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Abstract 

Background:  The prevalence of HIV-1 resistance to antiretroviral therapies (ART) has declined in high-income coun-
tries over recent years, but drug resistance remains a substantial concern in many low and middle-income countries. 
The Q151M and T69 insertion (T69i) resistance mutations in the viral reverse transcriptase gene can reduce suscepti-
bility to all nucleoside/tide analogue reverse transcriptase inhibitors, motivating the present study to investigate the 
risk factors and outcomes associated with these mutations.

Methods:  We considered all data in the UK HIV Drug Resistance Database for blood samples obtained in the period 
1997–2014. Where available, treatment history and patient outcomes were obtained through linkage to the UK 
Collaborative HIV Cohort study. A matched case–control approach was used to assess risk factors associated with 
the appearance of each of the mutations in ART-experienced patients, and survival analysis was used to investigate 
factors associated with viral suppression. A further analysis using matched controls was performed to investigate the 
impact of each mutation on survival.

Results:  A total of 180 patients with Q151M mutation and 85 with T69i mutation were identified, almost entirely 
from before 2006. Occurrence of both the Q151M and T69i mutations was strongly associated with cumulative period 
of virological failure while on ART, and for Q151M there was a particular positive association with use of stavudine and 
negative association with use of boosted-protease inhibitors. Subsequent viral suppression was negatively associated 
with viral load at sequencing for both mutations, and for Q151M we found a negative association with didanosine 
use but a positive association with boosted-protease inhibitor use. The results obtained in these analyses were also 
consistent with potentially large associations with other drugs. Analyses were inconclusive regarding associations 
between the mutations and mortality, but mortality was high for patients with low CD4 at detection.

Conclusions:  The Q151M and T69i resistance mutations are now very rare in the UK. Our results suggest that good 
outcomes are possible for people with these mutations. However, in this historic sample, viral load and CD4 at detec-
tion were important factors in determining prognosis.
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Background
Highly potent and effective antiretroviral therapies 
(ART) to treat HIV-1 infection are now available and 
although drug resistance was a considerable problem in 
the early years of ART use, its impact has now declined in 
high-income countries. In the UK HIV Drug Resistance 
Database (UK-HDRD) only about 30% of treated patients 
receiving resistance tests following virological failure 
in 2014 showed any drug resistance, compared with 
72% in 2002 [1]. Likewise, a decline in drug resistance 
in treated patients has been observed in Canada [2] and 
overall in Western Europe [3]. In Switzerland it is now 
considered that the emergence of new drug resistance 
“can be virtually stopped with new potent therapies and 
close monitoring” [4]. However, drug resistance remains 
a considerable problem in the successful treatment of 
HIV infection in many low- and middle-income coun-
tries (LMICs) [5–7]. This is in part due to limited drug 
options, but also to a lack of (or limited) routine viral load 
(VL) monitoring [8] as patients continuing to use ART 
while failing to suppress viral replication may develop 
resistance mutations. This has led to calls for improved 
provision of VL monitoring and resistance testing [9–11].

HIV mutations that confer resistance to multiple drugs, 
and hence have the potential to severely limit treatment 
options, are of particular concern. The T69 insertion 
(T69i) and associated mutations in reverse transcriptase 
confer high level resistance to all nucleoside/nucleotide 
reverse transcriptase inhibitors (NRTIs) [12]. Likewise 
the Q151M mutation causes intermediate/high-level 
resistance to zidovudine (ZDV), didanosine (DDI), stavu-
dine (D4T), and abacavir (ABC) and low level resistance 
to tenofovir (TDF), lamivudine (3TC) and emtricitabine 
(FTC) [12]. The Stanford University Drug Resistance 
Database reports that in combination with mutations at 
associated positions (62, 75, 77 and 116) Q151M confers 
high-level resistance to ZDV, DDI, D4T and ABC, and 
intermediate resistance to TDF, 3TC and FTC [13].

