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Abstract The study of sporadic Alzheimer’s disease etiol-
ogy, now more than ever, needs an infusion of new con-
cepts. Despite ongoing interest in Alzheimer’s disease, the
basis of this entity is not yet clear. At present, the best-
established and accepted “culprit” in Alzheimer’s disease
pathology by most scientists is the amyloid, as the main
molecular factor responsible for neurodegeneration in this
disease. Abnormal upregulation of amyloid production or a
disturbed clearance mechanism may lead to pathological
accumulation of amyloid in brain according to the “amyloid

hypothesis.” We will critically review these observations
and highlight inconsistencies between the predictions of
the “amyloid hypothesis” and the published data. There is
still controversy over the role of amyloid in the pathological
process. A question arises whether amyloid is responsible for
the neurodegeneration or if it accumulates because of the
neurodegeneration. Recent evidence suggests that the patho-
physiology and neuropathology of Alzheimer’s disease com-
prises more than amyloid accumulation, tau protein pathology
and finally brain atrophy with dementia. Nowadays, a handful
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of researchers share a newly emerged view that the ischemic
episodes of brain best describe the pathogenic cascade, which
eventually leads to neuronal loss, especially in hippocampus,
with amyloid accumulation, tau protein pathology and irre-
versible dementia of Alzheimer type. The most persuasive
evidences come from investigations of ischemically damaged
brains of patients and from experimental ischemic brain stud-
ies that mimic Alzheimer-type dementia. This review attempts
to depict what we know and do not know about the triggering
factor of the Alzheimer’s disease, focusing on the possibility
that the initial pathological trigger involves ischemic episodes
and ischemia-induced gene dysregulation. The resulting brain
ischemia dysregulates additionally expression of amyloid pre-
cursor protein and amyloid-processing enzyme genes that, in
addition, ultimately compromise brain functions, leading over
time to the complex alterations that characterize advanced
sporadic Alzheimer’s disease. The identification of the genes
involved in Alzheimer’s disease induced by ischemia will
enable to further define the events leading to sporadic
Alzheimer’s disease-related abnormalities. Additionally,
knowledge gained from the above investigations should facil-
itate the elaboration of the effective treatment and/or preven-
tion of Alzheimer’s disease.

Keywords Brain ischemia . Blood–brain barrier . Neuronal
death . Dementia . Alzheimer’s disease . Genes . Amyloid
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Introduction

Ischemic brain injury in animals causes progressive and
irreversible cognitive impairment with Alzheimer’s pheno-
type, dysfunction of new information learning in the short-
term survival postischemia, and memory loss in the long-
term survival postischemia, suggesting that those deficits
are due to impairment of memory retention or the memory
recall process [1–3]. Also, the progressive damage in the
hippocampus [4–7] and the white matter [5, 8, 9] were
found, following brain ischemia. Transient brain ischemia
resulted in an insidious delayed death of specific vulnerable
pyramidal neurons within the CA1 subfield of the hippo-
campus, associated with inflammation [4–6, 10]. Rarefac-
tion of white matter was noted a few months following
ischemia and markedly increased 1 year after ischemic brain
injury [5, 8, 9]. White matter changes are characteristic for
elderly persons and individuals with cognitive impairment.
The above changes also appear in sporadic Alzheimer’s
disease patients, suggesting that brain ischemia can be
regarded as a useful model for understanding mechanisms
responsible for the development of dementia.

The detection of β-amyloid peptide, presenilins, apolipo-
proteins, α-synuclein and hyperphosphorylated tau protein

immunoreactivity in animal ischemic brains [11–15], in
patient brains after episodes of ischemia [16–20] and occur-
rence of these proteins in Alzheimer’s disease brains have
suggested common molecular mechanisms of neuronal
death, pathological proteins accumulation and dementia in
both brain ischemia and Alzheimer’s diseases. It is of inter-
est to notice that in 1911 Alois Alzheimer wrote “…the
plaques are not the cause of senile dementia, but only an
accompanying feature of senile involution of the central
nervous system” [21], implying that some other features
and pathology were involved in the dementia, as suggested
now by a handful of scientists [13, 22–31].

Brain ischemia and Alzheimer’s disease are the most
common degenerative diseases of the human central ner-
vous system [32, 33]. Alzheimer’s disease has a very insid-
ious onset: we do not know precisely when neuronal
dysfunction begins [34]. Both illnesses affect multiple neu-
ronal systems and involve abnormal aggregation and depo-
sition of potentially dangerous proteins in selected neuronal
types. In both disorders the vulnerability of specific neuron
groups is reflected in a characteristic topographical distribu-
tion pattern of the lesions throughout the brain cortex and
hippocampus, which remains remarkably consistent across
cases. The brains of patients dying with Alzheimer’s disease
are devastated by widespread neuron loss, amyloid plaques
and tangles [33].

Although memory loss is a key symptom of Alzheimer’s
disease [35], pathological processes leading to cognitive
deficits are poorly understood and exact molecular mecha-
nisms underlying dementia remain to be elucidated [34]. It
is difficult to address this problem in human studies and
impossible in cultured neurons. Therefore, animal models
are needed to elucidate the molecular mechanisms leading to
dementia [3, 4, 26]. Now, Alzheimer’s disease and a number
of other neurodegenerative diseases are known to result
from the aggregation of proteins that misfold and accumu-
late as fibrillar amyloid deposits in selectively vulnerable
areas of the central nervous system where they are thought
to compromise the function and viability of neurons and
glia. The above-mentioned changes are typical hallmarks of
Alzheimer’s disease pathology [33].

In consequence, further experimental studies to clarify
the triggering effect of brain ischemia on sporadic
Alzheimer’s disease development will not only lead to
reevaluation of the neuropathogenesis of Alzheimer’s dis-
ease but may provide key data for the prevention and ther-
apy of Alzheimer’s disease as well [36]. Altogether, it is
hypothesized that the brain ischemia could be the main
cause of sporadic Alzheimer’s disease [22, 23, 25, 27, 28,
37, 38]. Therefore, it is of consequence to study the effects
of ischemic brain episodes on Alzheimer’s disease forma-
tion through animal model(s) in order to understand the
neuropathogenesis of sporadic Alzheimer’s disease [3, 4,

Mol Neurobiol (2013) 48:500–515 501



26]. In the face of new interesting findings, in this review we
will try to put all this information together from a genetic
point of view. It is hoped that new findings will give us
some insight into the complex interaction between ischemic
signaling to Alzheimer-associated genes and β-amyloid
peptide generation in progressing injury of the ischemic
brain to dementia with Alzheimer’s phenotype.

