellular oxida-

tive stress.

The multidomain and multifunctional LRRK2
LRRK2, also known as dardarin, is expressed at low levels in

most tissues (Paisan-Ruiz et al. 2004) and shows an expres-
sion pattern in brain that directly relates to the nigrostriatal

dopamine system. It is expressed in the dopamine target
areas, striatum and frontal cortex, whereas the dopamine

neurons themselves are devoid of LRRK2 messenger RNA
(Galter et al. 2006). On a cellular level LRRK2 resides diffusely

throughout the cytosol, but also associates with the OMM
(West et al. 2005). Sequence analysis indicates that LRRK2

comprises several domains including a leucine-rich repeat
domain, a GTPase (guanosine triphosphatase) domain Ras of

complex proteins (Roc) followed by its associated C-terminal
of Roc domain, a MLK-like domain and a C-terminal WD40

domain (Paisan-Ruiz et al. 2004; Zimprich et al. 2004). The
kinase activity may be the link between LRRK2 and its role in

PD pathogenesis.
Mutations in LRRK2 cause autosomal dominant late onset

PD (Paisan-Ruiz et al. 2004; Zimprich et al. 2004). LRRK2
missense mutations reported so far are distributed along the

protein (Berg et al. 2005; Khan et al. 2005; Paisan-Ruiz et al.
2004; Zimprich et al. 2004). p.Gly2019Ser is the most

common pathogenic LRRK2 mutation in Caucasians and
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accounts for approximately 5% of familial PD and 1.5% of
sporadic PD (Di Fonzo et al. 2005; Gilks et al. 2005; Nichols

et al. 2005). We recently detected a founder effect of
p.Arg1441Cys, the second most frequent pathogenic LRRK2

mutation, in the Belgian population (Nuytemans et al. in
preparation).

p.Arg1441Cys in the GTPase domain and p.Gly2019Ser in
the MLK-like domain were shown to result in increased

kinase activity in vitro (West et al. 2005), a similar increase
was seen for p.Ile2020Thr (Gloeckner et al. 2006). These

findings are in favour of a gain-of-function mechanism for
LRRK2-linked disease. Expression of p.Arg1441Cys and

p.Gly2019Ser LRRK2 caused neuronal degeneration in both
SH-SY5Y cells and mouse primary neurons (Smith et al.

2005). Overexpression of p.Gly2019Ser LRRK2 in rats did
not alter normal appearance of DAergic neurons, but signif-

icantly increased apoptosis (MacLeod et al. 2006). Extensive
in vivo validation of these data is, however, required.

The mitochondrial serine protease HTRA2
HTRA2 is ubiquitously expressed (Faccio et al. 2000) and
nuclear encoded but carries a mitochondrial targeting

sequence at its N-terminus. HTRA2 has an N-terminal
IAP-binding motif, a serine protease domain and, at its

C-terminus, a PDZ domain, which restricts access to the active
site of the serine protease (Li et al. 2002; Verhagen et al.

2002). HTRA2 is localized to the IMS, but is released into the
cytosol following apoptotic stimuli. In the cytosol it can induce

apoptosis in a caspase-dependent manner by antagonizing
caspase–IAP interaction, or in a caspase-independent manner

relying on its serine protease activity (Hegde et al. 2002).
Transient HTRA2 overexpression in HEK293 cells (human

embryonic kidney cells) induced apoptosis even in the
absence of an apoptotic insult, whereas artificial protease-

inactive mutant HTRA2 (Li et al. 2002) had lower death-
inducing ability (Martins et al. 2002). In non-apoptotic

conditions the proteolytic activity of HTRA2 is involved in

maintaining mitochondrial homeostasis, as was first shown
in the mnd2 mouse for motor neuron degeneration 2 (Jones

et al. 2003) and later also in HTRA2 knockout mice (Martins
et al. 2004). Both mnd2 and HTRA2 knockout mice died

prematurely because of loss of striatal neurons. The identifi-
cation of a p.Gly399Ser mutation in the HTRA2 PDZ domain in

patients with sporadic PD (Strauss et al. 2005) was of direct
relevance to PD. At the cellular level p.Gly399Ser HTRA2

impaired the regulation of proteolytic activity, caused mito-
chondrial swelling, decreased mitochondrial membrane

potential and increased staurosporine-induced cell death.
We recently identified another PD-specific HTRA2 mutation

in the PDZ domain, p.Arg404Trp, in an extensive mutation
analysis of over 250 Belgian PD patients (Bogaerts et al.

unpublished data).

