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ABSTRACT
The recently-emerged amphibian chytrid fungus Batrachochytrium dendrobatidis
(Bd) has had an unprecedented impact on global amphibian populations, and
highlights the urgent need to develop effective mitigation strategies. We conducted
in-situ antifungal treatment experiments in wild populations of the endangered
mountain yellow-legged frog during or immediately after Bd-caused mass die-off
events. The objective of treatments was to reduce Bd infection intensity (“load”) and
in doing so alter frog-Bd dynamics and increase the probability of frog population
persistence despite ongoing Bd infection. Experiments included treatment of
early life stages (tadpoles and subadults) with the antifungal drug itraconazole,
treatment of adults with itraconazole, and augmentation of the skin microbiome of
subadults with Janthinobacterium lividum, a commensal bacterium with antifungal
properties. All itraconazole treatments caused immediate reductions in Bd load,
and produced longer-term effects that differed between life stages. In experiments
focused on early life stages, Bd load was reduced in the 2 months immediately
following treatment and was associated with increased survival of subadults.
However, Bd load and frog survival returned to pre-treatment levels in less than 1
year, and treatment had no effect on population persistence. In adults, treatment
reduced Bd load and increased frog survival over the entire 3-year post-treatment
period, consistent with frogs having developed an effective adaptive immune
response against Bd. Despite this protracted period of reduced impacts of Bd on adults,
recruitment into the adult population was limited and the population eventually
declined to near-extirpation. In themicrobiome augmentation experiment, exposure of
subadults to a solution of J. lividum increased concentrations of this potentially
protective bacterium on frogs. However, concentrations declined to baseline levels
within 1 month and did not have a protective effect against Bd infection. Collectively,
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these results indicate that our mitigation efforts were ineffective in causing long-term
changes in frog-Bd dynamics and increasing population persistence, due largely to the
inability of early life stages to mount an effective immune response against Bd. This
results in repeated recruitment failure and a low probability of population persistence
in the face of ongoing Bd infection.

Subjects Conservation Biology, Ecology, Mycology, Zoology, Freshwater Biology
Keywords Amphibian chytrid fungus, Batrachochytrium dendrobatidis, Wildlife disease, Epizootic,
Host population decline, Antifungal treatment

INTRODUCTION
Emerging infectious diseases are increasingly common in wildlife, often due to
anthropogenic changes in the ecology of the host or pathogen (Daszak, Cunningham &
Hyatt, 2000; Cunningham, Daszak & Wood, 2017). Impacts of disease on wildlife can be
severe, including long-term population decline and even extinction, with far-reaching
effects on species, communities, and ecosystems (Ostfeld, Keesing & Eviner, 2008; Scheele
et al., 2019). Wildlife diseases can also spill over to humans and domestic animals
(Alexander et al., 2018). Collectively, these impacts of emerging wildlife diseases have
significant consequences to global biodiversity and public health (Daszak, Cunningham &
Hyatt, 2000). As such, the ability to manage wildlife diseases is critically important.
However, management is often challenging because wildlife diseases are poorly described,
few intervention measures are available, and free ranging wildlife are inherently difficult to
study and treat (Joseph et al., 2013).

The amphibian disease chytridiomycosis, caused by the chytrid fungus
Batrachochytrium dendrobatidis (“Bd”), is one of the most destructive wildlife diseases
in recorded history. This recently-emerged fungus (O’Hanlon et al., 2018) is highly
pathogenic to a wide range of amphibian taxa and, by one estimate, has caused the severe
decline or extinction of at least 500 amphibian species (Scheele et al., 2019), with many
more predicted to be at risk (Rödder et al., 2009). The pathogenesis of chytridiomycosis is
the result of Bd infection disrupting cutaneous osmoregulatory function, leading to
electrolyte imbalance and death (Voyles et al., 2009). Bd infection is transferred between
hosts via an aquatic flagellated zoospore stage (Longcore, Pessier & Nichols, 1999).

To reduce the impact of chytridiomycosis and increase the fraction of amphibian hosts
that survive chytridiomycosis outbreaks, several mitigation measures have been proposed
and tested. These include treating hosts with antifungal agents (i.e., drugs or antifungal
symbiotic bacteria), treating the environment with antifungals, and reducing host density
(Woodhams et al., 2011; Scheele et al., 2014; Garner et al., 2016). However, existing field
trials indicate only short-term benefits to targeted populations and limited effectiveness in
promoting host population persistence (Woodhams et al., 2012; Garner et al., 2016).
Modeling also suggests that none of these approaches is likely to prevent Bd-driven
population extirpation, but reducing Bd loads on individual hosts may have the greatest
potential to produce a beneficial outcome (Drawert et al., 2017). Given the uncertainty
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regarding effectiveness of mitigation measures, there is a critical need for additional
field trials.

To evaluate the effectiveness of treatments applied to different host life stages, we took
advantage of Bd epizootics occurring in populations of the endangered mountain
yellow-legged (“MYL”) frog. MYL frogs are emblematic of global amphibian declines,
including those caused by Bd. The MYL frog is a complex of two closely-related species,
Rana muscosa and Rana sierrae, endemic to the mountains of California and adjacent
Nevada, USA (Vredenburg et al., 2007). During the past century, MYL frogs disappeared
from more than 90% of their historical localities (Vredenburg et al., 2007) and are now
listed as “endangered” under the U.S. Endangered Species Act (U.S. Fish &Wildlife Service,
2002, 2014). In the Sierra Nevada portion of their range, the primary causes of decline
are the introduction of nonnative fish into naturally fishless water bodies and more
recently, the spread of Bd (Knapp & Matthews, 2000; Vredenburg et al., 2010). In the
absence of Bd, MYL frogs are long-lived, with a 1–3 year tadpole stage and
post-metamorphic animals that can live for at least 8–10 years (Matthews & Miaud, 2007).
However, they are highly susceptible to chytridiomycosis, and the arrival of Bd in a naive
population typically results in rapid increases in Bd prevalence and individual-level
infection intensities (“load”), leading to subsequent mass frog mortality (Vredenburg et al.,
2010). Such epizootics generally extirpate affected frog populations, and hundreds of such
extirpations have occurred in the past several decades as Bd spread across the Sierra
Nevada (e.g., Rachowicz et al., 2006; Vredenburg et al., 2010). Examples of affected
populations transitioning to an enzootic state, in which host populations and Bd coexist,
are rare (Briggs, Knapp & Vredenburg, 2010).

The interaction between host and pathogen influences whether the host population
is extirpated by an epizootic or transitions to an enzootic state. In MYL frogs, host
population extinction vs persistence can result solely from density-dependent
host-pathogen dynamics (Briggs, Knapp & Vredenburg, 2010). This suggests that reducing
Bd loads (e.g., by lowering frog density or treating frogs with antifungal agents) could
increase both frog survivorship and the likelihood of enzootic dynamics. An adaptive
immune response by amphibians against Bd may also facilitate enzootic dynamics
(Woodhams et al., 2011). Early life stage amphibians have relatively low immunocompetence
(Rollins-Smith, 1998; Grogan et al., 2018b), but adults of some species, including MYL frogs,
can develop adaptive immune defenses that may be at least partially protective against Bd
(McMahon et al., 2014; Ellison et al., 2015; Grogan et al., 2018a). In theory, antifungal
treatments conducted in immunocompetent species and life stages during epizootics could
slow the growth of Bd and allow the full development of adaptive immunity, which in turn
could increase adult survival and population persistence (Woodhams et al., 2011).

The short duration of antifungal drug application may result in only limited
suppression of Bd in hosts and a failure to change the fate of Bd-infected amphibian
populations. A more sustained manipulation could potentially produce longer-lasting
outcomes. One potential sustained manipulation involves imparting stronger antifungal
properties to the skin microbiome of amphibian hosts (Bletz et al., 2013;Woodhams et al.,
2014). The feasibility of such a manipulation is suggested by laboratory experiments in
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which augmentation of the skin microbiome with antifungal bacteria altered frog-Bd
dynamics and increased frog survival (Harris et al., 2009; Kueneman et al., 2016; but see
also Becker et al., 2011). However, this approach is untested in wild amphibian
populations.

Over a decade (2009–2018), we conducted six field trials in an effort to mitigate the
impact of epizootics that occurred following Bd spread into naive R. sierrae populations
(e.g., Vredenburg et al., 2010). Trials included (1) two treatments of early life stages
(tadpoles and recently metamorphosed subadults) with the antifungal drug itraconazole
(Garner et al., 2009), (2) three treatments of adults with itraconazole, and (3) one
augmentation of the skin microbiome of subadult frogs with Janthinobacterium lividum, a
symbiotic bacterium that can occur on amphibian skin and has antifungal properties
(Brucker et al., 2008). For all field trials, we predicted that the treatments would reduce Bd
load on individuals, increase frog survivorship, and allow the long-term persistence of
the treated population despite ongoing Bd infection (i.e., in an enzootic state). We present
all six trials together here because the collective results highlight the repeatability of the
outcomes, and provide important insights into mechanisms underlying those outcomes.
These insights are essential for the development of effective mitigation measures against
this devastating wildlife disease.

METHODS
The six field trials were conducted at sites located in the remote backcountry of Kings
Canyon National Park and Inyo National Forest (California, USA), at elevations of
3,150–3,550 m. These sites are 10 to 26 km from the nearest road, and all supplies were
carried in and out on foot. In some cases, this remoteness and wilderness regulations
constrained potential study designs. The research was approved by Sequoia and Kings
Canyon National Parks (permit number SEKI-2009-SCI-0039, SEKI-2010-SCI-0044,
SEKI-2012-SCI-0455, SEKI-2015-SCI-0035), U.S. Fish and Wildlife Service (permit
number TE-40090B), U.S. Forest Service (permit number WMD17054), and the
Institutional Animal Use and Care Committee at the University of California–Santa
Barbara (protocol number 478, 848).