In this paper, we review the hard-earned data presenting
ischemic induction of amyloid precursor protein, presenilins,
apolipoproteins and secretase genes, which play key roles in
β-amyloid peptide generation. However, it is of interest that
following brain ischemia in humans, increased both β-
amyloid peptide and tau protein levels were noted in blood
[39–41]. The presented data will strongly underpin hypothesis
that brain ischemia is involved in the etiology of sporadic
Alzheimer’s disease. Potential contribution and impact of
ischemically activated genes on sporadic Alzheimer’s disease
development remain to be established at both the genetic and
functional levels.

Induction of Alzheimer-Related Genes Following
Experimental Brain Ischemia

Amyloid Precursor Protein

The gene coding for amyloid precursor protein has been
identified on chromosome 21. Following transient focal is-
chemic brain episode, amyloid precursor protein mRNA had
increased by 200 % in the penumbra and 150 % in core on the
seventh day after injury. The postischemic data suggest that
ischemia influences amyloid precursor protein mRNA expres-
sion, which may contribute directly or indirectly to the dete-
rioration of cognitive deficits in the postischemic period [42,
43]. Following ischemia, only the Kunitz protease inhibitor
bearing isoform was increased. The above study shows that
ischemia alters Kunitz protease inhibitor amyloid precursor
protein/amyloid precursor protein 695 ratios in brain and this
shift in precursor isoforms could be linked to degeneration and
activation of astrocytes in the postischemic period [44]. In
persistent focal ischemic brain injury, amyloid precursor pro-
tein mRNA species, which contain a Kunitz-type protease
inhibitor domain, were induced in the cortex by day 21 of
postischemia but the total amount of precursor mRNA did not
change. This study suggests a selective role of amyloid pre-
cursor protein species that contain the Kunitz protease inhib-
itor domain in molecular mechanisms of postischemic brain
injury [45]. As a result of experimental brain ischemia, amy-
loid precursor protein 770 and amyloid precursor protein 751
mRNAs were expressed during 7 days postischemia [46].
Amyloid precursor protein mRNA was investigated in
ovariectomized rats 1 h and 1 day postischemia. At 1 h
postischemia, the animals expressed a significant increase

in amyloid precursor protein mRNA in the affected areas.
However, estrogen treatment decreased the amyloid pre-
cursor protein mRNA upregulation in these areas [42].
These data apparently demonstrate that estrogen may have
an important role in reducing the upregulation of amyloid
precursor protein mRNA in the postischemic period.

Presenilins

The products of the genes on chromosomes 14 and 1
were termed presenilin 1 and presenilin 2, respectively.
Postischemic upregulation of presenilin 1 gene in neurons
of the CA3 subfield of hippocampus and dentate gyrus
was demonstrated [47]. Interestingly, a presenilin 1
mRNA reached the highest level on day 3 postischemia
in affected areas. These data suggest that the upregulation
of presenilin 1 mRNA may be associated with response
of neurons injured by ischemia. In another study, the
upregulation of presenilin mRNA was noted in the hip-
pocampus, brain cortex and striatum, following ischemia
[48]. Presenilin mRNA demonstrated the maximal rise in
the hippocampus and brain cortex. The overexpression
was larger on the contralateral side to the focal ischemic
injury. This difference may reflect a loss of brain cells
expressing presenilin genes on the ipsilateral side.

Apolipoproteins

The apolipoprotein E gene is located on chromosome 19. An
increase in astrocytic apolipoprotein E mRNA expression, with
the highest level on day 7 postischemia was noted, which
suggests that ischemic neuronal injury results in the induction
of certain genes within reactive astrocytes and this induction
may be partly involved in the postischemic amyloidogenesis
[49]. Postischemic apolipoprotein E mRNA upregulation in
glia but not in neurons was seen in penumbra with a peak
on the 21st day. In ischemic core, the significant apolipo-
protein E mRNA upregulation was found in macrophages
[50]. Upregulation of apolipoprotein J mRNA was dem-
onstrated in the penumbra in animal permanent focal brain
ischemia. In these experiments, reactive astrocytes within the
cortex were stained strongly for apolipoprotein J. It was
concluded that upregulation of clusterin mRNA might con-
tribute to the inflammation representing an important factor in
secondary injury mechanisms after primary postischemic
brain injury [10, 51].

Amyloid Precursor Protein Processing Secretases

The amyloid precursor protein is cleaved by α-secretase and
it is the non-amyloidogenic pathway. In an animal’s brain,
ischemia results in the down regulation of α-secretase
mRNA [52, 53]. In the second pathway, amyloid precursor
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protein is cleaved by β- and γ-secretases to form soluble
β-amyloid peptide [54]. The gene for β-secretase is located
on chromosome 11. Recent data have shown that ischemia
stimulates the expression, production and activity of β-
secretase in postischemic brain [55–58]. Another study
demonstrated for the first time the alteration in mRNA
expression of three amyloid precursor protein metabolism-
related genes: β-secretase (BACE1), cathepsin B and
glutaminyl cyclase mRNA, whose expression increased in
hippocampus and cortex during postischemic period [59]. In
1 month that followed, the BACE1 mRNA level dropped but
was still above the control level during the whole period of
observation. Another evidence has shown that full-length
presenilin interacts with immature β-secretase. This observa-
tion suggests that presenilin regulates β-secretase activity via
direct interaction and facilitated trafficking of β-secretase to
different compartments of cells [60]. Additionally, presenilin
is involved in the amyloidogenic processing of amyloid pre-
cursor protein to produce β-amyloid peptide through the
γ-secretase complex [61, 62]. γ-Secretase is a high molecular
weight complex that consists of at least four components:
presenilin-1 (PEN-1), nicastrin (Nct), anterior pharynx-
defective-1 (APH-1) and presenilin enhancer-2 (PEN-2).
Presenilin mRNA, which is upregulated in ischemic brain
[47, 48], is involved in ischemicβ-amyloid peptide production
by γ-secretase complex [63]. The above findings will help to
understand the gradual death of neurons during postischemic
time, delayed β-amyloid peptide accumulation and long-term
development of Alzheimer’s-type dementia [64].