The T69i mutation has been linked to DDI use [14] 
whilst for Q151M an association with D4T has been 
observed [15], and most reports of the mutations occur-
ring in Europe date to 10 or more years ago when the use 
of these drugs was still widespread [14, 16, 17]. How-
ever, a relatively high prevalence of Q151M has been 
observed in more recent studies of patients failing ART 
from LMICs [15, 18–23] (ranging 2–14% in these stud-
ies). Whilst a fall in prevalence is to be expected to follow 
from the complete phase-out of D4T use [24], there is 
the potential for cases of the mutation to persist for years 
to come. Although the occurrence of the T69i mutation 
appears to remain rare even in LMICs (ranging 0–1% in 
these studies [15, 18–22], with the 1% value based on a 
single patient in Saravanan et al. [21]), there nonetheless 

remains a motivation to investigate outcomes in affected 
patients given the potential impact on future treatment. 
Some recent studies have found that the presence of 
NRTI resistance is actually predictive of successful viro-
logical suppression on second-line ART [25, 26], so it is 
of interest to evaluate whether boosted protease inhibitor 
regimens are effective in those cases with these specific 
rare mutations.

This paper reports changes in the prevalence of multi-
drug resistance mutations Q151M and T69i in the UK-
HDRD over time and evaluates outcomes in affected 
patients. Risk factors for the occurrence of the mutations 
and predictors of subsequent viral suppression are inves-
tigated, with the aim of helping to inform clinical man-
agement in regions in which the development of drug 
resistance is an increasing concern.

Methods
Data and general approach
We considered all available data in the UK-HDRD for 
blood samples obtained in the period 1997–2014. Few 
data are available before this period, as resistance test-
ing was not widely available, with no recorded observa-
tions of either Q151M or T69i mutations. The prevalence 
of each resistance mutation studied was assessed in 
relation to calendar time stratified by whether patients 
were recorded as ART-naïve or -experienced in the UK-
HDRD. Where possible, clinical data were obtained 
through linkage to the UK Collaborative HIV Cohort 
(UK CHIC) study [27]. Patients without classification 
recorded were assumed to be ART-experienced for the 
evaluation of prevalence, but ART-status was available in 
all UK CHIC-linked patients for the analyses of risk fac-
tors and outcomes.

The identification of drug resistance mutations was 
based on output from the Stanford University HIV Drug 
Resistance Database program. Following established con-
vention (and software output) [13], the term ‘T69i muta-
tion’ is used throughout to refer to any insertion in the 
β3–β4 loop of reverse transcriptase between codons 66 
and 70.

A Bayesian approach to statistical analysis was used 
throughout, with models implemented in the Stan prob-
abilistic programming language [28] using the rstan 
[29] interface for R. This approach was chosen to guard 
against the erroneous inferences that can arise from 
model building based on large numbers of sequential 
classical hypothesis tests [30]. Continuous variables were 
standardised for analyses (by subtracting their mean and 
then dividing by their SD) so that their associated param-
eters are on a comparable scale. Additional technical 
details are provided in Additional file 1.
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Risk factors for development of mutations
Matched case–control analyses were conducted in order 
to investigate factors associated with the occurrence 
of each of the mutations studied. These analyses only 
included patients for whom resistance test data could be 
matched to clinical records in the UK CHIC study. ART-
experienced patients were defined as ‘cases’ at time of 
blood sampling for the first observation of the relevant 
mutation and were matched in a 1:10 ratio to ‘controls’, 
who were randomly sampled (without replacement) from 
a subset of patients with at least one resistance test avail-
able for whom the relevant mutation had never been 
detected. Matching in each instance was conditional 
on the control patient having first initiated ART within 
6 months (in calendar time) of the case patient doing so, 
and current and historic treatment variables for both 
case and control patients were defined with respect to 
the time of blood sampling for the resistance test in the 
case patient. Multivariable conditional logistic regression 
analyses were conducted accounting for the matched 
case–control groups. This form of analysis was cho-
sen so that key factors associated with the development 
of the resistance mutations could be investigated whilst 
controlling for the evolution of ART drug combinations 
and treatment strategies over time. The complexity of 
ART histories for each patient and the limited numbers 
of cases available for analysis precluded more complex 
modelling of the probability of the development of each 
resistance mutation conditional on full details of ART 
history.

Details of variable selection for these models are pro-
vided in Additional file 1. For some patients included in 
the UK-HDRD, the original viral sequence data is not 
recorded and so it is not possible to obtain a viral sub-
type. As such, viral subtype was added to the final model 
in the subset of patients for whom this was possible 
(using REGA, classified as A, B, C, circulating recombi-
nant form (CRF), or other).