Itraconazole treatment of early life stages
Bd-caused epizootics and resulting mass die-offs of R. sierrae occurred in Barrett Lakes
Basin during 2005 to 2007 (Vredenburg et al., 2010) and in Dusy Basin in 2009 (Jani,
Knapp & Briggs, 2017). In an effort to prevent the extirpation of remnant populations,
itraconazole treatments were conducted during mid-summer of 2009 in Barrett and 2010
in Dusy. Because adults typically succumb to chytridiomycosis early in an epizootic
(Vredenburg et al., 2010), at the time of the experiments these populations contained
primarily late-stage tadpoles and recently metamorphosed subadults. We used results
from basin-wide visual encounter surveys (VES; see Supporting Information: General
Methods for details) conducted prior to the experiments to identify the largest remaining
populations, and assigned them to treated and control groups at random. The Barrett
experiment included three treated and three control populations, and in Dusy, where fewer
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frog populations remained, a total of three treated and two control populations were used
(Table S1). Based on VES conducted before and during the treatments, we estimate that we
treated 60–90% of each population.

During the first 3–4 days of the Barrett and Dusy experiments (see below for
site-specific details), we captured as many R. sierrae tadpoles and subadults as possible
from each pond assigned to the treated group. We held captured animals for the duration
of the capture and treatment periods using large mesh pens anchored in the littoral zone
of each pond. Following capture, we collected skin swabs from a subset of animals to
quantify Bd load (Vredenburg et al., 2010, see Methods–Quantifying Bd load using
skin swabs below). In addition, swabbed tadpoles were staged (Gosner, 1960:
range = 31–45, median = 41) and subadults were measured (snout-vent length) and
weighed. Daily itraconazole treatments were conducted on seven consecutive days
(see Supporting Information: General Methods for details). To assess treatment
effectiveness in reducing Bd loads, we collected a second set of skin swabs from a subset of
animals following the final treatment. After the final treatment, animals were released back
into the study ponds. In the control populations, we swabbed tadpoles and subadults
on a single day. To ensure that control animals were not swabbed more than once,
swabbed animals were held in temporarily-erected pens until swabbing was complete.
To quantify the longer-term effects of treatment on Bd load and frog population dynamics,
we conducted post-treatment VES and swabbing at each pond, approximately monthly
in the treatment year and following year. In treated populations, given that we were unable
to capture all animals for treatment, animals swabbed during the post-treatment period
likely included a mix of treated and untreated individuals.

The Barrett and Dusy experiments were identical in most respects, but also had some
differences. In the Barrett experiment, in the ponds assigned to the treated group, we
captured tadpoles and subadults during July 29–August 1, 2009. The 7-day period of daily
itraconazole treatments (July 30–August 5) started on the second day of the capture
period. Because animals were added to pens throughout the capture period when
treatments were underway, animals in the treated group were treated four to seven times.
During the treatments, mortality across all three ponds was 6%, and a total of 979 animals
completed the treatment and were released back into the study ponds (56, 688, and
235 animals across the three ponds, respectively). For control populations, we collected
swabs from one population per day during August 2–4 (total number of swabs
collected = 98). We conducted post-treatment VES and swabbing in August and September
2009, and in July, August, and September 2010.

In the Dusy experiment, we captured tadpoles and subadults from the ponds assigned to
the treated group during July 24–26, 2010. Daily itraconazole treatments occurred during
July 27–August 2, and began after all animals were captured. Therefore, unlike in the
Barrett experiment, all animals received seven days of treatment. During the treatments,
mortality across all three ponds was 18%, and a total of 3,064 animals completed the
treatment and were released back into the study ponds (723, 1,043, and 1,298 animals
across the three ponds, respectively). Animals in control ponds were captured, swabbed,
and released on July 29 (total number of swabs collected = 80). Follow-up VES in each
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pond occurred in August and September 2010, and July and August 2011. Unlike in the
Barrett experiment, we also collected water samples from all Dusy study ponds before and
after the treatments to determine if treatment of frogs reduced the concentration of Bd
zoospores in the ponds (“zoospore pool”; Briggs, Knapp & Vredenburg, 2010); all
associated methods and results are provided in Supporting Information: Treatment-
specific Methods and Results.

Itraconazole treatment of adults
LeConte Basin
In mid-summer 2015, annual disease surveillance at one of the largest remaining Bd-naive
R. sierrae populations detected high Bd loads and the presence of many moribund and
dead frogs. In response to this epizootic, we conducted two antifungal treatment
experiments focused on adults, one in the lower portion of the basin and one in the upper
portion (Table S1). The design of the two treatment experiments was nearly identical,
differing only in the number of days spent capturing frogs for the “treated” group
(Table S2). To simplify logistics, frogs in the treated group were captured during the first
2 to 3 days of the experiment, and frogs for the untreated control group were captured
on the following day. Frogs that were visibly sick (as indicated by an impaired righting
reflex) were excluded because these frogs were likely within hours of death. In the lower
basin, a total of 359 and 102 frogs were captured for the treated and control groups,
respectively. In the upper basin, these totals were 206 and 74 frogs. Because of the large size
of this population, these totals are likely a relatively small proportion of the total frog
population in the basin (maximum VES counts of adults in 2009, 2011, 2012, and 2015
were 4,690, 4,136, 4,074, and 1,047, respectively).

Immediately following capture, frogs were swabbed, tagged with passive integrated
transponder (PIT) tags to allow identification of individuals (Joseph & Knapp, 2018),
measured, and weighed. Following processing, frogs in the treated category were held in
capture date-specific pens for the duration of the 8 to 9 day treatment period and control
frogs were released (see Supporting Information: General Methods for details).
To determine treatment effectiveness, 93 frogs in the lower basin (31 from each capture
date) and 50 frogs in the upper basin (25 from each capture date) were re-swabbed on the
penultimate treatment day. After the last treatment, all frogs were released from the
pens (285 in the lower basin, 126 in the upper basin, total mortality during treatment = 27%;
see Results for additional details).

Post-treatment frog survival was quantified using capture-mark-recapture (CMR)
surveys (Joseph & Knapp, 2018) conducted during the summers of 2016, 2017, and 2018.
No post-treatment surveys were possible in 2015 because the frog active season was nearly
over by the time the treatments were completed. CMR surveys were conducted during
1–3 visits to the study lakes per summer (i.e., primary periods). During each primary
period, all frog populations were surveyed on each of 3 consecutive days, except the final
period in 2018 when a 1-day survey was conducted. During each daily survey, any adult
frogs observed were captured, identified via their PIT tag, and released. When captured
for the first time during a primary period, frogs were also swabbed, measured, and
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weighed. Any untagged frogs captured during the surveys (i.e., frogs that were not part of
the initial treatment phase of the experiment; “non-experimental”) were tagged and
processed as described above.

Treasure Lakes Basin
In July 2018, we conducted an antifungal treatment of adult R. sierrae in the Treasure
Lakes Basin (Table S1). Unlike the LeConte treatments, this treatment was conducted as
a management action instead of an experiment due to the advanced stage of the epizootic
and the resulting small number of adults remaining in the population. As such, all
methods and results are provided in Supporting Information: Treatment-specific Methods
and Results.

Microbiome augmentation of subadults
By 2012, the Bd epizootic in Dusy Basin (see above) had caused the extirpation of most
R. sierrae populations. Extant populations contained only late-stage tadpoles and recently
metamorphosed subadults, and given the absence of any adults, were presumed to
represent the final cohorts at these sites. In July 2012, we initiated an experiment focused
on subadults at a single pond to test the combined effect of itraconazole treatment and
J. lividum augmentation on Bd load and frog survival. This pond was also used in the 2010
experiment in which early life stages were treated with itraconazole (Table S1).

The experiment included a treated group (itraconazole treatment followed by J. lividum
exposure) and a control group (no itraconazole, no J. lividum). In designing this
experiment, we assumed that any effect of probiotic bacteria would result from protection
provided to relatively lightly infected frogs from Bd colonization, and not from reducing
the intensity of established heavy infections (R. Harris, 2012, personal communication).
Therefore, given that subadults in the study population had high Bd loads, prior to
exposing frogs to J. lividum we reduced their Bd loads with a 7-day itraconazole treatment.
We did not test independent effects of itraconazole treatment and J. lividum augmentation
due to the limited number of subadults available at the study pond.

Subadults were captured on July 12–13 (n = 331), measured, weighed, and assigned at
random to treated and control groups at a ratio of approximately 4:1 (271 treated, 60
control). This ratio was chosen to maximize the number of subadults receiving antifungal
treatment while maintaining a sufficiently large control group. All animals were given
group-specific toe-clips. We used toe clips because PIT tags are too large to be used with
subadults, and other tagging methods (e.g., Brannelly, Berger & Skerratt, 2014) tested in
pre-experiment trials gave unsatisfactory results. Following processing, subadults in the
treated and control groups were held in separate mesh pens. To determine
pre-itraconazole Bd loads, a subset of subadults from both groups was swabbed on July 12,
and all control animals were released back into the study pond on July 13. Itraconazole
treatments were conducted daily during July 12–18 (see Supporting Information:
General Methods for details). Of the original 271 subadults, 256 completed the treatment
(mortality = 9%) and were available for J. lividum exposure.
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To assess the effectiveness of itraconazole treatment in reducing Bd loads and to
quantify the amount of J. lividum present naturally on subadults in this population, we
swabbed a subset of animals on July 19 immediately prior to J. lividum exposure (see
Supporting Information: General Methods for details on the J. lividum qPCR protocol).
J. lividum for use in the experiment was obtained from the skin of an adult R. sierrae
in Dusy Basin in 2009 and cultured using standard methods (Harris et al., 2009).
On July 19, a concentrated solution of J. lividum culture was transported into Dusy Basin
on foot in an insulated container. On July 19 and again on July 20, we bathed all
itraconazole-treated subadults (n = 256) in a solution of J. lividum culture for 4–4.5 h
(75 and 150 mL of J. lividum culture per liter of lake water on July 19 and 20, respectively).
No frog mortality occurred during these J. lividum exposures. At the conclusion of the
second J. lividum bath, all animals were released back into the pond and the solution of
J. lividum culture was carried out of the backcountry and disposed of. Because the survival
of J. lividum during the 2 day period of transport and holding is unknown and we
were unable to make counts of live cells in the field, the concentration of J. lividum to
which frogs were exposed is also unknown.

To evaluate the effects of the combined itraconazole-J. lividum treatment, we surveyed
the study population during the summers of 2012 (n = 3 surveys), 2013 (n = 3), 2014
(n = 1), and 2019 (n = 1). During each of these surveys, we conducted VES and captured
and swabbed as many subadult and adult frogs as possible, including both experimental
(i.e., toe-clipped) and non-experimental (“wild”) animals. The toe-clip, if present, was
recorded for each captured individual. Each collected swab was analyzed for both Bd and
J. lividum to describe their concentrations on captured frogs.