Alzheimer’s Proteins Detection in Experimental Brain
Ischemia

Amyloid Precursor Protein

Experimental postischemia,with a survival time of up to 1 year,
showed strong brain staining to the N- and C-terminal of
amyloid precursor protein and also to the β-amyloid peptide.
The demonstrated staining was intra- and extracellular [4, 13,
26, 65–78]. Different fragments of amyloid precursor protein
were shown in neurons, microglia, astrocytes, and oligoden-
drocytes [4, 71, 73, 79–83]. Animals, with postischemia sur-
vival from 0.5 to 1 year, demonstrated strong brain staining
only to the C-terminal of amyloid precursor protein and to
the β-amyloid peptide [4, 6, 68, 72]. The reactive astro-
cytes with accumulation of different parts of amyloid pre-
cursor protein might be involved in the development of
glial scar [4, 73, 79, 80, 82]. Additionally, reactive astro-
cytic cells with pathological level of β-amyloid peptide
accumulation might be involved in pathological repair of
postischemic host tissue, including astrocytes death [4, 13,
73, 84, 85].

A strong staining for C-terminal of amyloid precursor
protein and β-amyloid peptide has been found in subcortical
and periventricular white matter in the postischemic period
[6, 8, 9]. The more intense postischemic injury of white
matter is, the more extensive the staining of different parts
of amyloid precursor protein in this field occurs [86]. Prob-
ably, the above mentioned kind of alterations is responsible
for the occurrence of postischemic leukoaraiosis [9].

Extracellular deposits of different fragments of amyloid
precursor protein ranged from small dots to regular amyloid
plaques [4–6, 13, 64, 72, 73, 87–90]. Widespread and
multifocal plaques dominance in the postischemic hippocam-
pus, entorhinal and brain cortex, corpus callosum, and adja-
cent to the lateral ventricles was observed. The deposition of
the C-terminal of amyloid precursor protein within neurons
and the β-amyloid peptide in astrocytic cells underscores the
likely importance of these proteins in postischemic
neurodegeneration [5, 13, 78–80, 87]. Moreover, the above
deposits indicate that these structures may influence synaptic
disintegration and trigger retrograde postischemic neuronal
death [91]. Additionally, these results indicate that the late C-
terminal of amyloid precursor protein and β-amyloid peptide
accumulation postischemia may correspond to a secondary
injury processes that could exacerbate the postischemic out-
come by additional neuronal death [2, 6, 7, 36, 68, 71, 72, 74,
75]. Postischemic β-amyloid peptide is generated as a result
of neuronal damage/death [67] and probably shows its ef-
fects, interacting with ischemic brain cells, as dementia. It is
accepted that β-amyloid peptide involves itself in neurons
dying as neurotoxin [92]. The β-amyloid peptide is a neuro-
toxic protein and it forms a postischemic cascade of intracel-
lular pathways in astrocytes, microglia, and oligodendrocytes
that lead neurons and glia to damage and eventually to death
[93, 94].

Presenilins

Staining of presenilins was more expressed in glia than in
neurons and in a trace of the pyramidal cells of hippocampus
during postischemic brain injury [14]. Presenilin 1 increases
neuronal vulnerability to ischemia by raising intracellular
calcium [6, 95]. Recent studies have shown that presenilin 1
and intracellular calcium regulate neuronal glutamate uptake
[6, 96]. Taken together, these data indicate that presenilins and
intracellular calcium may play an important role in regulating
glutamate uptake, and therefore they may influence glutamate
toxicity in the postischemic brain.

Apolipoproteins

During postischemic brain injury, a time-dependent accu-
mulation of apolipoprotein E and J was noted in neurons
of the CA1 and the CA2 subfields in the hippocampus
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undergoing delayed neuronal death [12]. Upregulation of
apolipoprotein E and J mRNA, in contrast to neuronal
protein deposition, appeared to be glial in origin with in-
creases in mRNA in and around the hippocampus fissure,
and only a weak signal over the CA1 and the CA2 pyrami-
dal neurons. The above data seem to underpin the hypoth-
esis that apolipoprotein E and J are synthesized in the
astrocytes, secreted and then taken up by dying neurons
[97–99]. Apolipoprotein E and J accumulation was ob-
served in neurons destined to die by programmed cell death
[12]. Furthermore, overexpression of apolipoprotein E and J
suggests that the production of this protein was a result of
selective delayed neuronal death rather than involvement in
the cascade of events causing it [100]. The strong intra- and
extracellular staining for apolipoproteins A1, E and J was
noted in the postischemic period [4, 12, 50, 66, 101]. Intra-
cellular staining was shown in both slightly and markedly
ischemia-damaged neurons [4, 12]. Less often, staining for
apolipoproteins in glia postischemia was detected [50].

Extracellular deposits of apolipoproteins were well delin-
eated and diffuse. Strong staining was also shown in irregular,
spider-like, acellular, necrotic foci [12, 67]. It is of interest to
notice that deposits of apolipoproteins were colocalized with
deposits of different parts of amyloid precursor protein [12].
Apolipoprotein E can promote the aggregation of soluble β-
amyloid peptide into the oligomeric and the fibrillar form.
Apolipoprotein J is implicated in transport of β-amyloid pep-
tide across the blood–brain barrier. The main role of apolipo-
proteins A1, E and J in controlling the level of soluble β-
amyloid peptide in the intra- and extracellular space of brain as
well as their influence on oligomeric and fibrillar β-amyloid
peptide generation is suggested. Apolipoprotein E increasesβ-
amyloid peptide induced lysosomal leakage and apoptosis in
neurons [102]. Apolipoproteins A1, E and J can influence the
structure, toxicity, and accumulation of the β-amyloid peptide
in postischemic brain. Apolipoproteins E and J may be in-
volved in β-amyloid peptide production prior to its deposition.
The above data demonstrate additional effects of both apoli-
poproteins on influencing β-amyloid peptide accumulation
and prove that they play an important role in regulating extra-
cellular brain β-amyloid peptide metabolism independent of
β-amyloid peptide generation. These data indicate that apoli-
poproteins A1, E and J accumulation postischemia may be a
secondary injury phenomenon, which could exacerbate
healing of ischemic neurons and brain as a whole.