Factors associated with successful viral suppression 
following detection of resistance
Multivariable Cox regression was used to investigate 
the factors associated with successful viral suppression 
following detection of either the Q151M or T69i muta-
tion. Change to ART regimen following detection of a 
resistance mutation was taken as the zero time point for 
these analyses, and the survival outcome was defined 
as the time to the first of two consecutive undetectable 
VL observations (considering observations < 200 copies/
mL to be ‘undetectable’). Patients in whom there was 
no change to ART regimen recorded were not included 

in these analyses. Baseline CD4 cell counts and VL were 
defined as the most recent observation recorded within 
6 months prior to the start of the new ART regimen, and 
outcomes were censored at any subsequent change to 
ART regimen.

In the Cox regression analyses, baseline square-
root(CD4) and log10(VL) were included as predictors, 
alongside treatment-naïve or experienced status, sex, 
patient age and variables representing individual drugs 
received by ≥ 10% patients. Protease inhibitors (PIs) were 
grouped into the presence or absence of un-boosted or 
ritonavir-boosted PI (ubPI/rbPI) and non-nucleoside/
nucleotide reverse transcriptase inhibitors (NNRTIs) 
were also grouped into a single variable. A dummy vari-
able was included to indicate patients receiving an ART 
regimen containing drugs from only a single class. Pres-
ence or absence of the K65R mutation was also included 
as a predictor, and analyses were also conducted includ-
ing the respective accessory mutations for Q151M and 
T69i. Further analyses were conducted to investigate 
the durability of viral suppression in ART-experienced 
patients, based on the proposal of McKinnon et al. [31]; 
briefly, viral suppression and subsequent virological fail-
ure are modelled using sequential Weibull time-to-event 
models so that the proportion of patients with sustained 
viral suppression can be estimated (Additional file 1).

Factors associated with mortality
To investigate the association between Q151M and 69i 
and mortality, we carried out a matched cohort analysis 
of comparable patients in whom ART data were avail-
able. Patients were matched from a subset of patients 
with at least one resistance test available for whom the 
relevant mutation had never been detected. Matching 
was conditional on the observation of a resistance test 
within 12 months of that in the case patient (effectively 
matching on treatment failure or interruption in ART-
experienced patients), date of ART initiation within 
12  months of the case patient in those who were ART-
experienced at the time of detection (or ART-naïve status 
in ART-naïve cases), and patient sex and mode of infec-
tion. Matching was carried out with up to 10 ‘controls’ for 
each ‘case’ (dependent on availability). Survival analyses 
(for the outcome of any-cause death from date of resist-
ance test) were then conducted using Cox regression 
including a normally distributed shared frailty term for 
each matched group and adjusted for CD4 count at time 
of resistance test, age at resistance test, prior diagnosis of 
an AIDS-defining illness at resistance test and number of 
other reverse transcriptase resistance mutations detected 
at the index resistance test (grouping ≥ 9 mutations).
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Results
Q151M
A total of 180 patients with at least one observation of 
the Q151M mutation were recorded in the UK-HDRD, 
out of a total of 80,281 patients with at least one resist-
ance test. At first observation of the Q151M mutation, 
18 (10%) patients were recorded as being ART-naïve, 
139 (77%) as experienced and 23 (13%) as ‘not classified’. 
Figure 1a shows the prevalence of the Q151M mutation 
by calendar year according to whether the patient was 

ART experienced or naïve at the time of blood sample. 
The prevalence of the mutation was consistently low in 
ART-naïve patients, with a maximum of 0.5% (2/402) 
of patients in 1998, whilst in ART-experienced patients 
there was a fall in prevalence from 1.7% (33/1966) in 
2002 to 0.2% (8/3376) 2006 and then to 0.027% (1/3733) 
in 2014.

Table  1 provides a summary of the associated major 
reverse transcriptase mutations at first observation of the 
Q151M mutation in each of the affected patients. Only 
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Fig. 1  Prevalence of (a) the Q151M mutation and (b) the T69i mutation per patient by calendar year of sequencing (patients can be included in 
multiple calendar years, but are only counted once per year), according to whether the patient was ART experienced (black circle) or naïve (orange 
circle) at the time of blood sample. The denominator in each year is the total number of patients with at least one reverse transcriptase sequence 
recorded in that year. Binomial 95% CIs are shown
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3% of patients showed no other mutation, and the most 
common associated major reverse transcriptase muta-
tions were M184V (47%), K103N (35%) and K65R (29%). 
Data regarding accessory mutations to Q151M [12, 13] 
were available in 155 (86%) patients: A62V was present in 
49 (32%), V75I in 62 (40%), F77L in 47 (30%) and F116Y 
in 99 (64%), and 75% of patients showed at least one 
accessory mutation.

