
ORIGINAL RESEARCH
published: 22 April 2020

doi: 10.3389/fonc.2020.00593

Frontiers in Oncology | www.frontiersin.org 1 April 2020 | Volume 10 | Article 593

Edited by:

Fu Wang,

Xidian University, China

Reviewed by:

Qijun Shen,

Hangzhou First People’s

Hospital, China

Yuming Jiang,

Stanford University, United States

*Correspondence:

Bihong T. Chen

Bechen@coh.org

Specialty section:

This article was submitted to

Cancer Imaging and Image-directed

Interventions,

a section of the journal

Frontiers in Oncology

Received: 19 February 2020

Accepted: 31 March 2020

Published: 22 April 2020

Citation:

Chen BT, Chen Z, Ye N,

Mambetsariev I, Fricke J, Daniel E,

Wang G, Wong CW, Rockne RC,

Colen RR, Nasser MW, Batra SK,

Holodny AI, Sampath S and Salgia R

(2020) Differentiating

Peripherally-Located Small Cell Lung

Cancer From Non-small Cell Lung

Cancer Using a CT Radiomic

Approach. Front. Oncol. 10:593.

doi: 10.3389/fonc.2020.00593

Differentiating Peripherally-Located
Small Cell Lung Cancer From
Non-small Cell Lung Cancer Using a
CT Radiomic Approach
Bihong T. Chen 1*, Zikuan Chen 1, Ningrong Ye 1, Isa Mambetsariev 2, Jeremy Fricke 2,

Ebenezer Daniel 1, George Wang 1, Chi Wah Wong 3, Russell C. Rockne 4, Rivka R. Colen 5,6,

Mohd W. Nasser 7, Surinder K. Batra 7, Andrei I. Holodny 8, Sagus Sampath 9 and

Ravi Salgia 2

1Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States, 2Department of

Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research

Institute, Duarte, CA, United States, 3 Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA,

United States, 4Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA, United States,
5Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States, 6Department of Radiology,

University of Pittsburgh Medical Center, Pittsburgh, PA, United States, 7Department of Biochemistry and Molecular Biology,

University of Nebraska Medical Center, Omaha, NE, United States, 8Department of Radiology, Memorial Sloan-Kettering

Cancer Center, New York, NY, United States, 9Department of Radiation Oncology, City of Hope National Medical Center,

Duarte, CA, United States

Lung cancer can be classified into two main categories: small cell lung cancer (SCLC)

and non-small cell lung cancer (NSCLC), which are different in treatment strategy and

survival probability. The lung CT images of SCLC and NSCLC are similar such that their

subtle differences are hardly visually discernible by the human eye through conventional

imaging evaluation. We hypothesize that SCLC/NSCLC differentiation could be achieved

via computerized image feature analysis and classification in feature space, as termed a

radiomic model. The purpose of this study was to use CT radiomics to differentiate SCLC

from NSCLC adenocarcinoma. Patients with primary lung cancer, either SCLC or NSCLC

adenocarcinoma, were retrospectively identified. The post-diagnosis pre-treatment lung

CT images were used to segment the lung cancers. Radiomic features were extracted

from histogram-based statistics, textural analysis of tumor images and their wavelet

transforms. A minimal-redundancy-maximal-relevance method was used for feature

selection. The predictive model was constructed with a multilayer artificial neural network.

The performance of the SCLC/NSCLC adenocarcinoma classifier was evaluated by the

area under the receiver operating characteristic curve (AUC). Our study cohort consisted

of 69 primary lung cancer patients with SCLC (n = 35; age mean ± SD = 66.91± 9.75

years), and NSCLC adenocarcinoma (n = 34; age mean ± SD = 58.55 ± 11.94 years).

The SCLC group had more male patients and smokers than the NSCLC group (P <

0.05). Our SCLC/NSCLC classifier achieved an overall performance of AUC of 0.93

(95% confidence interval = [0.85, 0.97]), sensitivity = 0.85, and specificity = 0.85).

Adding clinical data such as smoking history could improve the performance slightly.

The top ranking radiomic features were mostly textural features. Our results showed
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that CT radiomics could quantitatively represent tumor heterogeneity and therefore could

be used to differentiate primary lung cancer subtypes with satisfying results. CT image

processing with the wavelet transformation technique enhanced the radiomic features

for SCLC/NSCLC classification. Our pilot study should motivate further investigation of

radiomics as a non-invasive approach for early diagnosis and treatment of lung cancer.