Tau Protein

Strong staining of tau protein in neurons was noted in the
hippocampus [103] and the brain cortex [104, 105]
postischemia [76]. Moreover, an increase of tau protein
staining was found in astrocytes and oligodendrocytes, fol-
lowing ischemia [106, 107]. Pathologically modified tau

protein was also observed in microglia around the ischemic
focus [108]. These results indicate that only some neurons
display changes in tau protein postischemia [106], which
may reflect an early pathological state of the ischemic
mechanisms in these cells [107]. Another study showed that
tau itself had blocked transport of amyloid precursor protein
from the neuron body into axons and dendrites, causing
amyloid precursor protein accumulation in the neuronal
body [109]. The recent study shows that postischemia,
hyperphosphorylated tau protein accumulates in cortical
neurons and colocalizes with signs of apoptosis [15, 110].
The above data indicate that postischemic neuronal apopto-
sis is associated with tau protein hyperphosphorylation. Wen
et al. [15, 111] reported that reversible postischemic injury is
involved in neurofibrillary tangle-like tauopathy formation
in the rat brain. The above data provide a neuropathological
basis for the development of dementia following brain is-
chemia with Alzheimer’s phenotype [111].

Alpha-Synuclein

Postischemic brain injury results in a presynaptic α-
synuclein accumulation in the hippocampus [11, 112]. Ro-
bust α-synuclein staining was noted in the perivascular
space in the CA1 subfield of hippocampus postischemia in
animals with long-term survival [112]. The degenerating
sectors postischemia presented strong staining for α-
synuclein in glia [11]. The data that have just been presented
suggest that α-synuclein may be an important protein in the
development of postischemic neurodegeneration [113]. The
abnormal α-synuclein deposition might disrupt synaptic
function, resulting in cognitive disturbances [114]. The
pathological metabolism of α-synuclein influences the syn-
aptic activity that may additionally promote retrograde neu-
rons death in the postischemic brain [113].

Detection of Alzheimer’s Proteins in Human
Ischemic Brain

In the first study on the postischemic injury of human brain,
Jendroska et al. [16, 17] have shown the relationship be-
tween postischemic injury and the accumulation of β-
amyloid peptide. They have noted β-amyloid peptide de-
posits in diffuse and senile plaques and diffuse punctuate
deposits in the cortex with small vessels close connection
and finally accumulation in arterial boundary zones and
sectors susceptible to ischemia. Additionally, they found
an age-related increase in the accumulation of β-amyloid
peptide, which correlated positively with increased number
of plaques. β-Amyloid peptide plaques were mainly located in
the boundary zone between posterior andmiddle cerebral artery
and in the cortex around the Sylvian fissure. Occasionally,
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β-amyloid peptide accumulated in the center of arterial territo-
ry. It is of interest to notice that the middle layers of the cortex,
which are highly vulnerable to ischemia, were most frequently
affected by β-amyloid peptide.

In another study, brains after complete brain ischemia with
survival time up to 1 month were used [20]. In all brains,
strong staining for β-amyloid peptide in neurons and in
perivascular space was noted. In seven cases, amyloid
nonfibrillar plaques were also present. However, amyloid
fibrillar plaques were only found in two brains. The neuronal
staining varied depending on the brain area. Subcortical neu-
rons were the most intensely stained. Neuronal bodies were
filled with β-amyloid peptide granular deposits. Bodies of
hippocampal neurons were intensely stained but perikarya of
pyramidal neurons in the CA2 and CA3 subfields and their
proximal dendrites were stained stronger than neurons of the
CA1 area. In contrast, the staining of dentate gyrus appeared
to be weak. In the brain cortex, the staining of the neurons
appeared as granular deposits in the periphery of the neurons
but in other neurons the intensity labeled grains were noted in
apical dendrites. The intensity of neuronal cytoplasm staining
decreased or completely disappeared in the sectors with ische-
mic damage. However, neurons surrounding the above areas
showed strong staining for apolipoprotein E. Some positive
neurons for apolipoprotein E were also labeled with antibody
against tau-1 and by thioflavine S. Additionally, epithelial and
ependymal cells were stained for β-amyloid peptide. In seven
brains, many nonfibrillar plaques were noted in the brain
cortex. The amyloid nonfibrillar plaques mainly were
connected with neurons. Serial brain sections stained with
the Bielschowsky method demonstrated some amyloid
plaques which were weakly stained. The shape of plaques
varied from cap-like to oval and round. Some of these plaques
were stained positively by thioflavine. In all brains, vessels of
white and gray matter were surrounded by β-amyloid peptide
deposits. The deposits had cuffs or droplets shape. It is of
interest that in two brains a few fibrillar plaques were noted. In
four cases, walls of meningeal and cortical vessels showed
staining for β-amyloid peptide. In some brains, plaques were
stained for apolipoprotein E. Apolipoprotein E, a β-amyloid
peptide associated chaperone, is of importance in the process-
es of soluble β-amyloid peptide fibrillization [115]. In all
cases around blood–brain barrier vessels weak staining for
β-amyloid peptide was found. β-Amyloid peptide deposition
around the blood–brain barrier vessels suggested that amyloid
originated from blood. Evidence supporting the above idea
derives from a recent study, which indicates that circulatingβ-
amyloid peptide has been elevated in patients after acute
ischemic brain injury [39, 41].