Of the patients in whom the Q151M mutation was 
detected, 96 could be linked to clinical data. Of these 
patients, 82 (85%) were recorded as ART-experienced 
and one as ‘not classified’, with 13 being ART-naïve. 
Information regarding the ART regimen prior to the 
resistance test was available in 74/82 (90.2%) of the ART-
experienced patients, and these 74 patients were included 
in the matched case–control analysis to investigate fac-
tors associated with the occurrence of the mutation 
(Fig. 2a). For the final fitted model, the strongest evidence 
for a positive association was for ‘total years of virologi-
cal failure’ (standardised odds ratio (sOR), 95% credibil-
ity interval (CrI) 2.39, 1.52–3.82; OR of 2.92 on original 
scale (years)), followed by ‘years of virological failure on 
D4T’ (sOR 1.80, 1.28–2.59; OR of 1.68 on original scale), 
whilst ‘current’ treatment using a rbPI showed a nega-
tive association (OR 0.28, 0.08–0.79) with occurrence of 
the mutation (Fig. 2a). There was not strong evidence of 
any positive or negative association with viral subtype 
(results in Additional file 1).

In 62/96 (65%) patients, a confirmed undetectable VL 
was observed (at any point) following the detection of the 
Q151M mutation at a median of 1.0 (IQR 0.5–2.3) years 
from the date of the resistance test sample. For a total of 
62 patients there were data on change to ART regimen 
after detection of the Q151M mutation and before viral 
re-suppression (for patients in whom this occurred), but 
six of these patients were missing a baseline CD4 cell 
count (three were also missing baseline VL) and so were 
dropped from the Cox analysis. Hence, 56 patients were 
included in the Cox analysis, with a total of 22 events 
(confirmed viral suppression) observed before censoring. 
Higher baseline VL (prior to new ART regimen) showed 
a substantial negative association with the probability of 
viral suppression (standardised hazard ratio (sHR) 0.32, 
0.14–0.64; HR of 0.30 on original scale of log10 copies/
mL) as did use of DDI (21/56 patients; HR 0.12, 0.02–
0.61), whilst the use of a rbPI showed a positive associa-
tion (31/57 patients; HR 4.62, 1.03–30.88) (Fig. 2b). The 
model also indicated that TDF use is likely to be associ-
ated with suppression, although this result is not defini-
tive. Information regarding the presence or absence of 

Table 1  Summary table for  associated mutations 
for Q151M (n = 180 patients)

a  Including A62V, V75I, F77L and F116Y, data available for 155 patients
b  M41L, D67N, K70R, L210W, T215Y/F and K219Q/E
c  PI PCR failed in one case. 
d  Of NRTI, NNRTI and PI. A full list of mutations and further information 
regarding associated K65R mutations are provided in Additional file 1

n (%)

Q151M isolated major RT mutation 5 (3)

Q151M accessory mutationsa

 0 38 (25)

 1 50 (32)

 2 14 (9)

 3 33 (21)

 4 20 (13)

NRTI major mutations other than Q151M

 0 20 (11)

 1 44 (24)

 2 45 (25)

 3 32 (18)

 4 24 (13)

 5 14 (8)

 6 1 (1)

TAMs presentb

 0 82 (46)

 1 40 (22)

 2 18 (10)

 3 23 (13)

 4 15 (8)

 5 2 (1)

NNRTI major mutations

 0 35 (19)

 1 43 (24)

 2 64 (36)

 3 24 (13)

 4 11 (6)

 5 3 (2)

PI major mutationsc

 0 108 (60)

 1 33 (18)

 2 14 (8)

 3 10 (6)

 4 9 (5)

 5 1 (1)

 6 4 (2)

Number of classes with resistanced

 1 17 (9)

 2 110 (61)

 3 53 (29)
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accessory mutations was available for 46 of these patients, 
but no strong evidence of an association with success of 
viral suppression was found. An additional analysis was 
conducted accounting for resistance to PI drugs used 
in rbPI regimens, with no notable change in the results 
obtained and no detected reduction in viral suppression 
when PI resistance was present (further details in Addi-
tional file 1).