Quantifying Bd load using skin swabs
We quantified Bd load using standard swabbing and quantitative PCR methods (Boyle
et al., 2004; Hyatt et al., 2007). We defined Bd load as the number of ITS1 copies per swab
(see Joseph & Knapp, 2018 for details). In post-metamorphic R. sierrae, Bd loads indicative
of severe chytridiomycosis are �600,000 ITS copies (=5.8 ITS copies on a log10 scale;
Vredenburg et al., 2010; Joseph & Knapp, 2018).

Statistical analyses
We analyzed the results of all treatments using linear simple and multilevel models in a
Bayesian framework. All analyses except one used the brms package in R (Bürkner, 2017;
Bürkner, 2018; R Core Team, 2020). The exception was the analysis of the CMR data
collected as part of the itraconazole treatments in LeConte Basin. The LeConte CMR
model was implemented in Stan (Carpenter et al., 2017) directly instead of via the brms
interface.

The models described below are the best-fit models that resulted from the workflow
outlined in Supporting Information: General Methods. We considered predictors of
group- and population-level effects and family-specific parameters to be important when
the 95% credible interval (“CI”) of the estimates did not include zero, and relatively
unimportant otherwise. We provide the results of all analyses in tabular form, either in the

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 8/31

http://dx.doi.org/10.7717/peerj.12712/supp-1
http://dx.doi.org/10.7717/peerj.12712/supp-1
http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/


Results for analyses describing the outcome of treatment experiments, or in Supporting
Information: Tables for additional analyses. To interpret the coefficients from negative
binomial models provided in the tables, note that there is a log link for the mean.
In addition, for zero-inflated negative binomial models, there is a logit link for the
zero-inflation component. The key results from treatment experiments are also visualized
using boxplots or dotplots (when samples sizes were large or relatively small, respectively).
When relevant, sample sizes are displayed above the x-axis of each plot. In plots where
sample sizes are displayed, the lack of sample size information for a particular group
indicates that this group was intentionally not included in surveys and/or sampling.
In contrast, a sample size of zero (“n = 0”) indicates that this group was included in surveys
and/or sampling, but that no individuals were available for capture and sampling.

Itraconazole treatment of early life stages
For the Barrett and Dusy experiments, we predicted that itraconazole treatment would
reduce Bd loads and increase the survival of frogs during and after metamorphosis. In turn,
this would result in more subadults counted during VES conducted in treated vs control
populations in the year of and the year following treatment. To quantify the effect of
treatment on Bd load, we developed separate models to describe (i) pre-treatment
differences in Bd loads of the animals assigned to the treated and control groups,
(ii) immediate effects of treatment on Bd loads, and (iii) treatment effects on post-release
Bd loads in the year of treatment and the following year. Because the treatments in Barrett
and Dusy Basins were virtually identical in their design, we combined the results from
both experiments into a single dataset, and included basin as a predictor variable in models
to account for any between-basin differences.

We evaluated pre-treatment differences in Bd load between treated and control groups
using the model bd_load ∼ (treatment × basin) (family = negative binomial,
treatment = [treated, control], basin = [Barrett, Dusy]). Life stage (tadpole, subadult) was
not included in the model as a predictor because life stage and basin were collinear
(i.e., most ponds were dominated by tadpoles but a few contained mostly subadults), and
as such we could not estimate their separate effects. Including a group-level effect of site_id
did not improve model fit, indicating that between-pond differences were unimportant.

The immediate effect of treatment on Bd load was assessed using the model bd_load ∼
stage + (trt_period × basin) (family = zero-inflated negative binomial, stage = [tadpole,
subadult], trt_period = [begin, end of treatment period]). We were able to include life stage
in this model because many tadpoles metamorphosed into subadults during the
treatment, producing a more balanced representation of life stages across sites. Plots of
conditional effects suggested substantial differences in Bd load variation between life
stages, treatment categories, and basins. Therefore, the overdispersion parameter was
modeled as a function of all three predictor variables.

We evaluated the effect of treatment on post-release Bd loads using the model bd_load
∼ stage + basin + (year_std × treatment) + (1 | site_id) (family = zero-inflated negative
binomial, year_std is a dummy variable in which 0 = year of treatment and 1 = year after
treatment, site_id included as a group-level effect). Plots of conditional effects suggested
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substantial differences in Bd load variation between life stages, basins, years, and treatment
groups, and therefore the overdispersion parameter was modeled as a function of all four
predictor variables.

The effect of treatment on subsequent subadult counts was assessed using the model
count ∼ basin + ltadpole + (std_year × treatment) + (1 | site_id) (family = zero-inflated
negative binomial, count = number of subadults counted during a post-treatment VES,
ltadpole = number of tadpoles counted (log10 transformed) during the same VES, site_id
included as a group-level effect). The count of subadults served as a proxy for subadult
survival; survival could not be estimated directly using CMR methods because of the
inability to tag subadults. We included the tadpole count variable to account for possible
differences between ponds in subadult production resulting from differences in the
number of tadpoles.

Itraconazole treatment of adults
In the LeConte Basin treatment experiments, to estimate pre-treatment differences in Bd
loads of frogs assigned to the treated and control groups, we used the model bd_load ∼
(location × group) (family = negative binomial, location = [lower, upper], group = [treated,
control]). To evaluate the immediate effect of treatment on Bd loads, we used the
model bd_load ∼ (location × trt_period) (family = negative binomial, trt_period = [begin,
end of treatment period]). For both analyses, we excluded any frogs that died during the
treatment period. We evaluated differences in Bd loads of frogs that lived vs died
during the treatment period using the model trt_died ∼ (lbd_load × location) (family =
bernoulli, trt_died = [true, false], lbdload = log10(bd_load + 1) on swabs collected
immediately prior to the treatment period).

To describe post-treatment frog population dynamics in the LeConte experiments,
including survival and recruitment, while accounting for imperfect detection, we used
open population multi-state hidden Markov models (see Supporting Information:
Treatment-specific Methods and Results for details). Briefly, we estimated population size
over time using parameter-expanded Bayesian data augmentation, which augments the
capture histories of observed individuals with a large number of capture histories for
individuals that were never detected (Royle & Dorazio, 2012). The states included (1) “not
recruited”, (2) “alive at the upper site”, (3) “alive at the lower site”, and (4) “dead”. On any
particular survey, we considered three possible observations of an individual: (1) “alive at
the upper site”, (2) “alive at the lower site”, and (3) “not detected”. The model structure
builds on the work of Joseph & Knapp (2018), tracking individual Bd loads over time,
allowing the expected Bd load (log10(Bd load + 1)) to vary as a function of treatment and
time, and allowing the effect of Bd load on survival to vary as a function of treatment.

Microbiome augmentation of subadults
To compare pre-treatment Bd loads on frogs assigned to the treated and control groups, we
used the model bd_load ∼ expt_trt (family = negative binomial, expt_trt = [treated,
control]). The effectiveness of the itraconazole treatment was assessed with the model
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bd_load ∼ days (family = zero-inflated negative binomial, days = −7 (before treatment)
and 0 (after treatment)).

We analyzed the post-treatment data to determine whether subadults exposed to the
combined itraconazole-J. lividum treatment had (1) higher concentrations of J. lividum
and lower Bd loads than untreated control animals and non-experimental (“wild”)
animals, and (2) higher survival than control animals. All analyses focused on data
collected during the 2 months immediately following the 2012 treatment. Recaptures of
control animals quickly declined to near zero, thereby precluding formal comparisons
of J. lividum and Bd load in the treated vs control groups. We were able to compare
treated vs wild frogs, but importantly, unlike the treated and control groups that each
contained a single cohort of toe-clipped animals that was repeatedly sampled over time,
membership of animals in the wild group changed over time as new individuals entered
the group following metamorphosis and previously-metamorphosed individuals died.
Given this limitation, we describe the J. lividum concentration and Bd load on treated vs
control animals graphically only. We analyzed the J. lividum concentration on treated
vs wild frogs using the model jliv ∼ (days × frog_group) (family = negative binomial, days =
days since J. lividum exposure, frog_group = [treated, wild]). To describe Bd loads of
treated vs wild frogs, we used the model bd_load ∼ (days × frog_group) (family =
zero-inflated negative binomial). For the second question, we used the percent of animals
in each group that were recaptured as a proxy for survival. Formal assessment of the
effect of treatment on survival was again not possible due to the rapid disappearance of
animals in the control group, so the results are described graphically only.

RESULTS
Itraconazole treatment of early life stages
In the Barrett and Dusy experiments, immediately before itraconazole treatments began,
Bd loads of animals in ponds assigned to the treated and control groups were similar
(Fig. 1: Week -3 and -1). Model results (Table S3) confirmed that Bd load did not differ
between treatment groups. In addition, basin had a weak effect (loads were lower in Dusy
than Barrett), and the (treatment × basin) interaction term was unimportant, indicating
that the patterns of Bd load between treated and control groups were similar in both
basins.

The treatments reduced Bd loads by 1.8 orders of magnitude in Barrett and 6.1 orders of
magnitude in Dusy (Fig. 1: Week -1 vs 0). Model results (Table S4) substantiated the
important effect of treatment period (“trt_period”; lower at the end than before treatment).
In addition, important effects on Bd load were also evident for frog life stage (lower in
tadpoles than subadults), basin (higher in Dusy than Barrett), and the (basin × trt_period)
interaction term. The importance of the interaction term indicated that loads were higher
in Dusy than Barrett at the beginning of the treatment, but lower in Dusy than Barrett at
the end of treatment (Fig. 1). Finally, life stage, treatment period, and basin all had
important effects on the overdispersion parameter (Table S4; Bd load was more variable in
subadults than tadpoles, at the beginning than the end of the treatment period, and in
Dusy than Barrett).
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After release of the treated animals back into the study ponds, the reduction in Bd load
in treated vs control groups that was evident at the end of the treatment period persisted
for at least the next 1.5 months (Fig. 1: Week > 0). Results from a model of predictors
of Bd load over the 1-year post-release period (Table 1) showed important effects on Bd
load of most predictor variables, including treatment (treated lower than control), life stage
(lower in tadpoles than subadults), year (lower in the year following treatment (year 1)
than the year of treatment (year 0)), and the (year × treatment) interaction term. Basin did
not have an important effect. The (year × treatment) term indicated that Bd loads were
lower in the treated group than the control group in year 0, but by year 1 loads in the
treated group had increased such that Bd loads of the treated and control groups were
similar. Therefore, although the treatment effect was evident for more than a month, Bd
loads on animals in treated populations returned to pre-treatment levels in the year
following treatment (Fig. 1).