According to the next study, β-amyloid peptide and apoli-
poprotein E are linked with human postischemic hippocam-
pus. Qi et al. [19] investigated the accumulation and
distribution of β-amyloid peptide 1–40, β-amyloid peptide

1–42 and apolipoprotein E in human postischemic hippocam-
pus. They have demonstrated that the accumulation of both
types of β-amyloid peptide was elevated following ischemic
brain injury. Neuronal apolipoprotein E staining was also
significantly increased in the CA1 and CA3 subfields of
ischemic hippocampus. Furthermore, the postischemic
changes of β-amyloid peptide 1–40, β-amyloid peptide
1–42 and apolipoprotein E staining in the CA1 and CA3 areas
were very similar temporally, although the upregulation extent
and peak increases of β-amyloid peptide 1–40 and β-amyloid
peptide 1–42 in the CA3 sector were lower than those found in
the CA1 area, respectively. It was presented that β-amyloid
peptide 1–40, β-amyloid peptide 1–42 and apolipoprotein E
would be upregulated in the human postischemic brain injury.
This overexpression of different forms of β-amyloid peptide
may contribute to the progression of ischemic brain injury and
finally to Alzheimer’s-type dementia.

Postischemic Dementia with Alzheimer’s Phenotype

In Animals

In addition to ischemic neuronal lesions, behavioral changes
have been shown, too [2, 3, 36, 116]. Postischemic injury
does not result in long-lasting neurological deficits in ani-
mals [116]. Spontaneous recovery of sensorimotor function
has been noted in the postischemic period [2, 117, 118].
Following ischemic brain injury, locomotor hyperactivity
has been observed [119, 120] as in Alzheimer’s disease
individuals. The hyperactivity was associated with neuronal
death in hippocampus [120]. Longer ischemia and longer
locomotor hyperactivity, which is positive, correlated with
increased pyramidal neurons loss in hippocampus with
neuroinflammation [10, 64, 116, 121]. After ischemic brain
injury, impairment in habituation, as revealed by an increase
in exploration time, was observed [122, 123]. Brain ische-
mia results in reference and working memory deficits [2,
124, 125]. Moreover, ischemic brain injury in animals leads
progressively to spatial memory deficits during the survival
period [2, 126, 127]. Progression of cognitive impairment
has been shown each time during recirculation [2, 127, 128].
In addition to that, evidence from repetitive ischemic brain
injury in animals has shown persistent locomotor hyperac-
tivity, severe cognitive deficits and reduced anxiety [129].
The behavioral functional changes, mentioned above, were
associated with significant brain atrophy [4–6, 130] and
diffuse neuronal loss in the CA1 subfield of hippocampus,
brain cortex, caudate nucleus [6, 64, 129], amygdala, and
perirhinal cortex [1]. Alertness and sensorimotor capacities
are affected for 1–2 days whereas the deficits in learning and
memory seem to be irreversibly progressing and lasting for
good [2, 121].
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In Humans

Postischemic injury in humans is the most common chronic
cause of disability worldwide and generally has a negative
influence on the patients it affects, caregivers and society as a
whole [131]. Brain ischemia survivors suffer from progressing
neurological disabilities that significantly influence their abil-
ity to return to society. A more insidious consequence of
ischemic brain injury is a postischemic dementia [32, 132]
that is also linked with severe disability. The global scale of
the problem and enormous costs involved make it clear that
there is an urgent need for advances in the prevention of
ischemic brain injury and its consequences like postischemic
dementia. Dementia is the worst consequence for survivors
following brain ischemia and it is responsible for approxi-
mately 20 % of all confirmed dementias [133]. Globally,
dementia, following stroke, varies from 10 % to 50 %
depending on the diagnostic criteria, geographic location and
population demographic [134]. In fact, it is becoming clear
that postischemic dementia has many risk factors in common
with sporadic Alzheimer’s disease currently. Indeed, brain
ischemic injuries may precede the onset of this form of de-
mentia, strongly suggesting that brain ischemic episodes may
trigger neurodegenerative dementias. Postischemic dementia
associated with chronic delayed secondary injury occurs in
patients suffering from focal, lacunar and salient brain ische-
mia in a progressive manner [32, 132, 135]. The progressive
postischemic injury has received far less attention in clinical
and experimental dementia studies.

Epidemiological studies have shown that the prevalence
of dementia in postischemic brain injury individuals is 9-
fold higher than in controls after 3 months [136–138] and
4–12 times higher than in controls 4 years after a lacunar
infarct [139]. Different patterns of cognitive decline, as a
result of postischemic injury, have been evident by longitu-
dinal epidemiological studies, which have demonstrated a
progressive course of dementia resulting from postischemia.
Tatemichi et al. [140] demonstrated that the incidence of
dementia amounted to 7 % among patients after 1 year
postischemia. Bornstein et al. [135] reported that 32 % of
patients, who were initially free of dementia, developed it
during 5 years following first ischemic episode. Henon et al.
[141] claimed that the cumulative proportion of patients
with dementia was 21 % after 3 years of survival. Altieri
et al. [142] examined patients in the postischemic period for
4 years and noted that the incidence of dementia amounted
to 22 % by the end of the follow-up time. In long term-based
studies of postischemic dementia in patients, Kokmen et al.
[143] noted that the incidence of dementia amounted to 7 %
at 1 year, 10 % at 3 years, 15 % at 5 years and 23 % at
10 years. Desmond et al. [144] performed functional assess-
ments of postischemic patients annually and noted a pro-
gressive course of dementia with the incidence rate of 9/100

persons/year. In two studies, based on patients with a lacu-
nar ischemia as their first ischemic episode, Samuelsson et
al. [145] found that 5 % and 10 % of patients had dementia
after 1 and 3 years of survival, respectively, and Loeb et al.
[139] reported that 23 % of patients had dementia during an
average of 4 years of observation.

Removal of the above abnormalities is an issue that neu-
rologists and scientists devote little time to. In some patients, a
spontaneous functional restoration is noted during
weeks/months postischemia. However, in general, this spon-
taneous recovery is incomplete. Moreover, ischemic brain
injury often leaves its victims functionally devastated and, as
such, is the leading cause of permanent disability requiring
long-term institutional care. The loss of life quality for years
and health care resources are staggering. The situation is even
aggravated by the fact that unlike many cases of other neuro-
logical diseases, no safe, effective therapy is available for the
majority of patients with acute brain ischemia. The social
burden after brain ischemia is dramatically increasing. Thus,
understanding of the underlying progressing pathological pro-
cesses is urgently needed. This review tends to summarize the
neuropathological changes of chronic postischemic brain in-
jury and reveal the convincing mechanisms.