A model was fitted to assess the durability of viral sup-
pression that included parameters for baseline VL, rbPI 
and DDI use. This analysis indicated that the durability of 

viral suppression was good for patients with low baseline 
VL, but that the overall probability of suppression was 
worse for patients with higher baseline VL values (Fig. 3).

For the matched cohort analysis of mortality, 72 
patients with and 665 patients without the Q151M 
mutation were included. Higher age and lower CD4 
count were strongly associated with mortality, but 
no clear association with the number of reverse tran-
scriptase resistance mutations was observed. There was 
no evidence that presence of the Q151M mutation was 
associated with increased mortality (HR 1.25, 95% CrI 
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Fig. 2  Posterior mean values and 95% credibility intervals for (a) log-odds ratios in the matched case–control analysis investigating factors associ-
ated with the occurrence of the Q151M mutation and (b) log-hazard ratios in the Cox regression for confirmed viral suppression following treat-
ment change after detection of Q151M mutation. Continuous variables were standardised (stand.), by subtracting the mean and dividing by SD, for 
these analyses. The results presented are from multivariable models in each case
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0.84–2.1). In patients with Q151M, most deaths occurred 
amongst those with CD4 count < 100 cells/µL (12 
deaths/24 patients vs 6/54 for patients with CD4 ≥ 100 
cells/µL, further details in Additional file 1).

T69i
A total of 85 patients with at least one detection of the 
T69i mutation are present in the UK-HDRD. At first 
observation of the T69i mutation, seven (8.2%) patients 
were recorded as being ART-naïve, 69 (81.2%) as 
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Fig. 3  Modelled probability of viral suppression in ART-experienced patients in terms of time since treatment switch following detection of the 
Q151M mutation for patients with a baseline viral load of (a) 2000 copies/mL (≈ 10th centile), (b) 40,000 copies/mL (≈ 50th centile) or (c) 500,000 
copies/mL (≈ 90th centile). Response is modelled according to presence or absence of a ritonavir-boosted protease inhibitor in the ART regimen 
at time zero, but patients were not censored at change to drug regimen in this analysis. The expected probability (solid line) and 95% credibility 
interval (dashed lines) from Bayesian fitting of sequential Weibull models for viral suppression and rebound are shown. DDI use was adjusted for in 
this analysis, but results are shown for patients not on DDI
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experienced and nine (10.6%) as ‘not classified’. Figure 1b 
shows the prevalence of the T69i mutation per patient 
by calendar year according to whether the patient was 
ART experienced or naïve at the time of blood sample. 
Similar to Q151M, the prevalence of the mutation was 

consistently very low in ART-naïve patients, with a maxi-
mum of 0.15% (2/1311) in 2003, whilst in ART-experi-
enced patients there was a large fall in prevalence from 
0.8% (16/1966) in 2002 to 0.1% (4/3376) in 2006 and then 
to 0.03% (1/3734) in 2014.

Table  2 provides a summary of the associated major 
reverse transcriptase mutations at first observation of the 
T69i mutation in each of the affected patients. Thymidine 
analogue mutations (TAMs) were most frequently seen, 
with TAM1 mutations (M41L, L210W and T215Y) being 
most common. In combination with the T69i, these 
mutations have been linked to high level resistance to all 
NRTIs [12]; 63/85 (74.1%) of the patients were observed 
to have at least one of these mutations present.

Of the patients with T69i mutation detected, 45 could 
be linked to clinical data. Of these patients, 39 (86.7%) 
were recorded as ART-experienced and six as naïve. Full 
information regarding the ART regimen prior to the 
resistance test was available in 36/39 (92.3%) of the ART-
experienced patients, and these 36 patients were included 
in the matched case–control analysis to investigate fac-
tors associated with the occurrence of the mutation. For 
the final fitted model, only ‘total years of virological fail-
ure’ showed a substantial positive association with the 
occurrence of the T69i mutation (standardised odds ratio 
(sOR), 95% CrI 2.16, 1.34–3.60; OR of 3.48 on original 
scale (years)), although there was also some evidence for 
a positive association with ‘DDI use ever’ (OR 1.73, 0.86–
5.16) (Fig. 4a). There was no strong evidence of any posi-
tive or negative association with viral subtype (results in 
Additional file 1).