The reduction in Bd load caused by the treatment was associated with increased counts
of subadults in treated vs control populations (Fig. 2). Model results (Table 2) indicated
that treatment and the (year × treatment) interaction term had important effects.

Figure 1 For the itraconazole treatment experiment in Barrett (A) and Dusy (B) basins, temporal
patterns of Bd loads of early life stage R. sierrae in populations assigned to control and treated
groups. Weeks -3 and -1 are pre-treatment, week 0 is the end of treatment, and weeks 3–58 are post-
treatment. In the boxplots, the horizontal bar is the median, hinges represent first and third quartiles,
whiskers extend to the largest and smallest values within 1.5× interquartile range beyond hinges, and dots
indicate values outside the 1.5× interquartile range. The number of swabs collected in each week is
displayed above the x-axis. Full-size DOI: 10.7717/peerj.12712/fig-1
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The effects of tadpole count, basin, and year were unimportant. The interaction term
indicated that treated populations had higher subadult counts than control populations in
the year of the treatment, but that counts in treated populations in the year following
treatment were low and similar to those in control populations (Fig. 2). Therefore,
mirroring the longer-term effects of treatment on Bd load, the increase in subadult counts
in treated populations in the 1.5 months following treatment was no longer evident in the
year following treatment.

Itraconazole treatment of adults
LeConte Basin

In the two itraconazole treatment experiments conducted in LeConte Basin, prior to the
treatment period, adult R. sierrae assigned to the treated and control groups had very high
Bd loads (Fig. 3), above the level at which symptoms of severe chytridiomycosis are
evident. Bd loads in the control group were somewhat higher than in the treated group,
likely because control frogs were captured and processed 1–3 days later than frogs assigned
to the treated group (Table S2) and during a period when Bd loads were increasing in the
study populations. Model results (Table S6) affirmed an important pre-treatment
difference in Bd load between treatment groups (treated groups lower than control
groups). Location and the (treatment × location) interaction term were both unimportant,
with the latter indicating that the pattern of Bd load between treatment groups was similar
in the lower and upper basins.

Table 1 Effect of itraconazole treatment in Barrett and Dusy basins on Bd loads during the following 1 year period. Model family is zero-
inflated negative binomial.

Estimate Est. Error lo95% CI up95% CI Rhat Bulk ESS Tail Ess

Group-level effects

sd(Intercept) 0.73 0.25 0.40 1.37 1.00 1,301 1,563

Population-level effects

Intercept 14.71 0.44 13.87 15.55 1.00 1,676 1,668

overdispersion-Intercept −1.33 0.08 −1.48 −1.18 1.00 5,407 2,754

stage(tadpole) −2.76 0.10 −2.95 −2.57 1.00 5,296 2,417

basin(dusy) −0.26 0.47 −1.17 0.69 1.00 1,966 2,067

year_std(1) −0.40 0.12 −0.63 −0.18 1.00 3,922 3,096

treatment(treated) −1.32 0.50 −2.33 −0.32 1.00 1,556 1,614

year_std(1):treatment(treated) 1.52 0.18 1.16 1.87 1.00 3,923 2,645

overdispersion-stage(tadpole) 0.34 0.07 0.20 0.48 1.00 4,540 3,301

overdispersion-basin(dusy) 0.45 0.06 0.33 0.57 1.00 5,399 3,119

overdispersion-year_std(1) 0.82 0.07 0.67 0.96 1.00 4,611 3,192

overdispersion-treatment(treated) −0.71 0.07 −0.85 −0.57 1.00 4,632 2,889

Family-specific parameters

zi 0.01 0.00 0.01 0.02 1.00 5,437 2,653
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In both experiments, the treatment reduced Bd loads on treated frogs by 1.4–2.7 orders
of magnitude (Fig. 3). Model results (Table S7) corroborated the important effect of
treatment on Bd load. The effect of location was also important (loads were elevated in
upper compared to lower basin), as was the (location × trt_period) interaction term, with
the latter indicating that Bd loads before and at the end of treatment were both elevated in
the upper compared to the lower basin.

During the treatment period, 74 (21%) of the lower basin treated frogs and 80 (39%) of
the upper basin treated frogs died. All control frogs survived during the several hour
period between capture, processing, and release. Of the treated frogs that died, most did so
during the first half of the treatment period (lower basin: 73%; upper basin: 74%),
consistent with frogs succumbing to chytridiomycosis. However, Bd load was not an
important predictor of whether frogs died vs survived (Table S8). Location and the
(location × bd_load) interaction term were also unimportant.

Figure 2 For control and treated populations in Barrett (A) and Dusy (B) basins, post-treatment
counts of R. sierrae subadults in the year the treatment was conducted (year = 0) and the year
following the treatment (year = 1). Each dot indicates the count made during a survey of one of the
study ponds, and median values for each treatment group are indicated with a black diamond. The total
number of surveys is displayed above the x-axis. Full-size DOI: 10.7717/peerj.12712/fig-2
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During the 3-year post-treatment period across both experiments, 213 treated
frogs (54%) and two control frogs (1%) were recaptured. We also captured 619
“non-experimental” frogs that were not part of the original treatment experiment.
Importantly, the reduced Bd loads that characterized the treated group at the end of the
2015 treatment period (Fig. 3) were maintained in all three post-treatment years (Fig. 4A).

Table 2 Effect of itraconazole treatment in Barrett and Dusy basins on counts of subadults during the following 1 year period.Model family is
negative binomial.

Estimate Est. Error lo95% CI up95% CI Rhat Bulk ESS Tail Ess

Group-level effects

sd(Intercept) 0.33 0.27 0.01 1.00 1.00 1,428 1,686

Population-level effects

Intercept 0.76 0.72 −0.57 2.30 1.00 2,810 2,147

basin(dusy) 0.43 0.50 −0.52 1.43 1.00 3,470 2,893

ltadpole 0.45 0.24 −0.02 0.91 1.00 3,482 2,531

year_std(1) −0.28 0.65 −1.57 0.93 1.00 2,734 2,226

treatment(treated) 1.65 0.67 0.35 2.97 1.00 2,910 2,770

year_std(1):treatment(treated) −2.16 0.86 −3.84 −0.51 1.00 2,546 2,616

Family-specific parameters

overdispersion 0.65 0.18 0.37 1.06 1.00 4,460 3,320

Figure 3 Effect of itraconazole treatment on Bd loads of adult R. sierrae in the LeConte treatment
experiment: (A) lower basin, and (B) upper basin. The legend for both panels is provided in (B).
Box plots show Bd loads on frogs in the control (untreated) and treated groups before the treatment
began and at the end of the treatment period. Control frogs were processed and released before the
treatment period, and therefore no Bd samples were collected from control frogs at the end of this period.
Only frogs that survived to the end of the treatment period and were released back into the study lakes are
included. The number of swabs collected from frogs in each category are displayed above the x-axis.
Box plot components are as in Fig. 1. Full-size DOI: 10.7717/peerj.12712/fig-3

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 15/31

http://dx.doi.org/10.7717/peerj.12712/fig-3
http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/


Bd load dynamics in control frogs are less clear because of the paucity of control frogs
recaptured during 2016–2018. Both recaptured control frogs were recaptured in the year
after the treatments (2016), and both had relatively low loads in 2015 relative to the rest of

Figure 4 Outcome of the LeConte treatment experiment with adult R. sierrae, showing results for
control, treated, and non-experimental animals. Time series from 2015 to 2018 of (A) observed Bd
loads, with lines connecting sequential observations of tagged individuals, (B) posterior estimates for the
number of live adults (abundance) in each group, where each point is a draw from the posterior, and
(C) estimated relationships between Bd load and adult survival probability during the entire study period,
with one line for each posterior draw. A rug along the x-axis displays the observed distributions of Bd
load. In (A) and (B), the date tick marks indicate January-01 of each year. In (A) and (C), the Bd load axis
shows Bd loads as log10 (copies + 1). Full-size DOI: 10.7717/peerj.12712/fig-4
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the individuals in the control group (Fig. 4A). During the 2016–2018 period, Bd loads
in the non-experimental group were relatively low and similar to those of the treated
group. Additional details, including on frog movement patterns and detection
probabilities, are provided in Supporting Information: Treatment-specific Methods
and Results.

Overall, the LeConte adult population declined in abundance from 2015 to 2018, with
the most rapid declines in the control group (Fig. 4B). Between the end of the treatments
in 2015 and the first surveys of 2016, the number of animals surviving in the control
group dropped from 176 to 8 (CI [2–18]). By the end of the summer in 2016, the posterior
median for the number of surviving control animals was 0 (CI [0–0]), indicating an
annual survival rate near zero. The rate of decline was slower in both the treated and
non-experimental groups (Fig. 4B), and estimated annual survival for 2015–2016,
2016–2017, and 2017–2018 was 0.56, 0.17, and 0.31, respectively. Despite the positive
effect of the treatment on survival, by 2018 the study populations in the lower and upper
basins had declined to few remaining adults. In the last primary period of 2018, the
posterior median for the number of treated frogs alive across both basins was 9 (CI [3–17]),
125 for non-experimental frogs (CI [87–188]), and zero for controls (CI [0–0]).

Bd load had a stronger negative effect on survival in the control group relative to the
treated and non-experimental groups (posterior probabilities = 0.99 and 0.99, for control
vs treated, and control vs non-experimental, respectively; Fig. 4C). This was the case
despite considerable overlap in Bd loads between the control and treated/non-
experimental groups (Figs. 4A, 4C). For example, for Bd loads in the range 6–8 (Fig. 4C),
control frogs had much lower survival probabilities than did treated and non-experimental
frogs.

Treasure Lakes Basin
Results of this non-experimental treatment are provided in Supporting Information:
Treatment-specific Methods and Results. Briefly, the itraconazole treatment of adult
R. sierrae in the Treasure Lakes Basin reduced Bd loads over the short-term by a similar
amount to that observed in the LeConte treatment experiments. Because we were unable to
include a control group in this treatment and the number of treated frogs was relatively
small, the effect of treatment on subsequent frog survival is uncertain. However, the
absence of R. sierrae adults during CMR surveys conducted in the 2 years following the
treatment suggests that the reduced Bd loads conferred little or no survival benefit.