Keywords: small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), computed tomography radiomics

(CT Radiomics), non-linear classifier, artificial neural network

INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer for
both men and women, representing around 13–14% of yearly
cancer diagnoses for both genders. It is also the leading cause of
cancer mortality, accounting for about a quarter of all cancer-
related deaths worldwide (1). There are two major types of
lung cancer: small cell lung cancer (SCLC)—the aggressive lethal
neuroendocrine carcinoma that accounts for∼10–15% of all lung
cancer cases—and non-small cell lung cancer (NSCLC), which
accounts for 85% of all lung cancers (2). As a class, NSCLC
broadly includes adenocarcinoma, squamous cell carcinoma,
and large cell carcinoma (3). NSCLC can be divided into
subclasses based on the presence of driver mutations in proteins
such as epidermal growth factor receptor (EGFR), anaplastic
lymphoma kinase (ALK), and Kirsten rat sarcoma virus (KRAS).
Treatment options and survival largely depend on the type
of lung cancer (4–6). The new standard of care for advanced
SCLC consists of a combination of carboplatin, etoposide and
immunotherapy; however, chemoradiation, targeted therapies,
and immunotherapy are the treatment options available to
patients with advanced NSCLC (5, 7). For patients with locally
advanced disease or distant metastases, the 1-year survival
rate is 15–19% for NSCLC and < 5% for SCLC (8, 9). In
the context of personalized medicine for NSCLC, targeted
therapies for common driver mutations, and immunotherapy
targeting the PD-1 receptor and its ligand PD-L1 have shown
promising data for improving treatment and survival (10,
11). However, the primary factor in survival for both SCLC
and NSCLC is early diagnosis that can be facilitated by an
identification of radiologic phenotypes for the primary lung
cancer subtypes.

Lung CT scan is the most commonly used imaging tool for
lung cancer diagnosis. Multiple lung CT imaging characteristics

that may help predict cancer have been identified in lung
nodules. The commonly used imaging characteristics include the

following: large nodule size; change in the size of the nodules

over time; number and density of the nodules; andmorphological
signs of aggressiveness including irregular shapes and spiculated
margins of the nodules (12, 13). However, CT imaging features
for lung cancer are limited in number and the results from
traditional CT imaging analysis are subjective because it relies on
visual inspection by imaging specialists, potentially causing inter-
observer variability (14). In addition, traditional CT analysis
is limited in its ability to differentiate SCLC and NSCLC
because of overlapping CT features. Both SCLC and NSCLC

could present with spiculation, and could be associated with
ground glass opacity or pleural reaction, which makes visual
differentiation challenging in clinical practice. Biopsy is used to
supplement CT imaging and to confirm the diagnosis when lung
cancer is suspected. However, both bronchial brushing and CT-
guided biopsy are associated with risks such as post-procedure
infection, bleeding, and pneumothorax. In addition, pathological
diagnosis through invasive biopsy is usually obtained from a
focal area or areas of the tumor rather than the entire tumor,
thus lacking the overall tumor characterization. Besides, biopsy
results are not always promptly available. Therefore, it is prudent
to develop non-invasive complementary approaches such as
radiomic methods to differentiate primary lung cancer subtypes.

Radiomics is a computerized quantitative image analytical
method that extracts large number of features from radiographic
medical images using computing algorithms (15, 16). It converts
an image database into a set of quantitative radiomic features
that characterize the tumor heterogeneity regarding textural
pattern, morphology in shape and geometry, and intensity in
histogram-based statistics (17). Radiomic analysis of medical
images generates reproducible quantitative image features, which
could capture tissue microstructural patterns associated with
genetic and proteomic signatures contributing to the biological
basis of the disease (15, 18, 19). Aerts et al. identified an
association between intratumoral heterogeneity reflected by
radiomic features and the underlying gene expression patterns
in their radiogenomic study of patients with lung cancer and
head-and-neck cancer (17). Other researchers have shown that
textural features depicting spatial heterogeneity in tumors could
reflect genomic and phenotypic tumoral characteristics (19, 20).
Radiomics has also been used to classify various NSCLC subtypes
and SCLC based on lung CT images (21, 22). These promising
initial results have motivated further research to develop non-
invasive imaging methods to differentiate primary lung cancer
subtypes for the purpose of early diagnosis and targeted therapy.
There is extensive literature on radiomic research of NSCLC. For
example, recent studies have shown that the NSCLC histologic
subtypes could be effectively classified using a CT radiomic
method (23–25). In addition, PET-CT radiomics could be used
to differentiate between primary NSCLC and its metastasis (26).
However, there is limited research focusing on differentiating
SCLC from NSCLC, which is clinically relevant as early diagnosis
and treatment of the two primary lung cancer subtypes can
significantly improve prognosis.

Here, we used a radiomic approach to evaluate tumor
heterogeneity of SCLC and NSCLC adenocarcinoma. We
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hypothesized that CT radiomics would provide distinctive
features reflecting tumor heterogeneity for predictive
classification of SCLC vs. NSCLC adenocarcinoma. We aimed
to identify quantitative radiomic features for further evaluation
as non-invasive imaging biomarkers. Such biomarkers could
potentially be used to predict the pathological subtypes of
primary lung cancer and to provide valuable information for
early diagnosis and treatment of lung cancer.