Other genes relevant to mitochondrial function and
oxidative stress
Several polymorphisms in functional candidate genes
related to mitochondrial function and oxidative stress have

been studied for their possible association with PD. MAO,
a principal enzyme of dopamine metabolism that has two

isoforms: MAO-A and MAO-B, was tested for its supposed
role in PD pathogenesis: a polymorphism in intron 13 of

MAO-B was significantly associated with increased risk of
PD (Kang et al. 2006; Tan et al. 2000b). Another poly-

morphism in exon 22 of inducible nitric oxide synthase
(encoded by NOS2A), an enzyme that produces NO (Fig. 2),

showed an inverse association with PD (Hague et al. 2004;
Levecque et al. 2003). Although NO is a biological messen-

ger, NO overproduction contributes to oxidative stress,
impairment of mitochondria and overload of degradation

pathways. Interestingly NOS2A polymorphisms were also
reported to interact with smoking (Hancock et al. 2006).

Glutathione S-transferase (GST) variants have been exten-
sively studied in PD because of their ability to detoxify

exogenous and endogenous toxic substances. Moreover,
polymorphisms in GST Omega-1 and -2 were shown to

modify age at onset of PD (Li et al. 2006). These genes
represent only a handful of the list of functional candidate

genes for PD, but their implication in PD at least supports the
pathophysiological significance of mitochondrial dysfunction

to PD.

The relevance of genetic findings in PD
The future of drug therapies depends on the development of

animal models that strongly recapitulate the disease, not only
to discover the mechanisms of disease but also to identify

new neuroprotective drugs and to test their efficacy. The

genetic findings described above provide a direct mechanistic
link with PD and therefore animal models expressing the

discovered PD-causing mutations probably mimic human PD
better than neurotoxic animal models. The identified PD

genes themselves represent direct targets for therapeutic
application, e.g. by RNA interference. In addition, evidence

from genetic studies indirectly suggests that mitochondrial
dysfunction plays an integrative role in PD pathogenesis, and

therefore mitochondrial function and mechanisms to cell
death represent valid targets for potential neuroprotective

therapies.

Direct relevance of genetic research to
treatment

Transgenic mouse models of PD

The identification of causal PD genes in rare Mendelian forms
of PD triggered the development of transgenic mouse

models. The underlying hypothesis is that mutations causing
Mendelian forms of PD highlight pathways, relevant to

sporadic PD (Melrose et al. 2006). However all of these
mouse models had shortcomings, of which the most notable

is failure to exhibit degeneration of the nigrostriatal system,
a key pathological feature of PD (Manning-Bog & Langston

2007). Efforts to create genetic models of PD in simple
systems, e.g. Drosophila and yeast, have resulted in robust

phenotypes. However, the principal value of these simple
models of PD is perhaps that results in these systems might

be used to improve current mouse models of PD (Whitworth
et al. 2006).

Genes, Brain and Behavior (2008) 7: 129–151 137

Genetic findings in Parkinson’s disease and translation into treatment



Given its clear link with PD, a variety of SNCA transgenic
mice have been generated, varying in tissue specificity,

mutation and expression level (for a review see Fernagut &
Chesselet 2004). The developed SNCA transgenic models

proved to be valuable in partially recapitulating the predispo-
sition of certain neuronal populations to SNCA aggregation.

Parkin knockout mice had normal numbers of DAergic
neurons, but displayed subtle deficits in behaviour and

DAergic neurotransmission (Goldberg et al. 2003; Itier et al.
2003). Similar to parkin knockouts, loss of DJ-1 did not result

in loss of SN DAergic neurons (Chen et al. 2005; Goldberg
et al. 2005; Kim et al. 2005), but again subtle behavioural

deficits and increased striatal DA reuptake were reported. So
far PINK1 knockout mice have not been reported, but

silencing of PINK1 expression in mice by use of RNA
interference did not cause a loss of DAergic neurons either

(Zhou et al. 2007). LRRK2 transgenic mice have also not been
reported. It is hoped that these transgenicmice display amore

robust pathological phenotype (Melrose et al. 2006). How-
ever, considerable variability in pathological phenotype was

already documented for several pathogenic LRRK2mutations
(Rajput et al. 2006; Zimprich et al. 2004).

Yet no perfect animal model for PD exists; most transgenic
mouse lines do not show damage to the nigrostriatal system,

but rather have subtle changes. Opposed to this, neurotoxic
animal models do show degeneration of SN DAergic neurons.

Combining these animal models might thus be very fruitful to

develop new and better PD models. Such fused genetic and
neurotoxic models might better capture the full spectrum of

PD features, and provide excellent means to study gene–
environment interactions (Manning-Bog & Langston 2007).

Nevertheless, genetic mouse models have at least illustrated
that neuronal dysfunction in PDmost likely occurs long before

cell loss. Current transgenic or knockout mouse models
might indeed provide insights into the early stages of PD

(Fleming et al. 2005), allowing us to decipher pathological
processes that take place in brain exposed to a PD-causing

insult before degeneration of the nigrostriatal system occurs,
or before the disease begins elsewhere (Litvan et al. 2007).