Microbiome augmentation of subadults
In the 2012 Dusy Basin microbiome augmentation experiment, subadult frogs assigned to
the treated category were treated with itraconazole and then exposed to the J. lividum
probiotic. Prior to the itraconazole treatment, Bd loads were similar in subadults assigned
to the control and treated groups (Fig. 5: day = −7). Model results (Table S11) affirmed that
pre-treatment Bd loads of the two groups were not different. Itraconazole treatment
reduced Bd loads almost four orders of magnitude (Fig. 5: day −7 vs 0), and model results
(Table S12) substantiated this strong effect.
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Figure 6 In the Dusy Basin J. lividum augmentation experiment, temporal patterns of J. lividum
concentrations on subadult R. sierrae in the treated, control, and wild groups. Panel labels indicate
the number of days since J. lividum exposure. Prior to the exposure of frogs in the treated group to
J. lividum on days 0 and 1, frogs in the treated group were treated with itraconazole on days -6 to -1 to
reduce their Bd loads. J. lividum concentrations on day 0 are from samples collected from frogs in the
treated group just prior to the first J. lividum exposure. The number of swabs collected on each day is
displayed above the x-axis. Full-size DOI: 10.7717/peerj.12712/fig-6

Figure 5 In the Dusy Basin J. lividum augmentation experiment, temporal patterns of Bd loads on
subadult R. sierrae in the control, treated, and wild groups. Panel labels indicate the number of days
since J. lividum exposure. Prior to the exposure of frogs in the treated group to J. lividum on days 0 and 1,
frogs in the treated group were treated with itraconazole on days -6 to -1 to reduce their Bd loads.
The number of swabs collected on each day is displayed above the x-axis.

Full-size DOI: 10.7717/peerj.12712/fig-5
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Immediately prior to J. lividum exposure, J. lividum concentrations on subadults in the
treated group were either zero or near-zero for all individuals (Fig. 6: day 0). A total of
12 days after J. lividum exposure of frogs in the treated group and their release back into
the study pond, J. lividum concentrations on subadults in the treated group were high
(Fig. 6: day 0 vs 12). Unexpectedly, J. lividum concentrations were also high in the control
and wild groups despite their lack of direct J. lividum exposure. Over the following 1.5
months (day 12 to day 56), J. lividum concentrations on subadults declined to near baseline
levels (Fig. 6). Formal comparison of J. lividum concentrations from day 12 to day 56
across all three groups was not possible due to the almost complete absence of control frogs
on days 37 and 56. However, a model that included the treated and wild groups indicated
an important negative effect of the number of days since J. lividum exposure on J. lividum
concentration, but no effect of group or the (day × group) interaction term (Table 3).
Therefore, J. lividum concentrations declined over the 1.5-month period and at similar
rates in both treated and wild frogs.

Following itraconazole treatment and J. lividum exposure, Bd loads on frogs in the
treated group increased despite elevated J. lividum concentrations (as measured on days
12 and 37; Fig. 6), and reached pre-treatment levels after 2 months (day 56; Fig. 5).
Increased concentrations of J. lividummeasured on control and wild frogs on days 12 and
37 (Fig. 6) also had no obvious effect on Bd load in these groups (Fig. 5). Due to the rapid
loss of frogs in the control group, formal comparison of Bd loads from day 12 to day
56 across all three groups was not possible. However, a model that included the treated and
wild groups indicated that Bd loads increased during this period, and that Bd loads of
wild frogs were higher than those of treated frogs (Table 4). In addition, there was an
important effect of the (days × group) interaction term, due to increasing loads of treated
frogs vs relatively constant loads of wild frogs. Together, these results indicate that the
combined effect of itraconazole treatment and J. lividum exposure was ineffective in
preventing the increase in Bd loads to pre-treatment levels.

During the three surveys of the study population conducted in 2012, we observed a
decline in the percent of frogs in the treated and control groups that were recaptured, but
the rate of decline was steeper in the control vs treated group (Fig. S4). Although no formal
analysis is possible due to the relatively few sample points, the results suggest that the

Table 3 Effect of number of days since J. lividum exposure and frog group (treated, wild) on
J. lividum concentration on frogs. Model family is negative binomial.

Estimate Est. Error lo95% CI up95% CI Rhat Bulk ESS Tail Ess

Population-level effects

Intercept 7.27 0.33 6.68 7.95 1.00 2,944 2,565

days −0.14 0.01 −0.16 −0.12 1.00 2,818 2,525

frog_group(wild) −0.29 0.75 −1.71 1.24 1.00 2,222 2,413

days:frog_group(wild) 0.02 0.02 −0.03 0.06 1.00 2,187 2,082

Family-specific parameters

overdispersion 0.33 0.04 0.26 0.41 1.00 3,492 2,373
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itraconazole-J. lividum treatment increased frog survival over the 2-month period
following treatment. Nonetheless, during surveys conducted in 2013 (1 year after
treatment), only a single experimental (i.e., toe-clipped) animal was captured. This animal
was detected during a survey conducted in early summer, and was a member of the treated
group. No R. sierrae of any life stage were detected during surveys in 2014 and 2019.
In conclusion, the combined itraconazole treatment and J. lividum exposure neither
protected frogs against Bd infection nor increased survival sufficiently to allow persistence
of this population over the longer-term.

DISCUSSION
The devastating effect of chytridiomycosis on amphibian populations worldwide (Scheele
et al., 2019) highlights the need for effective strategies to mitigate disease impacts in the
wild following Bd epizootics. The six field trials we conducted with both early and adult life
stages failed to facilitate MYL frog-Bd coexistence. Although all of our antifungal
treatments reduced Bd loads on individual frogs for periods ranging from weeks to years,
the ultimate outcome of our trials was the decline of the experimental populations to local
extirpation or near extirpation following the Bd epizootic. This outcome mirrors that
observed in hundreds of wild populations of MYL frogs following Bd epizootics and in
which no treatments were conducted (e.g., Rachowicz et al., 2006; Vredenburg et al., 2010),
and of field antifungal treatments conducted with other amphibian species (Garner et al.,
2016). Nonetheless, compared to alternative strategies of disinfecting habitats or reducing
host density (Garner et al., 2016), antifungal treatment of individual hosts is predicted to
have the greatest likelihood of a beneficial outcome in reducing the impact of Bd epizootics
(Drawert et al., 2017), and is therefore worthy of additional evaluation and refinement.

Itraconazole treatment of early life stages
Our two itraconazole treatment experiments that focused on early life stage R. sierrae
(Barrett Lakes and Dusy basins) produced similar short and longer-term outcomes,
indicating high repeatability between basins and between years. Despite
between-experiment differences in treatment duration, both experiments caused a
short-term reduction in Bd loads on individuals and increased frog survival, but loads

Table 4 Effect of number of days since J. lividum exposure and frog group (treated, wild) on Bd load
on frogs. Model family is zero-inflated negative binomial.

Estimate Est. Error lo95% CI up95% CI Rhat Bulk ESS Tail Ess

Population-level effects

Intercept 8.42 0.23 7.97 8.89 1.00 3,608 3,126

days 0.08 0.01 0.07 0.09 1.00 3,854 2,537

frog_group(wild) 6.74 0.47 5.86 7.68 1.00 2,559 2,131

days:frog_group(wild) −0.09 0.01 −0.11 −0.07 1.00 2,567 2,040

Family-specific parameters

overdispersion 0.56 0.05 0.47 0.66 1.00 3,773 2,677

zi 0.08 0.02 0.05 0.12 1.00 4,066 2,525
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quickly rebounded and all study populations were eventually extirpated. Similar results
were reported by Geiger et al. (2017) following antifungal treatment of tadpoles of the
common midwife toad (Alytes obstetricans), and is consistent with tadpoles and subadults
having relatively low immunocompetence (Bakar et al., 2016; Grogan et al., 2018b). Hardy
et al. (2015) treated recently-metamorphosed Cascades frogs (Rana cascadae) with
itraconazole, and reported increased survival of treated animals the following year. This
relatively long-term benefit of antifungal treatment was not observed in either of our early
life stage treatments of R. sierrae, perhaps indicative of variation in immunocompetence of
early life stages between even closely-related species.

Itraconazole treatment of adults
In contrast to the relatively short-lived effects of treating early life stage R. sierrae, our two
antifungal treatment experiments in LeConte Basin that focused on R. sierrae adults
indicated multi-year effects on Bd load and frog survival. This extended effect appeared to
result from both increased disease resistance and tolerance, i.e., the ability to limit
pathogen burden and the ability to limit the health impact of a given pathogen burden,
respectively (see Schneider & Ayres (2008) and Soares, Teixeira &Moita (2017) for relevant
reviews). Increased resistance is suggested by the sustained reduction of Bd loads on
treated adults to levels comparable to those on adults in populations that are coexisting
with Bd and show enzootic Bd dynamics (Briggs, Knapp & Vredenburg, 2010; Knapp et al.,
2011; Joseph & Knapp, 2018). Increased tolerance of Bd infection is inferred by the
observation that, for treated and control individuals with similar Bd loads, treated frogs
had higher survival than control frogs. This enhanced resistance and tolerance is consistent
with treated adults mounting an effective adaptive immune response against Bd
(McMahon et al., 2014; Ellison et al., 2015; Grogan et al., 2018a).

Although the antifungal treatment appeared to facilitate an adaptive immune response
that reduced Bd loads and increased the survival of treated adults over multiple years, the
adult population declined relatively quickly during the post-treatment years, and at the
end of the experiment in 2018 few frogs remained. This decline was likely due to both
reduced adult survival and low recruitment. Annual survival of treated adults, although
higher than that for control frogs, was generally still lower than that of most persisting
enzootic MYL frog populations (0.5–0.9: Briggs, Knapp & Vredenburg, 2010; Joseph &
Knapp, 2018). The low recruitment of new adults in 2017 and 2018 despite large numbers
of early life stage animals in the immediately preceding years resembles recruitment
levels we have observed in persistent enzootic R. sierrae populations, and is likely a
consequence of high chytridiomycosis-caused mortality of frogs during and soon after
metamorphosis (Joseph & Knapp, 2018, and results from Barrett and Dusy treatments
described above). Whether the recruitment bottleneck in the LeConte population was
more severe than in persistent enzootic MYL frog populations remains an important
unanswered question.