MATERIALS AND METHODS

Participants
We retrospectively identified patients with pathology-confirmed
primary lung cancer who were treated at City of Hope (Duarte,
CA) from 2009 to 2017. We identified patients with SCLC first
and then matched these to patients with NSCLC during the same
study interval. Post-diagnosis pre-treatment lung CT images
were used for this study.

To be eligible for this study, patients with pathology-
confirmed SCLC or NSCLC adenocarcinoma needed to have at
least one pre-treatment lung CT scan showing a peripherally-
located lung cancer. The peripherally located lung cancers in
our study were defined to be the lung cancers located in
the periphery of lung and being separate from the central
structures such as the mediastinum and hilar structures. We
selected peripherally-located lung cancers because of the clear
tumor delineation from adjacent low-density lung parenchyma
on lung CT images. We did not select centrally-located lung
tumors because of the difficulty in identifying tumor boundaries
from the adjacent mediastinum or hilar vasculature and lymph
nodes due to similarities in tissue densities on the CT images
without intravenous administration of contrast. The exclusion
criteria included: treatment such as chemoradiation or surgery
started before the lung CT scan, suboptimal lung CT quality
due to respiration or other imaging artifacts, or having only
centrally-located lung cancers. This study was approved by the
Institutional Review Board at City of Hope National Medical
Center. Informed consent was waived due to the retrospective
nature of this study.

Lung Tumor Segmentation
We retrieved the patients’ lung CT images from the City of Hope
Picture Archiving and Communication System (PACS) database,
which were archived in three-dimensional (3D) volumes in
a matrix size of 512 × 512 × 355 with a voxel size of
0.76 × 0.76 × 1 mm3. The lung CT scan was obtained
in a GE CT 750HD with a scanning protocol including the
following: 120 kV, 150–600 Auto mA (Tube Modulation),
0.5 s tube rotation, 40.0mm coverage, helical scan (1.375:1/55
Pitch/Speed), coverage speed 110.00 mm/s and field of view with
skin-to-skin coverage.

The lung cancers from the CT lung window images were
initially segmented semi-automatically using the ITK-SNAP
software (http://www.itksnap.org/pmwiki/pmwiki.php) by the
trained research staff (NY, ZC, and BC). The supervising study
radiologist (BC) is a board-certified radiologist with over 10

years of experience working on lung cancer imaging. This semi-
automatic approach identified the locations of the tumors by
indicating the region of interest (ROI) on the lung-window CT
images and this approach should help to reduce the potential
inter-observer or intra-observer bias. Subsequently, the tumors
were then carefully assessed and delineated slice-by-slice by the
trained postdoctoral fellow (NY) who is a physician with imaging
training and who has traced tumors for radiomic research for 2
years, and by the staff scientist (ZC) who has had over 15 years of
experience in imaging research. The study radiologist (BC) and
the research team had joined sessions to visually re-check slice-
by-slice of all tumor segmentations in a magnified display for
reduction of delineation errors and for trouble shooting potential
issues during tumor segmentation.

To evaluate the reproducibility of inter-observer and intra-
observer tumor segmentation, we randomly selected 25 patients
consisting of 13 SCLC patients and 12 NSCLC patients from
our study cohort. Two trained researchers (NY and ZC)
segmented the tumors independently and the two researchers
were blinded to each other’s segmentations for assessing the
inter-observer consistency. In addition, one of the researchers
(NY) repeated the tumor segmentation 1 week later to assess
the intra-observer consistency. Both the inter- and intra-observer
agreement for tumor segmentation was assessed by inter- and
intra-class correlation coefficients (ICC). An inter-observer or
intra-observer ICC >0.80 indicated a good agreement for
tumor segmentation.

The inter-observer ICC between the two researchers (NY
and ZC) for tumor segmentation achieved 0.97 ± 0.05 ranging
from 0.93 to 0.99. The intra-observer ICC between the two
measurements by the same researcher (NY) was 0.98 ± 0.03
ranging from 0.96 to 1.00.

The results indicated favorable inter- and intra-observer
reproducibility and stability for tumor segmentation and
subsequent radiomic feature extraction.

In Figure 1, we presented the overall schema for data
analysis. Figure 1A presents the lung tumor segmentation.
Next, radiomic features were extracted via tumor image
analysis for texture, shape, intensity (Figure 1B). Finally, the
SCLC/NSCLC classification was performed and statistically
assessed in the receiver operating characteristic (ROC)
curve (Figure 1C).

