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Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to
affect a large variety of neural developmental processes, including, but not limited to,
embryonic axis formation, neural proliferation, fate determination, and maintenance of
neural stem cells. For decades, studies have focused on the mechanisms controlling the
activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the
spotlight of research is directed towards the last cascade component, the T-cell factor
(TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-
mediated switch from transcriptional activation to repression, which in both embryonic
blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency
towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of
split (Gro/TLE) is themain co-repressor partner of TCF/LEF. More recently, other TCF/LEF-
interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2),
which belongs to the evolutionary highly conserved family of homeodomain-containing
transcription factors. This review describes the activities and regulatory modes of TCF/LEF
as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate
brain development. Specific attention is given to the transcriptional events leading to
formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in
growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and
neural stem cells and discuss how alterations of this pathway could lead to tumors.
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INTRODUCTION

Understanding how the vertebrate nervous system emerges from a homogeneous layer of
neuroepithelial cells, the neural plate, has long been a subject of intense fascination. Fate-
mapping experiments performed at the end of the 20th century demonstrated that the
primordia of the forebrain, midbrain, hindbrain, and spinal cord are all already established
along the antero-posterior (AP) axis when the neural plate emerges. These studies revealed that
a construction blueprint of the neural organization, and specifically that of the forebrain, is set up
during gastrulation (reviewed in Wilson and Houart, 2004; Hoch et al., 2009; Andoniadou and
Martinez-Barbera, 2013). In 1924, Hans Spemann and Hilde Mangold discovered that the dorsal lip
of a newt blastopore, when grafted into the ventral part of a host embryo, is able to induce a
secondary axis containing a complete nervous system (Spemann and Mangold, 1924). This small
group of specialized cells, referred to as the “Organizer,” emerges during embryonic development at
gastrulation, acts as a local source of secreted signaling factors and drives both neural induction and
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patterning of the prospective neuroepithelium and thereby of the
developing head (reviewed in De Robertis et al., 2000; Niehrs,
2004; Kiecker and Lumsden, 2012; Anderson and Stern, 2016).
Since this discovery, an organizing center has been found in other
model organisms: Hensen’s node in the chick, the node in the
mouse and the shield in zebrafish, and the capacity of the
blastopore-associated tissue to induce naïve cells to form a
fully developed twin embryo was found conserved in non-
bilaterian metazoan species (Kraus et al., 2016).

Initial regionalization of the neural plate relies on the
synergistic action of at least five major signaling pathways that
convey spatial and temporal information to naïve cells,
consequently inducing developmental programs that drive
their behavior (reviewed in Stern, 2002; Wessely and De
Robertis, 2002; Ozair et al., 2013). Amongst the cell-to-cell
signaling pathways coordinating development, one of the most
conserved in the animal kingdom is the Wnt/β-catenin, or
canonical pathway. During emergence of the central nervous
system, Wnt/β-catenin acts in a coordinated manner with Sonic
HedgeHog (Shh), Notch, Transforming Growth Factor (TGF-β),
and Fibroblast Growth Factor (FGF) pathways and contributes to
neural patterning, proliferation, and fate determination. Notably,
the Wnt/β-catenin machinery drives the transcriptional events
leading to the induction of the Organizer, and thereby formation
of the embryonic axes. Its participation is also crucial in Neural
Stem Cell (NSC) maintenance and self-renewal. Not surprisingly,
dysregulation of Wnt/β-catenin signaling is linked to serious
brain developmental defects, including cancer (reviewed in
Hoppler and Moon, 2014; Brafman and Willert, 2017; Nusse
and Clevers, 2017).