The treatment of adults was associated with long-term changes in frog-Bd dynamics,
but two results from the experiments complicate the interpretation of the overall
treatment effect. First, at the beginning of the experiment, frogs in the control group were
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captured and processed 1–3 days after frogs in the treated group. Because Bd loads in
the population were increasing during this period, Bd loads on control frogs were
somewhat higher than those on treated frogs. This could have exaggerated the subsequent
differences in survival between control and treated frogs. Although we acknowledge this
potential confounding effect, related results suggest that the initial differences in Bd loads
between control and treated frogs were not the primary cause of the lower survival of
control frogs. Specifically, as mentioned above, for the range of Bd load values that
overlapped between frogs in the control and treated groups, treated frogs had much higher
survival than control frogs. Therefore, we suggest that the higher survival of treated frogs
compared to control frogs during the post-treatment period was primarily due to Bd
resistance and tolerance that followed treatment, and not differences in pre-treatment Bd
loads between control and treated frogs.

The second complicating result is the unexpectedly large number of non-experimental
frogs captured during the post-treatment period. In untreated MYL frog populations,
Bd epizootics typically result in the mortality of all, or nearly all, adults within 1 year
(Vredenburg et al., 2010). Based on this, if the treatment increased frog survival, as
predicted, then during the post-treatment period we would have captured primarily
treated frogs, with control frogs and non-experimental frogs being rare or absent. This
outcome was observed in the upper basin, where during 2016–2018 we captured 81 treated
vs zero control frogs, and only eight non-experimental frogs. Although this same pattern
was true in the lower basin for treated and control frogs (132 and two captured,
respectively), we also captured 615 non-experimental frogs. These non-experimental frogs
could have either survived the 2015 Bd epizootic as adults or recruited into the adult
population after the epizootic. Based on their sizes on first capture, most (83%) were older
adults that had survived the epizootic, and the remainder were new recruits into the adult
population. During the 2016–2018 period, frog-Bd dynamics in this non-experimental
group were similar to those of the treated frogs, suggesting that these frogs had also
mounted an effective adaptive immune response, and as a result, subsequently showed
increased Bd resistance/tolerance and relatively high survival.

The mechanism underlying the unexpectedly high survival of non-experimental frogs in
the lower basin during the 2015 epizootic is unknown. In theory, treatment of a large
fraction of the adult population could have reduced the pathogen pressure experienced by
untreated frogs and increased their survival (Briggs, Knapp & Vredenburg, 2010). However,
this would have increased the survival of both non-experimental and control frogs,
and in both the lower and upper basins. Instead, only non-experimental frogs were
captured in large numbers, and only in the lower basin. Another possible cause of the
unexpectedly high survival of non-experimental frogs in the lower basin could be the
greater habitat complexity that characterizes the lower basin compared to the upper basin.
The upper basin contains a single lake and its associated inlet and outlet streams, and
no adjacent ponds, meadows, or springs that provide suitable R. sierrae habitat. As a result,
the entire frog population is restricted to the site at which the epizootic occurred.
In contrast, the lower basin contains a diverse array of aquatic habitats, including two
lakes, four ponds, and associated streams, marshes, and springs, all of which were used by
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R. sierrae prior to the epizootic. Although conjectural, it is possible that frogs in some
of these associated habitats experienced lower pathogen pressure, lower Bd loads, and
higher survival during the epizootic than frogs in the much larger lake-dwelling
populations. We conclude that although inadequacies in the study design and some
paradoxical outcomes complicate the interpretation of the results from the LeConte
treatment experiments, the long-term reduction in Bd loads and increased survival of
treated frogs are best explained as a direct consequence of the antifungal treatment.

In contrast to the relatively strong effect of the antifungal treatment on adult survival in
LeConte Basin, this effect was not observed in the antifungal treatment conducted in the
Treasure Lakes Basin. The similar short-term reductions in Bd loads of treated frogs in
both the LeConte and Treasure treatments, but the lack of longer term effects on frog
survival at Treasure suggests that the strong effects of treatment observed in the LeConte
experiments are not universal. Treatment success may depend on the timing of the
treatment relative to the onset of the epizootic (later in Treasure than LeConte) or on the
inherent susceptibility of the frog population to Bd infection (e.g., Savage & Zamudio,
2011). Because treatment timing is likely important, maximizing the effectiveness of
interventions will require frequent disease surveillance of frog populations to detect
developing epizootics as early as possible, and rapid adult frog treatments before Bd loads
reach high levels. Whether antifungal treatments of adult MYL frogs conducted during this
narrow optimal time window would consistently increase long-term frog survival and
frog population persistence remains uncertain.

Microbiome augmentation of subadult frogs
Results from the itraconazole treatment experiments (Barrett, Dusy, LeConte) indicate that
the effectiveness of these treatments in changing long-term frog-Bd dynamics and
facilitating population persistence depends heavily on the survival of subadult frogs and
their recruitment into the adult population under post-epizootic conditions. Given the low
immunocompetence of subadults against Bd (Rollins-Smith, 1998; Grogan et al., 2018b),
short-term itraconazole treatment of early life stages or adults appears insufficient to cause
long-term reductions of loads on subadults (i.e., following direct treatment or as a
consequence of treatment-altered frog-Bd dynamics). Consequently, subadults succumb to
chytridiomycosis relatively quickly and few or none remain to recruit into the adult
population. The addition of protective probiotic bacteria to the frog skin microbiome may
be a possible means to reduce susceptibility of this vulnerable life stage to chytridiomycosis
and increase survival to adulthood (Harris et al., 2009; Bletz et al., 2013; Rebollar,
MartÃnez-Ugalde & Orta, 2020). In this application, the effectiveness of probiotics will
depend critically on the ability of the added bacteria to establish on frog skin and maintain
sufficiently high densities over the months or years of the subadult-to-adult transition.

Following our experimental exposure of frogs in Dusy Basin to J. lividum, J. lividum
appeared to establish on the skin of frogs in our study population, but subsequently
declined to low pre-exposure concentrations and Bd loads increased to lethal levels within
two months. Therefore, the predicted protective effect of J. lividum on subadults was not
realized. The inability by the probiotic to persist on frog skin may be an important
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impediment to efforts to augment the microbiome over the long term with species that
confer increased protection from Bd (Küng et al., 2014).

An unexpected outcome of the microbiome augmentation experiment was the rapid
spread of J. lividum from exposed subadults to control and wild subadults, and its apparent
(but short lived) proliferation on the new hosts (J. lividum concentrations on control and
wild frogs increased to a level similar to that of frogs that were bathed in J. lividum).
Whether J. lividum was transferred via direct frog-to-frog contact or through the water is
unknown. Regardless, the spread of J. lividum from exposed to unexposed frogs indicates
that if a probiotic with long-term effectiveness against Bd infection is ever identified, its
introduction into a frog population may be relatively straight-forward.

CONCLUSIONS
The antifungal treatment experiments we describe in this paper were conducted in an
effort to increase the likelihood of frog population persistence following Bd epizootics.
The results demonstrate that in situ treatment of MYL frogs can strongly reduce Bd loads
and increase frog survival over the short term. However, these effects were often
emphemeral and failed to facilitate host population persistence in the presence of Bd.
Therefore, although reducing Bd loads is an important step, by itself it appears insufficient
to facilitate a transition to enzootic host-pathogen dynamics (Briggs, Knapp & Vredenburg,
2010). Effective mitigation of Bd epizootics in MYL frogs will require alternative or
combined approaches that cause long-term reduction of Bd loads across multiple life
stages and thereby enhance frog survival and recruitment. One possible but untested
treatment strategy could be the repeated antifungal treatment of frog populations over
several years. Such a “press treatment” would be more effective at keeping Bd loads low for
longer periods than our one-time pulse treatments, but would require a substantial
(and often unsustainable) commitment of time and resources. In addition, the eventual
end of treatment would likely result in the same failure to change long-term frog-Bd
dynamics as characterized our pulse treatments.

The lack of effective treatment strategies severely restricts our ability to mitigate the
effects of ongoing epizootics in MYL frogs, and poses a serious obstacle to reversing the
decline of these and many other threatened amphibian species. One possible solution to
this dilemma is additional study of amphibian-Bd systems to better understand what
allows population persistence following epizootics (Brannelly et al., 2021). Although
preventing the epizootic-caused decline of amphibian populations is a compelling
objective, the current lack of any effective and generally applicable strategies to mitigate the
impact of Bd epizootics despite the substantial research effort already expended (Garner
et al., 2016) serves as an important reminder that preventing population declines by
affecting long-term reductions in Bd loads may not be possible with currently-available or
reasonably-foreseeable methods. Instead, we suggest that other approaches, including
expanding populations that have survived epizootics and are coexisting with Bd in an
enzootic state (e.g., Knapp et al., 2016; Joseph & Knapp, 2018; Mendelson, Whitfield &
Sredl, 2019) or increasing the capacity of populations to persist despite elevated Bd-caused
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mortality (Scheele et al., 2014), may produce more immediate conservation benefits for
Earth’s many imperiled amphibian species.

ACKNOWLEDGEMENTS
The following people assisted with fieldwork: A. Adams, A. Beechan, D. Burkhart,
K. Atkinson, I. Chellman, B. Currinder, C. Dorsey, M. Hernandez, B. Karin, N. Kauffman,
A. Killion, J. Lester, A. Lindauer, S. Maple, M. Masten, D. Paolilli, W. Philbrook, G. Ruso,
A. Stoerp, and L. Torres. L. Torres developed the J. lividum qPCR protocol while
employed in the Vredenburg lab (San Francisco State University). M. Toothman in the
Briggs lab (University of California-Santa Barbara) analyzed Bd swabs collected prior to
2016, and K. Rose and A. Barbella in the Knapp lab analyzed swabs collected thereafter.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research described in this paper was supported by grants from Sequoia and Kings
Canyon National Parks, National Science Foundation (NSF)–National Institutes of Health
Ecology of Infectious Disease program (EF-0723563), NSF Rapid Response Research
program (IOS-1244804), NSF Long-term Research in Environmental Biology program
(DEB-1557190), and NSF IOS-1455873. Development of this paper was supported by
Cooperative Agreement P19AC00789 from the National Park Service. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Sequoia and Kings Canyon National Parks.
National Science Foundation (NSF).
National Institutes of Health Ecology of Infectious Disease program: EF-0723563.
NSF Rapid Response Research program: IOS-1244804.
NSF Long-term Research in Environmental Biology program: DEB-1557190 and NSF
IOS-1455873.
National Park Service: P19AC00789.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Roland A. Knapp conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Maxwell B. Joseph conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 25/31

http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/


� Thomas C. Smith conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Ericka E. Hegeman performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Vance T. Vredenburg conceived and designed the experiments, performed the
experiments, authored or reviewed drafts of the paper, and approved the final draft.