Radiomic Feature Extraction
Histogram-Based Global Features
An image intensity histogram was generated for each 3D
tumor image. We derived 8 statistical quantities from each
histogram: max, min, range (max-min), mean, entropy,
variance, skewness and kurtosis. Since there was no spatial
information in the histograms, the histogram-inferred values
were considered global features. During tumor image analysis,
we retained the image intensity in original CT number, which
informed on the tumor tissue radiodensity in reference to
water at 0 (in Hounsfield unit). A high CT number in a
tumor image may indicated fibrosis or calcification within
the tumors.
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FIGURE 1 | Schema for lung cancer segmentation, radiomic feature extraction and predictive modeling. (A) Representative CT images from small cell lung cancer

(SCLC) and non-small cell lung cancer (NSCLC) showing tumor segmentation. (B) Illustrations of radiomic feature extraction for texture, shape, and intensity. (C)

Decision of SCCL/NSCLC classification (upper panel) with the receiver operating characteristic (ROC) curves (middle panel) and the heat map of radiomic features

(lower panel).

Textural Features
Textural features may represent tumor heterogeneity. We
extracted the tumor textural features using the MATLAB
radiomic package (https://github.com/mvallieres/radiomics) and
the textural analysis formula (27). Given a 3D tumor image,
we first generated the textural matrices: gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM), gray-
level size-zone matrix (GLSZM), and neighborhood gray-tone
difference matrix (NGTDM). We then derived various textural
features from these textural matrices. Specifically, we calculated
9 gray-level co-occurrence features from the GLCM matrix, 13
run-length features from the GLRLM matrix, 13 gray-level size
zone features from the GLSZM matrix, and 5 neighborhood
gray-tone difference features from the NGTDM matrix. We
therefore obtained 40 textural features (= 9+13+13+5) from
one tumor image.

During tumor image preprocessing, we re-sampled the image
intensity with multiple quantization levels (denoted by Ng, a bin
number of intensity range). For example, with Ng= {16, 32, 64,
96}, we repeated the textural feature extraction procedure 4 times
and obtained a total of 196 image features (= 48× 4, comprising
8 global features and 40 textural features). The Ng variable
was used to find the optimal image digitization with reduced
gray levels with the Lloyd-max’ algorithm adaptive quantization

method (28). Multiple Ng values yielded a large number of image
features, which had considerable redundancy. Of these features,
we selected a few important high discriminative features through
a feature selection procedure, thereby empirically optimizing the
Ng settings.

Wavelet Transformation
We first applied 3D wavelet transformation to each 3D tumor
image to decompose it into 8 subbands (29), denoted by {LLL,
LLH, LHL, LHH, HLL, HLH, HHL, HHH}, where L and H
denoted low-pass and high-pass filtering along one dimension.
Then, we conducted inverse 3D wavelet transforms for individual
subband image reconstruction using the same wavelet kernel. For
each reconstructed subband image, we repeated the procedures
for extracting histogram-based global features and textural
features. As such, the number of features was multiplied by 8-fold
corresponding to 8 wavelet subbands.

Feature Selection
Feature selection and measurements in this study were
performed with respect to a specific parameter. For example,
the intensity range max-min constituted a vector, called a
feature vector. Each feature vector was normalized by max = 1
(feature vector divided by its maximum entry). There existed
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FIGURE 2 | The nnet architecture of the radiomics-based SCLC/NSCLC classifier. This figure presents the input layer with 20 nodes receiving 20 radiomic features,

the 3 hidden layers for non-linear mapping, and the output layer with 2 nodes for “SCLC” and “NSCLC” decision upon a hard thresholding f(node)>0 and f(node)≤0,

respectively. SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer.

considerable redundancy among the feature vectors. To correct
the issue of redundancy and to create a two-class (SCLC/NSCLC)
classifier, we estimated the feature classification performance
(also known as feature relevance) by evaluating the correlation
between the feature vector (a sequence of feature values across the
cohort) and the classification target vector (composed of entries
representing the pre-defined target classes: SCLC= 1 andNSCLC
= 0), denoted by corr (correlation in range [−1,1]). We used
mutual information to analyze the redundancy and dependence
among features.

During the feature selection procedure, we used a minimal-
redundancy-maximal-relevance method (mRMR) to remove the
redundant and less-relevant features (30). In implementation
of mRMR, we iteratively deselected the features based on a
redundancy minimization of the mutual information among
features and a relevance maximization of the mutual information
between the selected features and the pre-defined target classes,
until the feature number reduced to 20 (empirically specified).
After that, the top 20 radiomic features out of 1,731 features were
then selected for building the SCLC/NSCLC classification model.