In 33/45 (73.3%) patients, at least one confirmed unde-
tectable VL was observed (at any point) following the 
detection of the T69i mutation at a median of 1.5 (IQR 
0.5–2.2) years from the date of the resistance test blood 
sample. For a total of 31 patients there were data on 
change to ART regimen after detection of the T69i muta-
tion and before viral re-suppression, but five of these 
patients were missing both baseline CD4 cell count and 
VL (prior to new ART regimen) and so were dropped 
from the Cox analysis. Hence, 26 patients were included, 
with a total of 12 events (confirmed viral suppression) 
observed before censoring. Higher baseline log10(VL) 
showed a substantial negative association with the prob-
ability of viral suppression (sHR 0.016, 0.00–0.54; HR 
of 0.024 on original scale of log10 copies/mL), as did 
the use of D4T (HR 0.010, 0.00–0.88). 3TC (HR 0.021, 
0.00–1.02) also showed some evidence of a negative asso-
ciation (Fig. 4b), possibly attributable to the inclusion of 
two patients on 3TC monotherapy. Very wide credibil-
ity intervals were observed for the HR values for several 
drugs, reflecting the limited data available. There was 
no strong evidence that linked TAMs were associated 

Table 2  Summary table for  associated mutations for T69i 
(n = 85 patients)

a  TAMs at codons 41, 210 or 215
b  M41L, D67N, K70R, L210W, T215Y/F and K219Q/E
c  Of NRTI, NNRTI and PI. A full list of mutations is provided in Additional file 1

n (%)

T69i isolated major RT mutation 2 (2)

T69i associated mutationsa

 0 16 (19)

 1 14 (16)

 2 33 (39)

 3 22 (26)

NRTI major mutations other than T69i

 0 2 (2)

 1 8 (9)

 2 19 (22)

 3 36 (42)

 4 15 (18)

 5 2 (2)

 6 3 (4)

TAMs presentb

 0 4 (5)

 1 8 (9)

 2 37 (44)

 3 29 (34)

 4 6 (7)

 5 1 (1)

NNRTI major mutations

 0 34 (40)

 1 10 (12)

 2 26 (31)

 3 13 (15)

 4 2 (2)

PI major mutations

 0 45 (53)

 1 10 (12)

 2 16 (19)

 3 9 (11)

 4 4 (45)

 5 0 (0)

 6 1 (1)

Number of classes with resistancec

 1 20 (24)

 2 39 (46)

 3 26 (31)
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with the probability of viral suppression, although nega-
tive effects cannot be ruled out, and there were no cases 
with a K65R mutation included in this analysis. There is 
some evidence that single amino acid insertions may be 
associated with a lower level of NRTI resistance [32] and 
so a sensitivity analysis was conducted only considering 
multiple amino acid insertions; the results obtained did 
not show any substantial differences in comparison to the 
main analysis (details in Additional file 1).

A model was fitted to assess the durability of viral sup-
pression that included parameters for baseline VL and 

D4T use. This analysis indicated that the durability of 
viral suppression was good for patients with low baseline 
VL, but that the overall probability of suppression was 
worse for patients with higher baseline VL values (Fig. 5). 
The wide 95% credibility intervals for the modelled prob-
ability of viral suppression in each plot reflect the small 
sample size for this analysis.

For the matched cohort analysis of mortality, 35 
patients with and 294 patients without the T69i muta-
tion were included. Lower CD4 count was strongly asso-
ciated with mortality, but no clear association with the 
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number of reverse transcriptase resistance mutations 
was observed. There was no evidence that presence of 
the T69i mutation was associated with increased mortal-
ity (HR 1.12, 95% CrI 0.64–2.22). In affected patients, the 
hazard of death was notably higher amongst those with 
CD4 count < 100 cells/µL (2 deaths/3 patients vs 3/34 for 
patients with CD4 ≥ 100 cells/µL, further details in Addi-
tional file 1).