� James E. Erdman Jr conceived and designed the experiments, performed the
experiments, authored or reviewed drafts of the paper, and approved the final draft.

� Daniel M. Boiano performed the experiments, authored or reviewed drafts of the paper,
and approved the final draft.

� Andrea J Jani conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Cheryl J. Briggs conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

Research permits were provided by Sequoia and Kings Canyon National Parks, U.S.
Fish and Wildlife Service, U.S. Forest Service, and the Institutional Animal Use and Care
Committee at the University of California-Santa Barbara.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Permits to conduct disease mitigation research at the study sites were provided by
Sequoia and Kings Canyon National Parks and U.S. Forest Service.

Data Availability
The following information was supplied regarding data availability:

All datasets and code to replicate the analyses are available at GitHub: https://github.
com/SNARL1/bd-mitigation-report.

All datasets are available at Dryad: Knapp, Roland et al. (2021), Data from: Effectiveness
of antifungal treatments during chytridiomycosis epizootics in populations of an
endangered frog, Dryad, Dataset, https://doi.org/10.25349/D9D90C.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.12712#supplemental-information.

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 26/31

https://github.com/SNARL1/bd-mitigation-report
https://github.com/SNARL1/bd-mitigation-report
https://doi.org/10.25349/D9D90C
http://dx.doi.org/10.7717/peerj.12712#supplemental-information
http://dx.doi.org/10.7717/peerj.12712#supplemental-information
http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/


REFERENCES
Alexander KA, Carlson CJ, Lewis BL, Getz WM, Marathe MV, Eubank SG, Sanderson CE,

Blackburn JK. 2018. The ecology of pathogen spillover and disease emergence at the human-
wildlife-environment interface. In: Hurst C, ed. The Connections between Ecology and Infectious
Disease. Advances in Environmental Microbiology. Vol. 5. New York, USA: Springer, 267–298.

Bakar AA, Bower DS, Stockwell MP, Clulow S, Clulow J, Mahony MJ. 2016. Susceptibility to
disease varies with ontogeny and immunocompetence in a threatened amphibian. Oecologia
181:997–1009 DOI 10.1007/s00442-016-3607-4.

Becker MH, Harris RN, Minbiole KP, Schwantes CR, Rollins-Smith LA, Reinert LK,
Brucker RM, Domangue RJ, Gratwicke B. 2011. Towards a better understanding of the use of
probiotics for preventing chytridiomycosis in Panamanian golden frogs. Ecohealth 8:501–506
DOI 10.1007/s10393-012-0743-0.

Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KPC, Harris RN. 2013.
Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective
probiotics and strategies for their selection and use. Ecology Letters 16:807–820
DOI 10.1111/ele.12099.

Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD. 2004. Rapid quantitative detection of
chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time
Taqman PCR assay. Diseases of Aquatic Organisms 60:141–148 DOI 10.3354/dao060141.

Brannelly LA, Berger L, Skerratt LF. 2014. Comparison of three widely used marking techniques
for adult anuran species Litoria verreauxii alpina. Herpetological Conservation and Biology
9:428–435.

Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP, Hollanders M, Sasso T,
Familiar López M, Newell DA, Kilpatrick AM. 2021.Mechanisms underlying host persistence
following amphibian disease emergence determine appropriate management strategies. Ecology
Letters 24:130–148 DOI 10.1111/ele.13621.

Briggs CJ, Knapp RA, Vredenburg VT. 2010. Enzootic and epizootic dynamics of the chytrid
fungal pathogen of amphibians. Proceedings of the National Academy of Sciences USA
107:9695–9700 DOI 10.1073/pnas.0912886107.

Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, Minbiole KPC.
2008. Amphibian chemical defense: antifungal metabolites of the microsymbiont
Janthinobacterium lividum on the salamander Plethodon cinereus. Journal of Chemical Ecology
34:1422–1429 DOI 10.1007/s10886-008-9555-7.

Bürkner P-C. 2017. brms: an R package for Bayesian multilevel models using Stan. Journal of
Statistical Software 80:1–28 DOI 10.18637/jss.v080.i01.

Bürkner P-C. 2018. Advanced Bayesian multilevel modeling with the R package brms. The R
Journal 10:395–411 DOI 10.32614/RJ-2018-017.

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J,
Li P, Riddell A. 2017. Stan: a probabilistic programming language. Journal of Statistical
Software 76(1):1–32 DOI 10.18637/jss.v076.i01.

Cunningham AA, Daszak P, Wood JLN. 2017. One Health, emerging infectious diseases and
wildlife: two decades of progress? Philosophical Transactions of the Royal Society B: Biological
Sciences 372(1725):20160167 DOI 10.1098/rstb.2016.0167.

Daszak P, Cunningham AA, Hyatt AD. 2000. Emerging infectious diseases of wildlife-threats to
biodiversity and human health. Science 287(5452):443–449 DOI 10.1126/science.287.5452.443.

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 27/31

http://dx.doi.org/10.1007/s00442-016-3607-4
http://dx.doi.org/10.1007/s10393-012-0743-0
http://dx.doi.org/10.1111/ele.12099
http://dx.doi.org/10.3354/dao060141
http://dx.doi.org/10.1111/ele.13621
http://dx.doi.org/10.1073/pnas.0912886107
http://dx.doi.org/10.1007/s10886-008-9555-7
http://dx.doi.org/10.18637/jss.v080.i01
http://dx.doi.org/10.32614/RJ-2018-017
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.1098/rstb.2016.0167
http://dx.doi.org/10.1126/science.287.5452.443
http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/


Drawert B, Griesemer M, Petzold LR, Briggs CJ. 2017. Using stochastic epidemiological models
to evaluate conservation strategies for endangered amphibians. Journal of the Royal Society
Interface 14(133):20170480 DOI 10.1098/rsif.2017.0480.

Ellison AR, Tunstall T, DiRenzo GV, Hughey MC, Rebollar EA, Belden LK, Harris RN,
Ibáñez R, Lips KR, Zamudio KR. 2015. More than skin deep: functional genomic basis for
resistance to amphibian chytridiomycosis. Genome Biology and Evolution 7(1):286–298
DOI 10.1093/gbe/evu285.

Garner TWJ, Garcia G, Carroll B, Fisher MC. 2009.Using itraconazole to clear Batrachochytrium
dendrobatidis infection, and subsequent depigmentation of Alytes muletensis tadpoles. Diseases
of Aquatic Organisms 83:257–260 DOI 10.3354/dao02008.

Garner TW, Schmidt BR, Martel A, Pasmans F, Muths E, Cunningham AA, Weldon C,
Fisher MC, Bosch J. 2016. Mitigating amphibian chytridiomycoses in nature. Philosophical
Transactions of the Royal Society B: Biological Sciences 371:20160207
DOI 10.1098/rstb.2016.0207.

Geiger CC, Bregnard C, Maluenda E, Voordouw MJ, Schmidt BR. 2017. Antifungal treatment of
wild amphibian populations caused a transient reduction in the prevalence of the fungal
pathogen, Batrachochytrium dendrobatidis. Scientific Reports 7:1–12
DOI 10.1038/s41598-017-05798-9.

Gosner KL. 1960. A simplified table for staging anuran embryos and larvae with notes on
identification. Herpetologica 16:183–190.

Grogan LF, Cashins SD, Skerratt LF, Berger L, McFadden MS, Harlow P, Hunter DA,
Scheele BC, Mulvenna J. 2018a. Evolution of resistance to chytridiomycosis is associated with a
robust early immune response. Molecular Ecology 27:919–934 DOI 10.1111/mec.14493.

Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI.
2018b. Review of the amphibian immune response to chytridiomycosis, and future directions.
Frontiers in Immunology 9:2536 DOI 10.3389/fimmu.2018.02536.

Hardy BM, Pope KL, Piovia-Scott J, Brown RN, Foley JE. 2015. Itraconazole treatment reduces
Batrachochytrium dendrobatidis prevalence and increases overwinter field survival in juvenile
Cascades frogs. Diseases of Aquatic Organisms 112:243–250 DOI 10.3354/dao02813.

Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA,
Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KPC. 2009. Skin microbes on frogs
prevent morbidity and mortality caused by a lethal skin fungus. The ISME Journal 3:818–824
DOI 10.1038/ismej.2009.27.

Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, Dalton A, Kriger K, Hero M,
Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Colling A. 2007. Diagnostic assays
and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic
Organisms 73:175–192 DOI 10.3354/dao073175.

Jani AJ, Knapp RA, Briggs CJ. 2017. Epidemic and endemic pathogen dynamics correspond to
distinct host population microbiomes at a landscape scale. Proceedings of the Royal Society B:
Biological Sciences 284:20170944 DOI 10.1098/rspb.2017.0944.

Joseph MB, Knapp RA. 2018. Disease and climate effects on individuals drive post-reintroduction
population dynamics of an endangered amphibian. Ecosphere 9(11):e02499
DOI 10.1002/ecs2.2499.

Joseph MB, Mihaljevic JR, Arellano AL, Kueneman JG, Preston DL, Cross PC, Johnson PT.
2013. Taming wildlife disease: bridging the gap between science and management. Journal of
Applied Ecology 50(3):702–712 DOI 10.1111/1365-2664.12084.