Non-linear Classification With Artificial
Neural Network
Using the top 20 radiomic features, we constructed a multilayer
neural network (nnet) using the MATLAB procedure nnet =

patternnet (10, 7, 5), which consisted of 3 hidden layers with 10,
7, and 5 hidden neurons (nodes) in a sequential order (https://

www.mathworks.com/help/stats/machine-learning-in-matlab.
html). The nnet architecture was presented in Figure 2. The
input layer consisted of 20 neurons receiving the 20 feature
values, and the output layer consisted of 2 layers indicating
separated SCLC class (in label 1 for the thresholding f(node)>0)
and NSCLC class (in label−1 for the thresholding f(node)<0).
The non-linear mapping from 20 input nodes to 2 output nodes
involved diverse settings such as logistical mapping (2-class
problem), nodal sigmoidal activation, internetwork weights, and
biases which were integrated in the nnet configuration.

The nnet training process was performed with random
initial weights and biases prior to iteration on feed forward,
nodal non-linear activation, and error backpropagation (https://
www.mathworks.com/help/stats/machine-learning-in-matlab.
html). We specified the training function as “trainlm” with
the multivariate Levenberg-Marguardt algorithm (29), and
the activation function as “tanh” with a hyperbolic tangential
sigmoid function, and a maximum iteration of 1000 epochs and
a control error < 10−3.

With the nnet architecture and the radiomic feature set, we
developed a primary lung cancer classifier for SCLC/NSCLC
discrimination by rendering training, validating, and testing
procedures repeatedly. During the training stage, the cohort
dataset (n= 69) was randomly decomposed into three subgroups:
training (49–70% total), validation (10–15% total), and testing
(10–15% total). For example, we preset a sample split by an
allocation ratio “training 70%, testing 15%, validation 15%.”
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During nnet training, the sample set was randomly partitioned by
the preset allocation ratios: 70% training+15% validation+15%
testing. The sample set partition could be specified with other
allocation settings during the nnet configuration. The validation
and testing procedures were carried out using 15% sample
patients (∼10 patients); this number of patients was randomly
selected by data shuffling in multiple repetitions. Therefore, one
patient was allocated to the “training” cohort at one run and
the same patient could then be allocated to the “validation”
cohort at next run or to the “testing” cohort at next run as the
random allocation process continued. The validation subgroup
was necessary to avoid potential overfitting during the nnet
training. The classifier performance was further evaluated with
the testing subgroup which was an independent group reserved
for the testing purpose during random allocation of the cohort.

By fixing the random number generation (rng (“default”)
in MATLAB), the nnet classifier was reproducible for each
(training+validation+testing) trial. When the random
initialization (for nnet weights and biases) was not fixed,
the nnet classifier yielded variations from trial to trial. We
repeated the (training+validation+testing) procedure 30 times
and evaluated the classifier performance by averaging the results
of the 30 trials.

In addition to the image features, we also collected the
patients’ clinical and demographic data including age, gender,
smoking status and race (also denoted as clinical features).
We included these clinical features into the classification
of the SCLC/NSCLC discrimination depending on their
classification performance.

The SCLC/NSCLC differentiation may be implemented
using diverse pattern classification methods with radiomic
features. For example, one may use a linear discrimination
analysis and a support vector machine method to bipartite the
high-dimensional features into SCLC and NSCLC categories. For
the SCLC/NSCLC classification (a typical 2-class problem) from
high-dimensional features in a number of tens to thousands
as in our study, we used multilayer artificial neural network
classifiers (https://www.mathworks.com/help/stats/machine-
learning-in-matlab.html), which in principle could achieve more
optimal arbitrary non-linear mapping (e.g., non-linearity beyond
analytic description or mathematical tracking) with appropriate
configuration and training.

Statistical Analysis
The classification performance of the SCLC/NSCLC classifier
was evaluated using the area under the receiver operating
characteristic (ROC) curve (AUC) during the testing stage. From
the ROC curve, we calculated the AUC values and identified the
sensitivity/specificity at a point on the curve around 10:30 o’clock
position to quantify the classification performance. In addition to
performing ROC analysis on each (training+validation+testing)
trial, we used the average of 30 trials (generated with random
initializations for nnet training) to report the overall performance
of the SCLC/NSCLC classifiers. The classifier performance
was statistically assessed by the standard ROC method, which
involved the statistical comparison between the nnet output
classes and the pre-defined target classes.

TABLE 1 | Patient demographic data.

SCLC NSCLC p

N = 35 N = 34

Gender 0.01

Male 24 (68.57%) 12 (35.29%)

Female 11 (31.42%) 22 (64.70%)

Age 0.002

Mean ± SD 66.91 ± 9.75 58.55 ± 11.94

History of Smoking <0.001

Yes 34 (97.14%) 9 (26.47%)

No 1 (2.86%) 25 (73.53%)

Race 0.03

Asian 7 (20.00%) 16 (47.05%)

Caucasian 26 (74.29%) 15 (44.12%)

Other 2 (5.71%) 3 (8.82%)

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.