Taken together, underpinning evidences from both clinical
and experimental investigations showed that the progressive
decline of cognitive activities could not be explained only by
the direct contribution of the primary ischemic brain injury,
but rather by a progressive consequence of the additive
effects of the postischemic injury, Alzheimer’s factors and
aging [36, 54, 94, 117, 121, 132]. The above data suggest that
brain ischemia enhances amyloid precursor protein mRNA
expression, which may be partly involved in the progression
of cognitive impairment in the postischemic period [42, 43,
54]. At last the generation of β-amyloid peptide in
postischemic brain increases which impairs the memory
[53]. Additionally, pathological postischemic accumulation
of α-synuclein might disrupt synaptic activity, resulting in
cognitive suffering [114]. The functional abnormalities pre-
cede the neuronal degeneration within the areas of selective
vulnerability to ischemia. What is more, areas of brain, which
are devoid of ischemic neuronal injury, display functional
abnormalities. The above alterations seem to be mainly due
to synaptic insufficiency in connections of neuronal cells
within areas with ischemically damaged or dead neurons.

Brain Ischemia as Trigger of Sporadic
Alzheimer’s Disease

Alzheimer’s disease is characterized by loss of neurons,
amyloid plaques generation/deposition, neurofibrillary tan-
gles, cerebral amyloid angiopathy and dementia develop-
ment. In Alzheimer’s disease, there is a positive correlation
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between areas with heavy β-amyloid peptide accumulation
and those which are damaged in the brain [146–148]. On the
other hand, quantitative measure of β-amyloid peptide level
did not correlate with Alzheimer’s disease duration [149].
This may be interpreted as follows: it seems that β-amyloid
peptide could not continue accumulating in the brain during
the disease duration. Although the extent of neuronal loss is
directly correlated with the intensification of dementia
[150], the mechanism(s) leading to the neuronal cells death
still remain unclear. It is a matter of controversy whether the
pathological cascade of β-amyloid peptide in Alzheimer’s
disease is primarily triggered by intraneuronal or extracel-
lular accumulations of β-amyloid peptide and will contrib-
ute directly or indirectly, if at all, to Alzheimer’s disease
development with massive neurons loss [151–153]. Other
data demonstrated that neuronal death is coincided with
neurofibrillary tangles [154], which are composed by
hyperphosphorylated aggregates of the microtubule-
associated tau protein in some neurodegenerative disorders
known as tauopathies, of which Alzheimer’s disease is one
of the most notable. Recent investigation on transgenic
animals demonstrates that the mechanism of neuronal death
did not correlate with the presence of tau protein filament
formation within individual neurons which are going to die,
suggesting that neuronal death can occur independently of
generation of neurofibrillary tangles [154]. Moreover, there
is evidence to underpin the above results that some neurons
in Alzheimer’s disease may die without forming neurofibril-
lary tangles [150]. It can be concluded that there is no
relationship between amyloid plaques and neurofibrillary
tangles and developing dementia in Alzheimer’s disease,
and amyloid plaques and neurofibrillary tangles may arise
as independent alterations and can result from a neurode-
generative processes rather than being their cause [21, 155,
156]. These results seem to provide additional evidence that
neuronal death may not result directly and/or primarily from
amyloid plaques [157] and formation of neurofibrillary tan-
gles but rather it might be associated with other pathological
factor(s). Another important pathological element in
Alzheimer’s disease is β-amyloid peptide deposition in
brain small vessels. The β-amyloid peptide accumulation
in brain small vessels causes wall pathology in vascular
network and results in blood–brain barrier changes and focal
“no-reflow phenomenon” [6, 158–160]. The collapse of
such a barrier leads to spread blood β-amyloid peptide
into the surrounding brain parenchyma [160]. Examination
of amyloid plaques made by using serial sections of
Alzheimer’s disease brains for both electron and light mi-
croscopy in order to observe the relationship between
plaques and microvessels can be summarized as follows:
(1) The cores of the typical senile plaques appear in tight
contact with themicrovessels and theβ-amyloid peptide spread
into the surrounding brain parenchyma. The composition of

senile plaques core includes complement factors and immuno-
globulins [155]. The presence of immune proteins within
the plaques core suggests that blood immunological compo-
nents could be entangled in the structure ofβ-amyloid peptide
deposits. (2) Different types of plaques have a close link to the
capillaries. (3) Both confocal laser scanning microscopy and
scanning electron microscopy demonstrated a direct link be-
tween the β-amyloid peptide and vascular network, especially
β-amyloid peptide 1–40. Additionally, confocal laser scan-
ning microscopy has demonstrated that β-amyloid peptide
1–40 depositions occur in and around neurovessels [161].
The above mentioned results seem to indicate that some
changes of the blood–brain barrier can induce transport of
blood β-amyloid peptide 1–40 into the brain parenchyma of
Alzheimer’s disease patients. (4) The global atrophy of the
brain, especially of the hippocampus and dysfunction of as-
trocytic cells (vascular end-feet) are common hallmarks in
Alzheimer’s disease. From this point of view, alteration of
the blood–brain barrier is an important element with regard
to the neuropathological damage observed in Alzheimer’s
disease brains [162].