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 28/31

http://dx.doi.org/10.1098/rsif.2017.0480
http://dx.doi.org/10.1093/gbe/evu285
http://dx.doi.org/10.3354/dao02008
http://dx.doi.org/10.1098/rstb.2016.0207
http://dx.doi.org/10.1038/s41598-017-05798-9
http://dx.doi.org/10.1111/mec.14493
http://dx.doi.org/10.3389/fimmu.2018.02536
http://dx.doi.org/10.3354/dao02813
http://dx.doi.org/10.1038/ismej.2009.27
http://dx.doi.org/10.3354/dao073175
http://dx.doi.org/10.1098/rspb.2017.0944
http://dx.doi.org/10.1002/ecs2.2499
http://dx.doi.org/10.1111/1365-2664.12084
http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/


Knapp RA, Briggs CJ, Smith TC, Maurer JR. 2011. Nowhere to hide: impact of a
temperature-sensitive amphibian pathogen along an elevation gradient in the temperate zone.
Ecosphere 2(8):1–26 DOI 10.1890/ES11-00028.1.

Knapp RA, Fellers GM, Kleeman PM, Miller DA, Vredenburg VT, Rosenblum EB, Briggs CJ.
2016. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple
stressors. Proceedings of the National Academy of Sciences USA 113(42):11889–11894
DOI 10.1073/pnas.1600983113.

Knapp RA, Matthews KR. 2000. Non-native fish introductions and the decline of the mountain
yellow-legged frog from within protected areas. Conservation Biology 14(2):428–438
DOI 10.1046/j.1523-1739.2000.99099.x.

Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ. 2016. Probiotic
treatment restores protection against lethal fungal infection lost during amphibian captivity.
Proceedings of the Royal Society B: Biological Sciences 283:20161553
DOI 10.1098/rspb.2016.1553.

Küng D, Bigler L, Davis LR, Gratwicke B, Griffith E, Woodhams DC. 2014. Stability of
microbiota facilitated by host immune regulation: informing probiotic strategies to manage
amphibian disease. PLoS ONE 9:e87101 DOI 10.1371/journal.pone.0087101.

Longcore JE, Pessier AP, Nichols DK. 1999. Batrachochytrium dendrobatidis gen. et sp. nov., a
chytrid pathogenic to amphibians. Mycologia 91:219–227 DOI 10.2307/3761366.

Matthews KR, Miaud C. 2007. A skeletochronological study of the age structure, growth, and
longevity of the mountain yellow-legged frog, Rana muscosa, in the Sierra Nevada, California.
Copeia 2007:986–993.

McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT,
Lentz G, Tenouri N, Young S, Civitello DJ, Nicole OF, Reinert LK, Rollins-Smith LA,
Raffel TR, Rohr JR. 2014. Amphibians acquire resistance to live and dead fungus overcoming
fungal immunosuppression. Nature 511:224–227 DOI 10.1038/nature13491.

Mendelson JR III, Whitfield SM, Sredl MJ. 2019. A recovery engine strategy for amphibian
conservation in the context of disease. Biological Conservation 236:188–191
DOI 10.1016/j.biocon.2019.05.025.

Ostfeld RS, Keesing F, Eviner VT. 2008. Infectious disease ecology: effects of ecosystems on disease
and of disease on ecosystems. New Jersey, USA: Princeton.

O’Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, Kosch TA, Murray KA,
Brankovics B, Fumagalli M, Martin MD, Wales N, Alvarado-Rybak M, Bates KA, Berger L,
Böll S, Brookes L, Clare F, Courtois EA, Cunningham AA, Doherty-Bone TM, Ghosh P,
Gower DJ, Hintz WE, Höglund J, Jenkinson TS, Lin C-F, Laurila A, Loyau A,
Martel A, Meurling S, Miaud C, Minting P, Pasmans F, Schmeller DS, Schmidt BR,
Shelton JMG, Skerratt LF, Smith F, Soto-Azat C, Spagnoletti M, Tessa G, Toledo LF,
Valenzuela-Sánchez A, Verster R, Vörös J, Webb RJ, Wierzbicki C, Wombwell E,
Zamudio KR, Aanensen DM, James TY, Gilbert MTP, Weldon C, Bosch J, Balloux F,
Garner TWJ, Fisher MC. 2018. Recent Asian origin of chytrid fungi causing global amphibian
declines. Science 360(6389):621–627 DOI 10.1126/science.aar1965.

R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R
Foundation for Statistical Computing.

Rachowicz LJ, Knapp RA, Morgan JA, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ. 2006.
Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology
87(7):1671–1683 DOI 10.1890/0012-9658(2006)87[1671:EIDAAP]2.0.CO;2.

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 29/31

http://dx.doi.org/10.1890/ES11-00028.1
http://dx.doi.org/10.1073/pnas.1600983113
http://dx.doi.org/10.1046/j.1523-1739.2000.99099.x
http://dx.doi.org/10.1098/rspb.2016.1553
http://dx.doi.org/10.1371/journal.pone.0087101
http://dx.doi.org/10.2307/3761366
http://dx.doi.org/10.1038/nature13491
http://dx.doi.org/10.1016/j.biocon.2019.05.025
http://dx.doi.org/10.1126/science.aar1965
http://dx.doi.org/10.1890/0012-9658(2006)87[1671:EIDAAP]2.0.CO;2
http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/


Rebollar EA, Martínez-Ugalde E, Orta AH. 2020. The amphibian skin microbiome and its
protective role against chytridiomycosis. Herpetologica 76(2):167–177
DOI 10.1655/0018-0831-76.2.167.

Rollins-Smith LA. 1998. Metamorphosis and the amphibian immune system. Immunological
Reviews 166(1):221–230 DOI 10.1111/j.1600-065X.1998.tb01265.x.

Royle JA, Dorazio RM. 2012. Parameter-expanded data augmentation for Bayesian analysis of
capture-recapture models. Journal of Ornithology 152(S2):521–537
DOI 10.1007/s10336-010-0619-4.

Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TW, Veith M, Walker S,
Fisher MC, Lötters S. 2009. Global amphibian extinction risk assessment for the panzootic
chytrid fungus. Diversity 1(1):52–66 DOI 10.3390/d1010052.

Savage AE, Zamudio KR. 2011.MHC genotypes associate with resistance to a frog-killing fungus.
Proceedings of the National Academy of Sciences USA 108(40):16705–16710
DOI 10.1073/pnas.1106893108.

Scheele BC, Hunter DA, Grogan LF, Berger L, Kolby JE, McFadden MS, Marantelli G,
Skerratt LF, Driscoll DA. 2014. Interventions for reducing extinction risk in
chytridiomycosis-threatened amphibians. Conservation Biology 28(5):1195–1205
DOI 10.1111/cobi.12322.

Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA,
Burrowes PA, Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN,
Frías- Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE,
Kosch TA, La Marca E, Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA,
Mendelson J, Palacios-Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel M-O,
Rovito SM, Soto-Azat C, Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M,
Zamudio KR, Canessa S. 2019. Amphibian fungal panzootic causes catastrophic and ongoing
loss of biodiversity. Science 363(6434):1459–1463 DOI 10.1126/science.aav0379.

Schneider DS, Ayres JS. 2008. Two ways to survive infection: what resistance and tolerance can
teach us about treating infectious diseases. Nature Reviews Immunology 8(11):889–895
DOI 10.1038/nri2432.

Soares MP, Teixeira L, Moita LF. 2017.Disease tolerance and immunity in host protection against
infection. Nature Reviews Immunology 17:83–96 DOI 10.1038/nri.2016.136.

U.S. Fish and Wildlife Service. 2002. Determination of endangered status for the southern
California distinct population segment of the mountain yellow-legged frog (Rana muscosa).
Federal Register 67:44382–44392.

U.S. Fish and Wildlife Service. 2014. Endangered species status for Sierra Nevada yellow-legged
frog and northern distinct population segment of the mountain yellow-legged frog, and
threatened species status for Yosemite toad: final rule. Federal Register 79:24256–24310.

Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R,
Alford RA, Skerratt LF, Speare R. 2009. Pathogenesis of chytridiomycosis, a cause of
catastrophic amphibian declines. Science 326:582–585 DOI 10.1126/science.1176765.

Vredenburg VT, Bingham R, Knapp R, Morgan JA, Moritz C, Wake D. 2007. Concordant
molecular and phenotypic data delineate new taxonomy and conservation priorities for the
endangered mountain yellow-legged frog. Journal of Zoology 271:361–374
DOI 10.1111/j.1469-7998.2006.00258.x.

Vredenburg VT, Knapp RA, Tunstall TS, Briggs CJ. 2010. Dynamics of an emerging disease
drive large-scale amphibian population extinctions. Proceedings of the National Academy of
Sciences USA 107:9689–9694 DOI 10.1073/pnas.0914111107.

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 30/31

http://dx.doi.org/10.1655/0018-0831-76.2.167
http://dx.doi.org/10.1111/j.1600-065X.1998.tb01265.x
http://dx.doi.org/10.1007/s10336-010-0619-4
http://dx.doi.org/10.3390/d1010052
http://dx.doi.org/10.1073/pnas.1106893108
http://dx.doi.org/10.1111/cobi.12322
http://dx.doi.org/10.1126/science.aav0379
http://dx.doi.org/10.1038/nri2432
http://dx.doi.org/10.1038/nri.2016.136
http://dx.doi.org/10.1126/science.1176765
http://dx.doi.org/10.1111/j.1469-7998.2006.00258.x
http://dx.doi.org/10.1073/pnas.0914111107
http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/


Woodhams DC, Bosch J, Briggs CJ, Cashins S, Davis LR, Lauer A, Muths E, Puschendorf R,
Schmidt BR, Sheafor B, Voyles J. 2011. Mitigating amphibian disease: strategies to maintain
wild populations and control chytridiomycosis. Frontiers in Zoology 8:1–24
DOI 10.1186/1742-9994-8-8.

Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, Davis LR,
Schmidt BR, Bel C, Hodel S, Knight R, McKenzie V. 2014. Interacting symbionts and
immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness.
PLoS ONE 9:e96375 DOI 10.1371/journal.pone.0096375.

Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA, Lam B, Harris RN, Briggs CJ,
Vredenburg VT, Voyles J. 2012. Treatment of amphibians infected with chytrid fungus:
learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy.
Diseases of Aquatic Organisms 98:11–25 DOI 10.3354/dao02429.

Knapp et al. (2022), PeerJ, DOI 10.7717/peerj.12712 31/31

http://dx.doi.org/10.1186/1742-9994-8-8
http://dx.doi.org/10.1371/journal.pone.0096375
http://dx.doi.org/10.3354/dao02429
http://dx.doi.org/10.7717/peerj.12712
https://peerj.com/

	Effectiveness of antifungal treatments during chytridiomycosis epizootics in populations of an endangered frog
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