Categorical variables such as gender, history of smoking and
race between the SCLC group and the NSCLC group were tested
using Chi-square tests. Two-sample t-tests were used to compare
the group differences (SCLC/NSCLC) for a continuous variable
such as age. P < 0.05 was considered statistically significant.

RESULTS

Patient Information
Our study consisted of 69 primary lung cancer patients with
SCLC (n = 35, age range [46, 81] years, mean± SD = 66.91
± 9.75 years), and NSCLC adenocarcinoma (n = 34, age range
[36, 85] years, mean ± SD = 58.55 ± 11.94 years). The SCLC
group consisted of a higher percentage of male patients and
smokers (p < 0.05). The patient demographic data are presented
inTable 1. There were statistically significant differences between
the SCLC group and the NSCLC group regarding age (p= 0.002)
and race (p = 0.03), as determined by the default significance
level at p < 0.05.

Feature Extraction
For feature extraction, we obtained a total of 48 features (8
histogram features, 40 textural features) from each original
tumor image prior to preprocessing. After tumor image
intensity re-quantization by Ng = {16, 32, 64, 96}, we
obtained 192 (48×4) additional features. By incorporating
a 3D wavelet transformation, we obtained 1728 (= 192×9)
features. Including the clinical features (age, gender, and smoking
status), we obtained a total of 1,731 features (=192 × 9+3).
Supplementary Figure 1 presents a heat map of all radiomic
and clinical features. Supplementary Figure 2 contains the
mutual information map for the features in a 1731 × 1731
symmetric matrix, as shown in the upper triangle. A large
mutual information value indicated a high redundancy between
the features.
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FIGURE 3 | The top 20 features selected from the radiomic data set (total 1,731 features) for the small cell lung cancer (SCLC) / non-small-cell lung cancer (NSCLC)

classification. (A) Measurements for top 20 features. Each feature (matrix row) consisted of 35 SCLC measurements (index 1:35) and 34 NSCLC measurements

(index 36:69). Each feature vector was normalized by max=1. (B) Mutual information map for the top 20 features. A large mutual information value indicated a high

redundancy between the features.

Feature Selection
Using the mRMR method (30), we selected the most informative
and non-redundant quantitative radiomic features. The
correlation (Pearson) between two features assumed a value
in the range [−1,1]. In this study, some feature correlations
could approach 1 (e.g., among features extracted from different
Ng values). For the high-correlation cases (e.g., corr>0.85),
we removed one feature in the correlation pair and only kept
the other feature (as done for feature selection). The feature
selection and deselection procedure was implemented by a
minimal-redundancy-maximal-relevance (mRMR) method.
During feature selection, we removed one-feature in a high-
correlation pair (e.g., corr>0.85), thereby removing the
collinearity (corr∼1). In lieu of a correlation map, we presented
the mutual information map among the 20 features in Figure 3,
which was used to present information redundancy, correlation,
and dependence.

For our SCLC/NSCLC classifier, the top 20 features were
selected from a total of 1731 features. In Figure 3A, we presented
the selected 20 features representing 69 tumors. In Figure 3B,

we presented the mutual information map. The selected features
were also listed inTable 2. Notably, the clinical feature “smoking”
was ranked fourth in the SCLC/NSCLC classification. Figure 4
contains a scatter graph for the top 20 features for inspection of
the feature variability across the cohort. The features were sorted
according to the correlation coefficient between the specific and
the target vector (designated as the corr value).

Classifier Performance
In Figure 5, we presented 2 scenarios demonstrating the nnet
“training-validating-testing” performance. Specifically, in panels

(a1,b1,c1), we showed a 1-misclassification case. As seen in panel
(a1), the training and validation exhibited faster convergence
than the testing. As seen in panel (b1), there was 1misclassifiction
for one NSCLC tumor (marked in arrow). As seen in panel (c1),
the summary confusion matrix gave an accuracy of ∼ 98%. In
the output layer, the nodal sigmoid values (denoted by f, marked
in black dots) approached the target class values (1 and−1), and
the binary SCLC/NSCLC decision was made upon a thresholding
(SCLC: f > 0, and NSCLC: f < 0, see illustration in Figure 2).
With a similar layout in panels (a2,b2,c2), we presented a case of
0 misclassification with a 100% accuracy in the confusion matrix.

The overall performance of the SCLC/NSCLC classifier was
presented in Figure 6A with clinical features and Figure 6B

without clinical features. Our SCLC/NSCLC classification
achieved an overall performance of AUC = ∼0.93, sensitivity
= 0.85, and specificity = 0.85. This classification performance
also represented the prediction performance due to random
partitioning of the cohort for constructing the classifier.