The discovery of mutations within amyloid precursor
protein gene led to the suggestion of primary pathological
role for amyloid precursor protein in Alzheimer’s disease.
This data has supported the formulation of the “amyloid
hypothesis” of Alzheimer’s disease in which the deposition
of β-amyloid peptide is the trigger of neuropathological
events in Alzheimer’s disease and of all subsequent pathol-
ogies. Nevertheless, the etiology based on “amyloid hypoth-
esis” of sporadic Alzheimer’s disease has not yet been
cleared up and probably is baseless. The results presented
so far suggest that amyloid precursor protein and presenilin
genes overexpression may not be the direct cause of differ-
ent forms of Alzheimer’s disease cases but probably they
could influence the neurochemical components of a
resulting pathology, and therefore indirectly affect the levels
of neurotoxicity and extent of secondary neurodegeneration
[94]. Conversely, in transgenic animal brains, with high
blood levels of β-amyloid peptide in systemic circulation,
no detectable depositions of β-amyloid peptide appeared
[163]. Basing upon evidence of no difference in the level
of blood β-amyloid peptide 1–40 and β-amyloid peptide
1–42 among cases of sporadic Alzheimer’s disease and
control individuals [164], finding out that more numerous
deposits ofβ-amyloid peptide 1–40 andβ-amyloid peptide 1–
42were noted in brains of Alzheimer’s disease patients than in
controls strongly suggests that a certain dysfunction of the
blood-brain barrier could induce an abnormal passage of β-
amyloid peptide from systemic circulation to the brain tissue
in Alzheimer’s disease patients [161]. Additionally, Scholz
[165] described plaque-like degeneration of arteries and cap-
illaries and considered that the core of senile plaques might
consist of material that had permeated from the circulatory
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network. Therefore passage to and accumulation of serum β-
amyloid peptide into the surrounding brain parenchyma and
vessel wall may require interrupted blood–brain barrier. Some
risk factors for Alzheimer’s disease development like brain
ischemia are known to disrupt blood–brain barrier integrity
and thereby can allow transportation of peripheral β-amyloid
peptide into the surrounding brain parenchyma [89, 158–160,
166–168]. For this reason, a detailed study on the role of
ischemic factor in sporadic Alzheimer’s disease should be
carried out as a priority. One of the biggest stumbling blocks
in developing effective drug therapy for Alzheimer’s disease
has been the lack of a comprehensive hypothesis that explains
the mechanism behind all pathological changes seen in pa-
tients suffering from Alzheimer’s disease [38, 169].

It should be mentioned that there is still controversy
whether ischemic-type dementia is a different entity from
Alzheimer’s disease dementia or merely two extreme de-
scriptions of the same clinical condition. Currently, a con-
siderable and growing body of evidence suggests that ischemic
mechanism(s) are present in Alzheimer’s disease [22–25, 38,
160, 170]. Lately, brain ischemia has been recognized as a
factor lowering the threshold of neuronal death [171]. Neuro-
pathological post mortem examinations of Alzheimer’s dis-
ease brains have shown that 30% of patients showed evidence
of postischemic injury [3, 29] and the cases with both
Alzheimer’s disease and brain ischemia demonstrated more
severe cognitive impairment than those without brain ischemia
[172, 173]. Some studies from transgenic mice demonstrated
that neuronal death, a common feature of Alzheimer’s disease,
is not dependent on β-amyloid peptide [155, 157, 174]. Other
study indicates that β-amyloid peptide is generated as a re-
sponse to ischemic neuronal injury [67] and probably produces
its effects by interactingwith cell surface molecules commonly
encountered in the ischemic brain. In human cases with
brain ischemia, β-amyloid peptide was found in neuronal
bodies and around dystrophic neurites and accumulation
of β-amyloid peptide was similar to depositions seen in
Alzheimer’s disease [16–18, 20]. Thus, the increased staining
of different parts of amyloid precursor protein may be a
reaction of the brain to ischemic neuronal injury. On the
other hand, increased synthesis and metabolism of amy-
loid precursor protein in patients with brain ischemia may
be an acute response of protein to brain ischemic injury
leading to the deposition of β-amyloid peptide. We pro-
pose that amyloid precursor protein/β-amyloid peptide is
involved in the course of the disease secondarily in order
to help maintain neuronal network function [175]. Tau
protein pathology can also be a part of the neuronal
reaction to brain ischemia [76]. Experimental brain ische-
mic injury has also resulted in overexpression of amyloid
precursor protein mRNA in the brain cortex and hippo-
campus implying that the production and metabolism of
amyloid precursor protein may be a characteristic

response to loss of functional activity by ischemic brain
[54, 94]. To support these conclusions, different parts of
amyloid precursor protein were found in ischemic neuro-
nal bodies, axonal swellings and dystrophic neurites [56,
176, 177]. The evidences mentioned above point to the
degeneration of some pathways. In ischemic brain, diffuse
plaques are connected with field of clusters of neuronal
perikarya and the shape of staining frequently covered
dendrite area. In Alzheimer’s disease, the predominance
of neuronal mRNAs in individual plaques was observed
[178], which suggests that the amyloid plaques develop in
the areas where neurons die [67]. The demonstrated data
support the idea that amyloid precursor protein is upregulated
in neurons as an effect of their injury and/or loss of functional
innervations, and therefore, that the early development of
diffuse plaques in Alzheimer’s disease may be a result of
neuronal degeneration. Different studies support a general
conclusion that the formation of amyloid plaques and neuro-
fibrillary tangles is a reactive alteration that appears in re-
sponse to neuronal ischemic injury and is not strictly related
to dementia [67, 155]. Nevertheless, β-amyloid peptide is a
neurotoxin when produced and may start processes of second-
ary neuronal injury. Other data also suggest that tau protein
pathology is a result of neurodegenerative changes [76] within
brain cellular perikarya following synaptic disconnection in
brain network. It can be concluded that amyloid plaques and
tau protein changes arise independently. However, once initi-
ated, pathological processes can mutually cooperate [179,
180]. If β-amyloid peptide and tau protein alterations are the
product of neurodegeneration thus, probably, these two pro-
teins are hallmarks of late stages in sporadic Alzheimer’s
disease development.