Gene-based therapy

A straightforward approach, supported by genetic findings, is

the possibility to lower SNCA levels. Indeed, given the gain-
of-function mechanism of PD-linked SNCA mutations, silenc-

ing expression of mutant SNCA or reducing overexpression of
wild-type SNCA is an attractive target for therapeutic RNA

interference (Gonzalez-Alegre 2007). Allele-specific silencing
of mutant SNCA was already shown in vitro, as well as

suppression of overexpressed human SNCA in vivo in rat
brain (Sapru et al. 2006). However, these studies need

replication in different animal models of PD. A vaccination
approach was also tested: immunization of human SNCA

transgenic mice with recombinant human SNCA led to
decreased SNCA accumulation in neuronal cell bodies and

synapses, as well as reduced neurodegeneration (Masliah
et al. 2005). Human trials on the proposed vaccine are

currently underway (Singh et al. 2007). For parkin, PINK1
and DJ-1, where PD is caused by loss-of-function mecha-

nisms, increasing expression is likely to ameliorate the

phenotype (Farrer 2006). For example, parkin gene therapy
was already shown to be effective against SNCA overexpres-

sion in rats (Mochizuki et al. 2006). Last but not least, the
identification of LRRK2 mutations as a frequent cause of

familial and sporadic PD was a landmark discovery in PD
research. The increased kinase activity observed for mutant

LRRK2 (West et al. 2005) may, if proved in vivo, translate
relatively quickly into a novel treatment option involving

kinase inhibition (Litvan et al. 2007). However, the physiolog-
ical targets for LRRK2 activity are not yet known, hence

uncertainty remains whether we can target this kinase
activity without detrimental effects.

Drugs targeting mitochondrial pathways to PD

A scientific rationale, evidence of blood brain barrier (BBB)
penetration, adequate safety data, efficacy in animal models

and/or preliminary efficacy data in humans are requirements
to identify promising neuroprotective drugs in PD (Ravina

et al. 2003). In contrast with symptomatic treatments, neuro-
protective drugs aim to slow or halt the progression of PD by

a direct effect on the vulnerable cells (Olanow & Jankovic
2005).

The neuroprotective drugs include dopamine agonists and
MAO-B inhibitors, which are already used for years to

improve symptoms in the early stages of PD. Based on our
current understanding of PD pathogenesis and mitochondria-

related mechanisms of cell death, neuroprotective drugs can
be divided into drugs that (1) attenuate mitochondrial apopto-

sis, (2) reduce oxidative stress in mitochondria or (3) directly
target mitochondrial function (Fig. 5).

Antiapoptotic

Dopamine agonists
Dopamine agonists have proven efficacy in the early stages of

PD. Dopamine agonists directly stimulate dopamine recep-
tors and unlike levodopa their symptomatic effect does not

depend on the presence of dopamine producing neurons
(Junghanns et al. 2004). The neuroprotective effect of dopa-

mine agonists may be the result of different mechanisms,
including a ‘levodopa sparing’ effect (delaying the need for

levodopa therapy) (Holloway et al. 2000; Rascol et al. 2000),
antioxidative properties by scavenging free radicals (Iida et al.

1999), as well as inhibition of apoptosis (Nair et al. 2003).
Pramipexole is perhaps the best-studied dopamine agonist.

Pramipexole decreased apoptotic cell death in SH-SY5Y cells
exposed to MPPþ and rotenone (Kitamura et al. 1998;

Schapira et al. 2002) and was shown to inhibit opening of
the PT pore, reduce release of cytochrome c and decrease

activation of caspase 3 (Cassarino et al. 1998; Gu et al. 2004;
King et al. 2001). In vivo studies showed that marmosets

(non-human primates) pretreated with pramipexole had sig-
nificantly greater numbers of surviving SNpc neurons upon

MPTP treatment (Iravani et al. 2006). The need for pretreat-
ment, which is in agreement with earlier observations in SH-

SY5Y cells (Gu et al. 2004; Kitamura et al. 1998), does not
preclude clinical application of pramipexole, but rather em-

phasizes the importance of pramipexole administration early
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in the disease process to protect the remaining SN neurons
from future dysfunction or degeneration.

Two prospective randomized double-blind clinical trials in early
PD patients (diagnosed within 5 years) supported the neuro-

protectiveeffectofdopamineagonists (Schapira2003),but further
trials are needed to confirm their neuroprotective potential.