Discussion
We have found that the prevalence of multi-drug resist-
ance mutations Q151M and T69i has declined to almost 
zero in the UK and, as such, it is likely that observation 
of these mutations will now be very rare in any high-
income country. However, the more recent introduction 
of widespread ART in LMICs has been associated with 
an increase in transmitted drug resistance [33] and whilst 
it may be expected that the phase-out of older drug regi-
mens [24] and improved access to VL monitoring [11] 
will lead to an eventual reduction, the overall levels of 
drug resistance have yet to show such a decline [34]. Our 
analysis regarding the risk factors and outcomes associ-
ated with these mutations may therefore be relevant for 
drug resistance monitoring and clinical management of 
any observed cases in such settings.

Marked declines in prevalence were observed for both 
Q151M and T69i in the period 2003–2006, but even in 

the years before this these mutations were relatively rare 
amongst patients failing ART (1.5–1.7% for Q151M and 
0.4–1.3% for T69i) and Q151M was even rarer in ART-
naïve patients (0–0.5%) whilst T69i was not observed. 
The levels amongst treatment-experienced patients are 
similar to those in subtype-B patients in the Swiss HIV 
Cohort Study, for which Scherrer et al. reported an over-
all prevalence up to February 2010 of 0.8 and 0.5% for 
Q151M and T69i, respectively [14]. In the period 2010–
2014 the prevalence of Q151M in treatment-experienced 
patients undergoing viral sequencing stabilised at around 
0.1% in the UK cohort, equating to an average of four 
cases per year, whilst the prevalence of T69i was even 
lower in this period at 0.04% (an average of 1.5 patients 
per year).

Patients who received ART in the earlier years of the 
HIV epidemic in the UK were treated using a wide variety 
of drug combinations, with changes often implemented 
as new drugs became available. The very high level of 
complexity of treatment histories for HIV hampers epi-
demiological investigation of risk factors for the occur-
rence of specific resistance mutations, particularly for 
the analysis of rare mutations such as Q151M and T69i. 
There are also equivalent issues to consider when analys-
ing response to treatment conditional on patient charac-
teristics and ART regimen. We were concerned that the 
analysis of a large number of potential risk (or predictive) 
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Fig. 5  Modelled probability of viral suppression in ART-experienced patients in terms of time since treatment switch following detection of the T69i 
mutation for patients with a baseline viral load of (a) 2000 copies/mL (≈ 10th centile), (b) 10,000 copies/mL (≈ 50th centile) or (c) 225,000 copies/mL 
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for viral suppression and rebound are shown. D4T use was adjusted for in this analysis, but results are shown for patients not on D4T
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factors with a small number of cases would lead to a high 
risk of false-positive results, and so we chose to carry 
out our analyses using a Bayesian framework that would 
penalise estimates of effect sizes without substantial evi-
dence in the data; this approach also has the advantage 
that results regarding estimation of effect sizes can be 
interpreted in a directly probabilistic manner rather than 
purely dichotomised into present or absent.

Q151M
We found strong associations between D4T exposure 
and emergence of the Q151M mutation, a link previously 
identified by Nouhin et al. [15] who found the mutation 
in 14% (47/328) of patients failing a D4T-containing regi-
men with at least one resistance mutation present. Tang 
et al. found a prevalence for Q151M of 4.6% in a review 
of 1825 patients failing D4T-containing first-line ART 
[22] drawn largely from LMICs, considerably higher than 
the peak prevalence observed in the UK. The associa-
tion with D4T was not identified by Scherrer et al. [14], 
but their cohort included a relatively small sample of 25 
cases of the mutation. A secondary analysis of the EAR-
NEST Trial found a much higher prevalence of Q151M 
amongst subtype-C patients failing first-line ART (11% 
vs negligible for other non-B subtypes) [23]. However, in 
their sample D4T use at failure was much higher (66%) in 
subtype-C patients than in others (7% when pooled), so 
this seems likely to have driven the observed difference.

D4T has been subject to a global phase-out over recent 
years, with a drop in total market share for NRTI use in 
adults from 29% in 2011 to just 0.2% in 2016 [24], and as 
such it can be expected that the emergence of this muta-
tion will have undergone a corresponding decrease over 
this period. However, it is possible that the mutation may 
persist in a substantial number of patients whilst virolog-
ical monitoring is limited.