DISCUSSION

In this study, we present a CT radiomic model with a neural
network classifier for differentiating SCLC from NSCLC
adenocarcinoma with satisfying classification performance
achieving an AUC of 0.93. We improved the model performance
by including clinical data such as smoking history, which
was relevant because smoking was a major risk factor for
SCLC. Our top-ranking quantitative radiomic features for
differentiating SCLC from NSCLC adenocarcinoma were
mostly textural that was not perceptible to the human eye. Our
study method presented the advantage of CT radiomics with
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TABLE 2 | Top 20 features for SCLC/NSCLC classification in descending order of

feature correlation with the target vector.

(a) Top 20 features including

clinical data

(b) Top 20 features excluding

clinical data

GLSZM.ZSN @ WT(HHH) GLSZM.ZSN @ WT(HHH)

NGTDM.complex @ WT(LHL) NGTDM.complex @ WT(LHL)

Global.range @ WT(LHH) Global.range @ WT(LHH)

Smoking @ Clinic GLSZM.SZLGE @ WT(LLH)

GLSZM.SZLGE @ WT(LLH) GLSZM.LGZE @ WT(HHL)

GLSZM.LGZE @ WT(HHL) GLSZM.ZSN @ WT(LHH)

GLSZM.ZSN @ WT(LHH) GLSZM.SZLGE @ WT(HHH)

GLSZM.SZLGE @ WT(HHH) GLSZM.SZLGE @ WT(HLH)

GLSZM.SZLGE @ WT(HLH) Global.variance @ WT(HLH)

Global.variance @ WT(HLH) Global.kurt @ WT(HLH)

Global.kurt @ WT(HLH) GLSZM.GLN @ WT(LHH)

GLSZM.GLN @ WT(LHH) GLSZM.ZSN @ rawNg=32

GLSZM.ZSN @ rawNg=32 GLSZM.ZP @ WT(HLH)

GLSZM.ZP @ WT(HLH) GLSZM.ZSN @ WT(LLL)

GLSZM.ZSN @ WT(LLL) Global.mean @ WT(HHL)

Global.mean @ WT(HHL) NGTDM.complex @ WT(LHH)

NGTDM.complex @ WT(LHH) Global.max @ WT(LLH)

Global.max @ WT(LLH) NGTDM.contrast @ WT(HLH)

NGTDM.contrast @ WT(HLH) GLSZM.ZSV @ WT(LHH)

GLSZM.ZSV @ WT(LHH) GLSZM.ZP @ rawNg=16

@, feature derived from image; GLCM, gray-level co-occurrence matrix; Global, whole

image statistics (no spatial attributes); GLN, gray-level non-uniformity; GLRLM, gray-level

run-length matrix; GLSZM, gray-level size zone matrix; LRLGE, long run low gray-level

emphasis; raw, original CT image (no wavelet transform); SZLGE, small zone low gray-

level emphasis; WT(xxx), wavelet-transform with 8 subbands (LLL, LLH, LHL, LHH, HLL,

HLH, HHL, or HHH); ZP, zone percentage; ZSN, zone size non-uniformity; ZSV, zone

size variance.

computational algorithms being potentially outperforming the
traditional human vision-based lung CT image assessment.
Our study showed that CT radiomics could be potentially
helpful to enhance our capability for tumor characterization and
malignancy prediction.

Our study also showed that a combination of key radiomic
features, rather than a single feature, could enhance classification
performance of differentiating SCLC from NSCLC. For example,
the best feature only attained a correlation coefficient of 0.80
in correlation with the target as shown in Figure 4 (f1), which
was the measurement for linear vector discrimination, and the
clinical feature “smoking” only attained a correlation coefficient
of 0.6. However, by assembling the individual features into
an ensemble including both radiomic and clinical features and
then using the nnet nonlinear mapping, we built a robust
SCLC/NSCLC classifier with reliable performance. It should
be noted that the clinical feature “smoking” was ranked
fourth in the SCLC/NSCLC classification and was included
in the model building. However, the clinical feature “gender”
was not sufficiently discriminative to be selected in the top
20 important features and therefore was not included for
model building.

Our study results were generally in agreement with the
literature. Linning et al. built four radiomic classification models

using extracted radiomic features to evaluate the phenotypic
differences between SCLC and NSCLC or NSCLC subtypes, and
achieved an AUC of 0.82 (21). Linning et al. also indicated
that the differences in the radiomic features may be correlated
with subtle differences in tumor heterogeneity of the lung
cancer histological subtypes. Our study had similar findings
as theirs as most of our significant radiomic features were
textural in nature reflecting tumor heterogeneity. In addition,
these textural radiomic features were useful for differentiating
primary lung cancer subtypes with subtle differences in tumor
characteristics as in our cohort. Our study also showed that
CT radiomics for SCLC/NSCLC differentiation was largely
attributed to the power of computational CT image analysis with
reproducible feature extraction, consistent texture assessment
and the subsequent non-linear classifier via a multilayer
neural network.