MAO-B inhibitors and propargylamines
MAO-A and MAO-B are tightly associated with the OMM and
oxidatively deaminate monoamine neurotransmitters (e.g.

dopamine), as well as exogenous monoamines (e.g. tyra-
mine). MAO inhibitors were considered in PD therapy as

dopamine sparing drugs, however, the first generation of non-
selective MAO inhibitors had a major side-effect, known as

the ‘cheese reaction’ (hypertensive crisis because of poten-
tiation of the sympathomimetic activity of tyramine by

peripheral inhibition of its MAO metabolism). Selective

MAO-B inhibitors, such as the propargylamine-related L-
deprenyl (Birkmayer et al. 1975) and the more potent rasagi-

line (Siderowf & Stern 2006), do not have such effect (Youdim
& Weinstock 2004). Neuroprotection by L-deprenyl (Birk-

mayer et al. 1985) and other propargylamines is most likely
because of interference with apoptotic signalling pathways

rather than by MAO-B inhibition itself (Tatton et al. 2003a). In
addition, L-deprenyl was shown to inhibit the formation of

SNCA fibrils and to destabilize preformed SNCA fibrils (Ono
et al. 2007).

In SH-SY5Y cells rasagiline suppressed apoptosis by pre-
venting the fall in DCm and opening of the mitochondrial PT

pore, preventing nuclear translocation of GAPDH (Youdim &
Weinstock 2001) and increasing expression of antiapoptotic

Bcl-2 family members (Akao et al. 2002). In rats and marmo-
sets L-deprenyl and rasagiline attenuated the neurotoxic

effects of MPTP (Kupsch et al. 2001; Wu et al. 2000).

Figure 5: Entry points for PD therapy involving mitochondria. Green boxes highlight potential neuroprotective drugs at their

respective action levels, and dotted lines indicate premature termination of clinical trials for promising neuroprotective drugs.

Abbreviations: Cyt C, cytochrome c; MAPKK, MAPK kinase; MAPKKK, MAPKK kinase; MKK4/7, MAPK kinases 4/7; P, phosphorylated.
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The neuroprotective effect of L-deprenyl and rasagiline
was tested in prospective randomized multicentre placebo-

controlled studies: the DATATOP (Deprenyl and Tocopherol
Antioxidative Therapy for Parkinson’s disease) (Shoulson

et al. 1993) and TEMPO study (TVP-1012 (rasagiline mesy-
late) in Early Monotherapy for Parkinson’s disease Outpa-

tients) (Parkinson Study Group 2004a). The TEMPO study
showed that PD patients treated with rasagiline for 12

months showed less functional decline than patients whose
treatment was delayed for 6 months. Such difference cannot

be simply explained by a symptomatic effect, which was
a confounder in studies of L-deprenyl (Olanow et al. 1995;

Shoulson et al. 2002), and is consistent with rasagiline having
a neuroprotective effect. A larger double-blind delayed-start

study is under way to confirm these data.
Another promising drug with potential neuroprotective

effect is TCH346 (also known as CGP3466). TCH346 incor-
porates a propargyl ring within its molecular structure and

resembles L-deprenyl, but does not inhibit MAO-B and was
therefore not anticipated to have confounding symptomatic

effects (Olanow et al. 2006).
TCH346 prevented nuclear translocation of GAPDH in

a cellular system (Hara et al. 2006), and in bilaterally MPTP-
treated monkeys TCH346 prevented death of SN DAergic

neurons (Andringa et al. 2003). Preclinical safety studies and
small trials in healthy volunteers showed that TCH346 was

well tolerated and free of clinically significant adverse effects.

A highly anticipated first double-blind placebo-controlled
clinical trial was already completed (Olanow et al. 2006).

Unfortunately, no significant differences were found between
any of the tested doses and placebo with respect to the

primary outcome (time to disability requiring DAergic treat-
ment) or secondary outcome measures [e.g. changes in

Unified Parkinson’s Disease Rating Scale (UPDRS)] in pa-
tients with early untreated PD.

Nevertheless, the evidence for neuroprotection by L-
deprenyl and nasagiline still deserves further study. Both

propargylamines differ from TCH346 by their additional MAO-
B inhibitory effects, which might not be redundant to explain

the apparent differences in their potential neuroprotective
effects.

JNK inhibitors
The first successful compound targeting the JNK signalling

pathway was CEP-1347 (Maroney et al. 1998). CEP-1347
does not directly inhibit JNK, but reduces neuronal cell death

by MLK inhibition (Maroney et al. 2001). JNK activation is
relevant to PD pathogenesis, as activated JNK was associ-

ated with SNCA pathology in SNCA p.Ala30Pro transgenic
mice (Frasier et al. 2005) and loss of parkin function was

already shown to activate the JNK pathway inDrosophila (Cha
et al. 2005).