The overall level of confirmed viral suppression 
(62/96:65%) was similar to that reported by Scherrer et al. 
(14/25:56%) [14]. We observed that rbPI use showed both 
a strong negative association with the emergence of the 
Q151M mutation and a strong association with viral sup-
pression following detection of the mutation, suggesting 
that this may be a particularly effective treatment option 
for affected patients. The relative success of rbPI regi-
mens despite broad NRTI resistance is consistent with 
the findings of secondary analyses of the SECOND-LINE 
[25] and EARNEST [26] trials of patients failing first-line 
NNRTI + NRTI regimens, in which those with NRTI 
resistance switched to rbPI + NRTI regimens showed 
better virological outcomes than those without resist-
ance mutations. The fact that patients without resistance 
performed worse on second-line therapy in these studies 
could be the result of worse adherence within this group, 

but the results nonetheless indicate that rbPI regimens 
can be very successful despite viral resistance to the 
NRTI backbone.

We should note that owing to the historic nature of the 
cases described, no patients were switched to an inte-
grase inhibitor regimen directly following detection of 
the mutation and so we have not provided any informa-
tion on the relative efficacy of this drug class. Our models 
indicate that virological outcomes were substantially bet-
ter for patients that had lower baseline VL at detection 
of the mutation, but it may now be possible to achieve 
better outcomes for patients with high VL using modern 
ART regimens.

We did not find evidence that presence of the Q151M 
mutation is associated with increased risk of mortality 
relative to comparable patients matched on ART initia-
tion and resistance testing dates, but it is not possible to 
draw strong conclusions from the limited data available. 
Mortality outcomes will also be dependent on the avail-
ability of effective ART options, and rbPI regimens may 
not always be available in LMICs. Scherrer et  al. [14] 
assessed mortality with matching to control patients 
with ≥ 3 TAMs, and in a multivariable model found a 
non-statistically significant but potentially strong associ-
ation with the hazard of death (HR 7.5, 95% CI 0.9–64.6). 
In combination, these results are consistent with the 
Q151M mutation possibly being associated with the risk 
of death, but there is once again the caveat that the link 
could disappear with more modern ART regimens.

T69i
Recent data from LMICs has indicated that T69i remains 
a rare mutation, for example Tang et  al. identified only 
two cases (0.1%) in a review of 1825 patients failing D4T-
containing first-line ART [22] (this study also included 
a small minority of patients from the USA and Europe) 
and Villabona-Arenas et  al. found four cases (0.3%) 
amongst 1599 patients failing first-line ART (ZDV/
D4T + 3TC + NVP/EFZ) from 10 West and Central 
African countries [19]. Scherrer et  al. found an associa-
tion between years spent receiving DDI and emergence 
of the T69i mutation [14]; we also found some evidence 
for this link, but we only found a definitive association for 
total years on ART with virological failure. However, it 
should be noted that Scherrer et al. carried out an analy-
sis matched against patients with ≥ 3 TAMs, whereas we 
matched on the basis of ART-start date. The rationale for 
our choice was to allow investigation of factors associ-
ated with appearance of the mutation using comparable 
patients without requiring the controls to have also failed 
treatment. As has been reported previously, we found 
that TAM1 mutations were found in most patients with 
T69i [35].
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The baseline VL prior to treatment switch (or initiation 
in ART-naïve patients) and continued D4T use were the 
strongest (negative) predictors of subsequent virological 
suppression, but the small sample size and large num-
ber of potentially important factors made it impossible 
to rule out important associations with other variables 
including drug choices and associated mutations. The 
overall level of confirmed viral suppression (33/45:73%) 
was very similar to that reported by Scherrer et  al. 
(9/13:69%) [14]. As for the Q151M, we should note that 
improved outcomes may be possible using modern ART 
regimens. We did not find any evidence that the T69i was 
associated with increased mortality, consistent with the 
findings of Scherrer et al. [14], although we should again 
note that it is not possible to form strong conclusions 
given the limited data.

Conclusions
Our data confirm that modern ART and laboratory 
monitoring have greatly reduced the occurrence of multi-
NRTI resistance due to T69i and Q151M in the UK, a 
change that is very likely to have also occurred in other 
developed countries. It remains to be seen whether simi-
lar progress can be achieved in LMICs. In addition this 
report demonstrates that ART regimen changes can be 
successful despite these mutations, although whether 
outcomes in patients with the poorest prognosis can be 
improved with more modern ART regimens also remains 
to be determined.
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