There were several limitations to this study. First, our
exploratory pilot single-center study results of a small sample
size without external validation may not be generalizable to other
studies. In addition, one may have concern for reliable statistical
inference since our classifier for radiomics-based lung cancer
subtypes was developed from a small study cohort. Nevertheless,
in dealing with the small sample size, we conducted a large
number of repetitions of “training-validation-testing” procedure
with random initial (weight, bias) settings and random sample
set split for assessing the nnet performance. Second, our study
used a tumor segmentation method that started with a semi-
automatic approach utilizing a software to mark the regions
of interest and then was supplemented with manual tracing
of tumor boundaries. This method was time-consuming and
required an imaging specialist throughout the segmentation
process, which was susceptible to inter-observer and intra-
observer variability (31). Nevertheless, the tumor segmentation
step was performed by trained research staff and the tumors were
carefully delineated slice-by-slice to minimize the segmentation
errors that could be propagated to the subsequent radiomic
modeling. For our future studies, we plan to test automated lung
tumor segmentation, to incorporate a robust convolution neural
network for predictivemodeling and to develop a fully automated
SCLC/NSCLC classifier.

Our study has also encountered several confounding factors
inherent in a retrospective study including a heterogeneous
study cohort, variability in imaging protocols and scanners, and
non-standardized imaging reconstruction methods (32). This
limitation may have caused subtle variations in the imaging
features of the lung cancers and may have caused variabilities
in tumor identification and segmentation. However, this was
less an issue in our cohort of peripherally-located lung cancers
because the clear demarcation and different tissue densities
between the tumors and the surrounding lung parenchyma
may have reduced ambiguity in the tumor segmentation step.
Additionally, because our study was focused on radiomic
feature extraction, we did not evaluate the semantic imaging
features described by radiologists, such as location of the
lung nodule, presence of emphysema, interstitial lung disease,
pleural effusion, ground glass opacity, and nodule attenuation
on the lung CT (33). These radiological features are usually
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FIGURE 4 | Scatter plots of the top 20 feature measurements from the dataset of 69 patients. All feature measures were normalized to a range [−1,1] (i.e., max = 1).

The correlation (corr) value indicated the correlation between the feature vector and the target vector (SCLC = 1, NSCLC = 0). The notations for the selected features

were presented in Table 2.

obtained via human vision-based traditional imaging assessment
which has been carried out in routine clinical practice. On
the other hand, the radiomic analysis with computerized
algorithms is mostly used in a research setting currently
because it is not intuitive nor perceptible to human eyes.
Nevertheless, combining these conventional radiological findings
with radiomic features may improve the SCLC/NSCLC classifier
performance, which we plan to do for our future research.
Lastly, we did not perform radiomics-based classification on the
lung cancer vs. the surrounding lung parenchyma or benign
vs. malignant lung nodules. Future research is needed to assess
the usefulness of radiomics for clinically relevant tasks such
as classifying lung nodules vs. peri-nodular lung parenchyma
(34, 35).

Despite the limitations, the promising results of our
exploratory pilot study support moving forward with a large-
scale multicenter study applying radiomics and artificial
intelligence to precision medicine in the diagnosis and
treatment of lung cancer. For our future study, we plan to

perform radiogenomic analysis combining radiomics and
genomic data to predict treatment response and survival
in primary lung cancer. In addition, we will also aim to
develop a more robust predictive modeling generalizable
to other cancer types in addition to lung cancer in our
future work.

In summary, our study showed that CT radiomic
approach could potentially be used as a non-invasive
imaging-based biomarker to differentiate primary lung
cancer subtypes such as SCLC vs. NSCLC, thereby
contributing to early diagnosis and treatment of
lung cancer.
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FIGURE 5 | Two scenarios for demonstrating the nnet “training-validating-testing” performance. Upper: one case of 1 misclassification; lower: one case of no

misclassification. The panels designated as a1 and a2 present the nnet training behaviors under random initial settings (w: weight and b: bias); The panels designated

as b1 and b2 present the output node values (in value range [−1,1], in black dots) in reference to target setting (SCLC = 1, NSCLC = -1); and the panels designated

as c1 and c2 present the confusion matrices. SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer.

FIGURE 6 | Receiver operating characteristic curve (ROC) performance for the SCLC/NSCLC neural network classifications with the clinical data (A) and without the

clinical data (B). The average ROC plot was the average over 30 ROC trials with random initializations for the classifier. AUC, area under the ROC curve; FPR, false

positive rate; TPR, true positive rate; CI, confidence interval.
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