CEP-1347 attenuated the neurotoxic effects of MPPþ in
differentiated SH-SY5Y cells (Mathiasen et al. 2004), and

reduced MPTP-mediated nigrostriatal DAergic neuron loss
in vivo in mice (Saporito et al. 1999). A placebo-controlled pilot

study showed that CEP-1347 was safe and well tolerated by
PD patients (Parkinson Study Group 2004b), and this sup-

ported the initiation of a large trial of longer duration with CEP-

1347: the PRECEPT study (Parkinson Research Examination
of CEP-1347 Trial).

The PRECEPT study was, however, prematurely abrogated
when an interim analysis showed that it would be futile to

continue experimental treatment. In all tested CEP-1347 dose
regimens more patients had reached the primary and sec-

ondary end-points compared with patients randomized to
placebo (Shoulson et al. 2006). Again these findings con-

trasted with research in preclinical models that predicted
favourable effects of CEP-1347 on the progression of PD.

Minocycline
Minocycline, a second-generation tetracycline, has a proven
safety record in humans. Among several activities minocy-

cline impairs microglial activation, neuroinflammation and
apoptosis (Yong et al. 2004). In midbrain cultures of parkin

knockout mice minocycline neuroprotection was related to
inactivation of microglial cells and protection against neuronal

apoptotic cell death (Casarejos et al. 2006). Increasing evi-
dence suggests that its antiapoptotic effect is achieved

through mechanisms acting at the level of mitochondria.
Minocycline inhibited mitochondrial PT mediated cyto-

chrome c release in isolated brain mitochondria (Zhu et al.
2002), and in kidney cells minocycline not only induced

antiapoptotic Bcl-2, but also antagonized pro-apoptotic Bcl-2
family members (Wang et al. 2004). Furthermore, minocy-

cline was shown to prevent nigrostriatal DAergic neurode-
generation in the MPTP mouse model of PD (Du et al. 2001;

Wu et al. 2002). In contrast with numerous reports of
beneficial effects of minocycline, some studies reported

significant exacerbation of MPTP-induced damage by mino-
cycline in mice (Yang et al. 2003) and monkeys (Diguet et al.

2004). It remains, however, plausible that minocycline has
different, sometimes even deleterious, effects according to

its mode of administration and dose. A recent study sug-
gested that the mitochondrial effects of minocycline contrib-

ute to toxicity rather than tissue protection at high dosing in
animals and humans (Mansson et al. 2007). The possible

harmful effects of minocycline must thus be ceaselessly kept
in mind when considering minocycline use in clinical PD

settings.
A randomized, double-blind, futility clinical trial of minocy-

cline in early PD patients could not reject minocycline as futile
(Ravina et al. 2006). Such futility trials are intended to

determine if treatments are worthy of larger and longer term
studies, or if they should be abandoned (Elm et al. 2005).

Although the results of this futility study do not provide

evidence for clinical use of minocycline in the treatment of
PD, they indicate that minocycline at least merits further

consideration for larger clinical trials.

Oestrogen analogues
Postmenopausal oestrogen replacement therapy in women
with early PD was positively associated with lower symptom

severity (Saunders-Pullman et al. 1999) and suggested
a potential neuroprotective effect of oestrogens. Indeed,

numerous in vitro and in vivo studies established that
oestrogens act as neuroprotectants when challenged by

various toxic stresses.
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Several effects might explain the beneficial actions of
oestrogens on brain; including anti-inflammatory activity and

protection against apoptosis (Maggi et al. 2004). These
effects appear to be primarily mediated through activation

of intracellular oestrogen receptors (ER) and result in modu-
lated transcription of oestrogen target genes, e.g. upregu-

lated expression of antiapoptotic Bcl-2 (Garcia-Segura et al.
1998). Neuroprotective effects of oestrogens might also

result from ER-independent mechanisms, including antioxi-
dant effects (Moosmann & Behl 1999) related to their basic

chemical properties as hydrophobic phenolic molecules.
Mechanistic and structure–activity studies with oestrogens

yielded a model in which they intercalate into cell membranes
where they block lipid peroxidation reactions, and thereby

stabilize membrane structure (Behl et al. 1997), which is
especially critical to mitochondrial function.

Both the naturally occurring 17b-oestradiol (17b-E2) and
its 17a-oestradiol (17a-E2) isomer, which is at least 200-fold

less active as transactivating hormone, protected DAergic
neurons from MPPþ-induced neuronal death (Sawada et al.

2002). 17b-E2 showed beneficial effects in animal models of
PD usingMPTP as lesioning agent (Callier et al. 2000; Ramirez

et al. 2003), and 17a-E2 treatment in 6-hydroxydopamine
injected rats later showed significantly improved behavioural

outcomes (Dykens et al. 2005b).
A first small double-blind placebo-controlled clinical trial

of 17a-E2 was completed including eight healthy postmeno-

pausal women; the tested doses of 17a-E2werewell tolerated
and no adverse events were reported (Dykens et al.