We would like to put forward a theoretical scheme that
fits very well with ischemia basis of sporadic Alzheimer’s
disease. According to our theory, Alzheimer’s disease would
start to develop when at least two pathological events con-
verge: brain ischemia and ischemic chronic insufficiency of
blood–brain barrier for β-amyloid peptide [6, 8, 38, 88, 89,
170, 181]. These two cases create two main neuropathol-
ogies; brain ischemia is responsible for acute and delayed
neuronal death in hippocampus and dysfunctional, dying
and dead neurons in other areas affected by ischemically
induced β-amyloid peptide of the brain with global brain
atrophy, and ischemic chronic blood–brain barrier insuffi-
ciency creating mainly amyloid pathology in surrounding
brain tissue [160, 167]. The magnitude and extent to which
the blood–brain barrier is exposed appears to be minimal
since acute alterations such as microinfarcts [88] were not
easily observed. Still, these neuropathology remains of great
consequence to the brain tissue and appears to be cumulative
over time. Transgenic mice that accumulate β-amyloid pep-
tide without neuronal loss in hippocampus support directly the
above idea [155, 157, 174]. The neuropathology of
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Alzheimer’s disease is rooted in ischemic pathology what is
indicated by evidence growing recently [14, 22–28, 160, 182].
The “amyloid hypothesis” of Alzheimer’s disease and the
“ischemia–reperfusion theory” of Alzheimer’s disease may
together explain Alzheimer-type neurodegeneration in the
brain. Therefore, overexpression of different parts of amyloid
precursor protein in brain after ischemia and ischemia alone
probably constitute a vicious cycle that leads to
neurodegeneration with dementia [6, 129]. We hypothesize
that initial acute upregulation of amyloid precursor protein in
the ischemic brain is a cellular neuroprotective response to
ischemic injury [175]; however, long-term overexpression of
β-amyloid peptide in brain may contribute to neurotoxicity.
Progressing death of neurons after ischemia–reperfusion may
be caused not only by degeneration processes of neurons
destroyed during primary ischemia but also by ischemic open-
ing of blood–brain barrier with deposition and influence of
cytotoxic fragments of amyloid precursor protein on ischemic
neurons and their processes [89]. In this review, we discuss the
role of pathways that are invoked during ischemia–reperfu-
sion injury and may potentially develop injury in Alzheimer’s
disease brain. The fundamental thesis of our proposal is that
the pathology seen in Alzheimer’s disease is a continuous
process starting from the initial ischemic neuronal damage
[4, 5, 26, 87] to the well-established extravasations of β-
amyloid peptide from blood across ischemic blood–brain
barrier [88, 89, 160, 166–168], culminating in the formation
of amyloid plaques.

Ischemic Blood–Brain Barrier as Final Maturation
Factor in Sporadic Alzheimer’s Disease

In contrast to classical view of sporadic Alzheimer’s disease,
recent data indicate that ischemia–reperfusion injury contrib-
utes to progressing degeneration in Alzheimer’s disease [4, 6,
13, 14, 23–25, 27, 28, 183]. We suggest that the ischemic
blood–brain barrier maturation hypothesis of Alzheimer’s
disease implying that pathological permeability and faulty
clearance of β-amyloid peptide across the ischemic blood–
brain barrier could act as seeds for the process that is respon-
sible for β-amyloid peptide accumulation as plaques and
maturation in Alzheimer’s disease neurodegeneration pro-
gression [30, 36, 90, 160, 166–168, 170, 181]. This would
lead to premature senescence of microcirculatory system and
insufficient angiogenesis of blood–brain barrier vessels,
neurovascular system regression and inflammation [10].
Finally, we could observe repeated brain ischemic insults
with repeated blood–brain barrier dysfunction [6]. It is con-
ceivable that dysfunction in blood–brain barrier cells within
the microvascular system could disrupt this system and inau-
gurate the neuropathogenic disease cascade connected with
pathological β-amyloid peptide generation and deposition

[184]. We would like to put forward a theoretical scheme that
fits very well with ischemia basis of sporadic Alzheimer’s
disease etiology. In our proposal, Alzheimer’s disease would
start to develop when at least two neuropathological events
converge: brain ischemia and ischemic opening of blood–
brain barrier. These two events create two main patholo-
gies; brain ischemia is responsible for neuronal death in
hippocampus [4–7] and chronic ischemic blood–brain
barrier insufficiency is creating amyloid cascade with amyloid
plaques formation [30, 90, 181]. We demonstrated a consid-
erable evidence indicating that the pathogenesis of sporadic
Alzheimer’s disease is rooted in ischemic pathology. Based on
this proposal, we suggest some new therapeutic approaches
that could be used in Alzheimer’s disease to prevent perme-
ability of ischemic blood–brain barrier for β-amyloid peptide
[38, 169] and enhance reverse β-amyloid peptide clearance
from brain parenchyma following ischemia–reperfusion
injury [36, 168].

Conclusions

The typical elements of Alzheimer’s disease pathology in
postischemic brain are Alzheimer’s disease-associated
overexpression of genes and abnormal generation of pro-
teins, various kinds of amyloid plaques, and neuronal death
with inflammation in specific brain fields as hippocampus
with final development of dementia. Causes of plaques, up
to the present, were taken as heterogeneous and neuronal
death as a consequence of neurotoxic futures of β-amyloid
peptide. New data suggest that brain ischemia triggers par-
allel induction of neuronal death and Alzheimer’s type
genes with subsequent development of plaques and detected
hippocampus and brain atrophy [4–6, 94, 130], which is
indispensable in final formation of dementia [2, 3]. We
demonstrated the data of Alzheimer’s phenotype and geno-
type in postischemic brain seemed to underpin directly the
ischemic hypothesis of sporadic Alzheimer’s disease etiol-
ogy. The occurrence of different parts of amyloid precursor
protein as plaques and phosphorylated tau protein found in
neurofibrillary tangles in postischemic brains strongly es-
tablishes a close association between brain ischemia and
sporadic Alzheimer’s disease [4, 7, 13, 15, 18–20, 37, 38,
75, 185]. Neuropathological post mortem examinations of
Alzheimer’s disease brains have shown that 30 % of patients
showed evidence of postischemic injury [3, 24, 29], and the
cases with both Alzheimer’s disease and brain ischemia
demonstrated more severe cognitive impairment than those
without brain ischemia [172, 173]. A recent study found that
brain ischemia in hippocampus aggravates cognitive impair-
ment by neuronal death, promotion of β-amyloid peptide
generation and deposition, [3, 64] and by pathological phos-
phorylation of tau protein in ischemic cells [15], finally
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underpinning the idea that the augmentation of inflammato-
ry reactions [10] might be responsible for brain ischemia
induced as vicious cycle aggravation of cognitive impair-
ment in Alzheimer’s disease [3, 6].

In summary, we presented good ischemic model(s) for
Alzheimer’s disease investigation. By use of brain ischemia
model(s), we may elucidate the neuropathology of Alzheimer’s
disease. Present knowledge regarding the induction of genes,
neuropathophysiology and neuropathology of brain ischemia
and Alzheimer’s disease indicates that the same processes con-
tribute to neuronal death, amyloid generation and accumulation,
tau protein hyperphosphorylation and brain parenchyma disin-
tegration with full-blown dementia of Alzheimer’s phenotype
[2, 13, 15, 25, 38].
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