2005a). However, the neuroprotective, or better mitoprotec-
tive, effects of 17a-E2 remain to be tested in PD patients.

Antioxidants

Iron chelators
Alterations in cellular iron metabolism and iron-induced oxi-

dative stress are important factors in the pathogenesis of PD

(Bharath et al. 2002; Riederer et al. 1989; Sofic et al. 1991;
Youdim et al. 1993). Moreover, iron was shown to accelerate

the aggregation of SNCA (Kalivendi et al. 2004) and to induce
alterations of parkin solubility, with depletion of soluble

functional parkin leading to reduced proteasomal activities
and increased cell death (Wang et al. 2005). Reducing the SN

iron content through iron chelationmight thus be a straightfor-
ward therapeutic approach to the treatment of PD (Zhang

et al. 2005b).
Desferrioxamine, the prototype of iron chelators (Jiang

et al. 2006), blocked iron-induced oxidative damage in SK-N-
SH neuroblastoma cells (DAergic origin) (Sangchot et al.

2002). In rat brain mitochondria desferrioxamine also pro-
tected mitochondrial complex I activity against inhibition by

6-hydroxydopamine, possibly through a combined neuropro-
tective effect of iron chelation and NADH dehydrogenase

activation (Glinka et al. 1996, 1998). The neuroprotective
effect of preinjected desferrioxamine was later confirmed in

rat (Ben Shachar et al. 1991; Youdim et al. 2004) and mice
models (Lan & Jiang 1997).

As desferrioxamine has poor BBB penetration, other lipo-
philic chelators with enhanced BBB penetration have been

synthesized; e.g. VK-28 (Ben Shachar et al. 2004). Novel iron
chelators were further developed based on VK-28, that

combine its iron chelating potency with a MAO inhibitory
propargylamine moiety (Youdim et al. 2005), e.g. the multi-

functional M30. M30 exhibited neuroprotective activity upon
in vitro and in vivo testing (Gal et al. 2005; Zheng et al. 2005),

but its effect in PD patients remains to be evaluated.
Nevertheless, as multifunctional compounds possess various

targets within the central nervous system, they may provide
better efficacy and utility as potential disease-modifying drugs

(Youdim & Buccafusco 2005).

Free radical scavengers
Under physiological conditions several cellular mechanisms

are able to neutralize a possible excess of free radicals and
thereby prevent oxidative stress. These comprise free radical

scavengers, which are either endogenously produced mole-
cules or nutrients, and scavenger enzymes such as SOD,

glutathione peroxidase and catalase (Fig. 2). The free radical
scavengers include vitamins A, C and E, as well as glutathione

in its reduced form, and melatonin (Contestabile 2001). RNA
interference-mediated inactivation of the Drosophila PINK1

homologue already showed that addition of SOD1 and
vitamin E to the flies’ diet inhibited degeneration of photore-

ceptor neurons (Wang et al. 2006).
The lipid-soluble vitamin E received much attention as

a chain-breaking antioxidant that prevents propagation of the
radical chain (Burton et al. 1983). In vitro studies indicated

oxidation of vitamin E upon incubation with free radicals in rat
brain mitochondria (Vatassery et al. 1995) and protection

againstH2O2-induced oxidative stress in a murine hippocampal-
derived cell line (Behl 2000). However in vivo studies did not

consistently find positive effects of vitamin E administration
(Gong et al. 1991; Roghani & Behzadi 2001).

Already in 1987 a-tocopherol, the biologically most active
form of vitamin E, was selected for the first clinical trial of

neuroprotection in PD: the DATATOP study (Shoulson et al.

1993). This study did not show beneficial effects of supple-
mental a-tocopherol intake in PD patients, but a more recent

meta-analysis suggested that diets rich in vitamine E might
exert a protective effect against the development of PD

(Etminan et al. 2005). There is, however, some concern that
high-dosage vitamin E supplementation may be harmful

(Miller et al. 2005).
Use of reduced gluthathione as a free radical scavenger is

hampered by a poor BBB permeability (Zeevalk et al. 2007).
On the other hand, the pineal hormone melatonin is a highly

lipophilic free radical scavenger (Reiter et al. 1993) and
antioxidant (Tan et al. 2000a). Some of the melatonin metab-

olites resulting from scavenging actions are also efficient free
radical scavengers (Lopez-Burillo et al. 2003). The action of

melatonin as a free radical scavenger is thus a sequence of
scavenging reactions, resulting in a cascade of protective

reactions.
Pharmacological doses of melatonin, which greatly exceed

endogenous levels, were shown to be neuroprotective in
different neurotoxic models of PD (Joo et al. 1998; Thomas &

Mohanakumar 2004), but to our knowledgemelatonin has not
yet been tested for the treatment of PD in clinical trials.
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Targeting mitochondrial function

Coenzyme Q10

Coenzyme Q shuttles electrons from complexes I/II to

complex III of the electron transport chain, and the pre-
dominant form of coenzyme Q in humans is coenzyme Q10.

In addition, ubiquinol (its reduced form) functions as antiox-
idant, prevents lipid peroxidation in most subcellular mem-

branes and also protects mitochondrial membrane proteins
and DNA from ROS-induced oxidative damage (Ernster &

Dallner 1995).
Coenzyme Q10 was shown to prevent in vitromitochondrial

PT pore opening upon apoptotic stimuli (Papucci et al. 2003).
In agedmice coenzymeQ10 attenuatedMPTP-induced loss of

striatal dopamine and DAergic axons (Beal et al. 1998). In
addition, PD patients showed lower levels of coenzymeQ10 in

platelet mitochondria (Shults et al. 1997), as well as elevated
levels of oxidized coenzyme Q10 (Sohmiya et al. 2004)

compared with control individuals.
A pilot study in PD patients showed that oral adminis-

tration of coenzyme Q10 was well tolerated and caused
a trend towards increased complex I activity (Shults et al.

1998). A later study also showed reduced functional
decline in PD patients taking coenzyme Q10 (Shults et al.

2002). More recently, a randomized, double-blind, futility
clinical trial of coenzyme Q10 in early PD could not reject

coenzyme Q10 as futile (The NINDS NET-PD Investigators
2007). However, large trials are still needed to evaluate the

long term effects of coenzyme Q10 intake and to assess its
disease-modifying potential in the treatment of PD

patients.

Creatine
The endogenous guanidine-derived creatine is a substrate for
cytosolic and mitochondrial creatine kinases (CK). Aerobic

glycolysis, coupled to mitochondrial ATP synthesis via oxida-
tive phosphorylation, is the primary pathway of ATP synthesis

in brain, but in addition the CK/phosphocreatine system pro-
vides a rapid alternative source for ATP synthesis (Wallimann

et al. 1992). Mitochondrial CK together with high cytoplasmic
creatine levels also inhibits mitochondrial PT and the conse-

quent triggering of apoptosis (Andres et al. 2005).
In primary neuronal cultures creatine exerted neuroprotec-

tive effects against neurotoxic insults as MPPþ exposure
(Andres et al. 2005). Oral supplementation with creatine

protected against MPTP-induced dopamine depletion in mice
and reduced damage to the nigrostriatal DAergic system

(Matthews et al. 1999).
A double-blind placebo-controlled pilot study on the effect

of oral creatine supplementation on PD progression did not
find a treatment effect on UPDRS scores, although a signifi-

cantly smaller dose increase of DAergic therapy in creatine-
treated patients indicated a potential neuroprotective effect

(Bender et al. 2006a). A randomized, double-blind, futility
clinical trial of creatine in early PD could not reject creatine as

futile (Ravina et al. 2006). Creatine thus remains a promising
neuroprotective drug for PD, but its neuroprotective potential

may only be shown by large multicentre studies over an
extended observation period.

Conclusion

Molecular genetic studies identified key proteins involved in

PD pathogenesis. Mutations or polymorphisms in mtDNA,
but especially mutations in the nuclear-encoded SNCA,

parkin, PINK1, DJ-1, LRRK2 and HTRA2 provided direct or
indirect links between mitochondria and PD pathogenesis.

Other chromosomal loci still await refinement and character-
ization (Bogaerts et al. 2007; Gasser et al. 1998; Hicks et al.

2002; Pankratz et al. 2003) and will further increase our
knowledge of the basic mechanisms underlying PD patho-

genesis.
Perhaps the most relevant question for research into the

causes of PD is: how can we exploit the gained knowledge on
mitochondrial involvement in PD to develop better therapies?

Neuroprotective therapies that slow or halt disease progres-
sion remain an unmet need. Our insights into the pathogenic

mechanisms of cell death in PD led to several potential
neuroprotective drugs, which have actions as attenuating

mitochondrial apoptosis and reducing oxidative stress in
mitochondria, or directly target mitochondrial function. The

selection of drugs covered in this review all exert at least one
of the three above mentioned actions, along with possible

involvements in other non-mitochondrial pathways to PD.

However, no drug has yet been shown to be neuroprotec-
tive in PD patients, although several were tested in clinical

trials. This discrepancy, reported for several potential neuro-
protective drugs targeting different elements of the mito-

chondrial pathway, raises serious concerns as to the
suitability of currently available models (Waldmeier et al.

2006). Particularly, the currently used animal models, typically
acute or subacute neurotoxic models, might not adequately

recapitulate the pathogenesis of the slower progressive
neurodegenerative process in humans. Therefore, genetic

models of PD are highly desirable because they produce
a delayed onset and a neurodegenerative process that

probably mimics human PD better than neurotoxic models.
On the other hand, the clinical end-points used to assess

neuroprotective drugs in PD, such as need for symptomatic
treatment or change in UPDRS score, may be confounded by

symptomatic effects, or may simply be too insensitive. True
biomarkers that accurately reflect disease progression remain

an urgent priority. An additional concern is that DA neurons
may already be beyond rescue when clinical features appear.

This reinforces the need for biomarkers to identify patients
who are in the presymptomatic or early stages of PD. Ideally,

neuroprotective drugs should be administered during this
early period (Halbig et al. 2004).

Last but not least a very important questions remains: do
we target the right pathway?Moreover, how can we fit all the

cellular processes uncovered by genes involved in familial
forms of PD in the mitochondrial pathway? And is this

mitochondrial pathway also relevant to sporadic forms of
PD? Association studies in sporadic PD patients, showing

modest effects for candidate genes involved in mitochondrial
function and oxidative stress, support this contention. On the

other hand, monogenic PD explains only 20% of early onset
PD and less than 3% of late onset PD at best (Klein 2006).

In most PD patients, the loss of DAergic neurons results

from a combination of exogenous stresses and a genetic
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predisposition. Given this complexity, it is unlikely that any
neuroprotective drug will be applicable to the full spectrum of

PD patients. However, it is more plausible that mixtures of
therapies targeting several different processes converging in

a common pathway may prove useful in PD neuroprotection.
The recent development of multifunctional compounds rep-

resents a move into that direction.
As the repeated failure of neuroprotective drugs in clinical

trials has unfortunately shown, we must acknowledge that at
present we merely have a rough sketch of the mitochondrial

pathway to neurodegeneration in PD. This sketch turns out
inadequate to predict fruitful neuroprotective approaches and

further research is definitely needed. Nevertheless, the future
looks bright. Our understanding of PD pathogenesis is rapidly

evolving, boosted by a massive amount of research into the
genetic causes of PD, the influence of genetic and environ-

mental susceptibility factors on disease penetrance and
manifestation, and the development of better models to test

potential neuroprotective therapies. New insights from these
future studies will (re)direct our efforts and eventually will

provide us with neuroprotective therapies that might really
make the change in the treatment of PD.

Glossary

Association study: Study of the correlation between a genetic

variant in a population and a disease. If a correlation is
observed, then there is said to be an association between

the variant and the disease.
Candidate gene: Gene with evidence for a possible role in

the disease under study.
DAergic: Related to or activated by dopamine.

Early PD: Early stages of PD with subtle impairment. In
clinical trials, early PD patients have Hoehn and Yahr stage I

(unilateral disease) or stage II (bilateral disease with preser-
vation of postural reflexes) PD for less than 5 years. The

Hoehn and Yahr rating scale is a simple and popular scale to
establish the severity of PD with stages ranging from I to V

(wheelchair-bound or walking only with assistance).
Early onset PD: Having an onset at or before 45 years of

age.
Haploinsufficiency: Situation in which half of the normal

level of gene expression is not sufficient to permit cells to
function normally.

Haplotype: Sequential set of alleles present on the same
chromosome.

Linkage analysis: Mapping loci by genotyping genetic
markers in families to identify chromosome regions impli-

cated in disease. Such linked regions are of great help in the
identification of genetic variants causing disease.

Meta-analysis: A statistical analysis combining the results
of several independent studies.

Mitochondrial respiratory chain (electron transport chain):
Collective term used to describe the peptides, organized in

five enzymatic mitochondrial complexes (I–V), and the elec-
tron shuttle molecules that are needed to produce ATP.

Oxidative phosphorylation: Phosphorylation of adenosine
50-diphosphate to ATP driven by the transfer of electrons to

oxygen.

SH-SY5Y: Human neuroblastoma subclonal cell line of the
neuroepithelioma cell line SK-N-SH. These cells are widely

used in studies addressing the molecular mechanisms of
neurodegenerative disease.

UPS: Cellular system responsible for the degradation of
damaged or misfolded proteins. Ubiquitin molecules are

attached to lysine residues of a given protein and target the
protein for destruction by the multienzyme proteasome.

UPDRS: Unified Parkinson’s Disease Rating Scale used to
monitor the progression of PD. It is the most widely used

clinical rating scale for PD and consists of a four-part
evaluation: I non-motor experiences of daily living, II motor

experiences of daily living, III motor examination and IV motor
complications.
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