After four decades of intense research following the initial
discovery of Wnt signals (Nusse and Varmus, 1982, reviewed in
Nusse and Varmus, 2012), 19 ligands have been characterized in
mammals, together with two families of receptors comprising 10
Frizzled receptors, and two Low-Density Lipoprotein (LDL)
receptor-related proteins (LRP5/6) (reviewed in MacDonald
et al., 2009; Niehrs, 2012). Despite this complexity, the large
majority ofWnt/β-catenin transcriptional targets are regulated by
T-Cell Factor/Lymphoid Enhancer-binding Factor (TCF/LEF)
transcription factors (TF). Loss of function analysis performed
in invertebrate such as the nematode Caenorhabditis elegans (C.
elegans) and in flies, where a single TCF/LEF has been

characterized, provided evidence that TCF/LEF act through a
transcriptional switch, which either activates or represses Wnt/
β-catenin target genes’ expression. This feature has been further
validated in vertebrate, whose genome contains four TCF/LEF
members: TCF1, TCF3, TCF4, and LEF1. In this review, the
vertebrate TCF/LEF members will be referred to as TCF7
(previously TCF1), TCF7L1 (TCF3), TCF7L2 (TCF4) and
LEF1 following the Human Genome Organization (HUGO)
nomenclature (Table 1). As will be discussed below, some of
the vertebrate TCF/LEF have a more specialized function
compared to their invertebrate counterparts.

In most of the species investigated so far, TCF/LEF activate
transcription in Wnt-stimulated cells by interacting with the
sole transcriptional activator β-catenin (Schuijers et al., 2014),
but TCF/LEF can recruit other partners to the transcriptional
activating machinery. A massive effort has been deployed to
understand TCF/β-catenin transcriptional modes of
activation. Very elegant and detailed accounts of the current
models supporting Wnt-dependent transcriptional activation
events have been published recently (reviewed in van
Amerongen and Nusse, 2009; Wiese et al., 2018; Söderholm
and Cantù, 2021).

In the absence of Wnt ligands, TCF/LEF interact with
repressor partners to inhibit Wnt target genes’ expression.
The best-characterized co-repressor partner is Groucho/
Transducin-Like Enhancer of split (Gro/TLE) (Brantjes,
2001). Under certain conditions, Gro/TLE can recruit
Histone Deacetylases (Hdac) to the complex, a chromatin
remodeling enzyme which removes acetyl groups from the
N-terminal lysine residues of the core histones, inducing gene
expression silencing through chromatin condensation (Sekiya
and Zaret, 2007). Recent evidence reveals a role for the
homeodomain (HD)-containing TF BarH-Like Homeobox-2
(BARHL2) in enhancing TCF/Gro repressive activity in vitro
and in vivo and preventing the β-catenin-mediated
transactivation of TCF/LEF target genes (Sena et al., 2019).
These data highlight a novel mechanism regulating Wnt/
β-catenin transcriptional response, probably involving the
chromatin modifier Hdac1. Studies from hemichordates to
vertebrate, which are evolutionarily more than 500 million
years apart, have revealed that, despite the differences between
species, they all carry two Barhl genes: Barhl1 and Barhl2, each

TABLE 1 | TCF/LEF, Gro/TLE and BARHL homologues across species.

Drosophila melanogaster Caenorhabditis elegans Xenopus laevis Mus musculus Homo sapiens

TCF/LEF Pan POP1 Tcf7 (Tcf1) TCF7 (TCF1) TCF7 (TCF1)
Tcf7l1 (Tcf3) TCF7l1 (TCF3) TCF7l2 (TCF4) TCF7l1 (TCF3) TCF7l2 (TCF4)
Tcf7l2 (Tcf4) LEF1 (LEF1) LEF1 (LEF1)
Lef1 (Lef1)

Gro/TLE Gro UNC-37 Gro1-4 GRG1-4, GRG5 TLE1-4
BARHL1 BarH2 CEH30 Barhl1 BARHL1 (MBH2) BARHL1
BARHL2 BarH1 Barhl2 BARHL2 (MBH1) BARHL2

Invertebrate have a single T-cell factor/Lymphoid enhancer-binding factor (TCF/LEF): Pangolin (Pan) in flies and POP1 in worm. Vertebrate have four TCF/LEF known as TCF7, TCF7l1,
TCF7l2 and LEF1, previously termed TCF1, TCF3, TCF4 and LEF1 respectively. DrosophilaGroucho (Gro) andC. elegansUNC-37 corepressors have four vertebrate orthologs: Gro1-4 in
frogs, Groucho-related gene (GRG1-4) in mice, and Transducin-like enhancer of split (TLE1-4) in human. In mice, GRG5 acts as a dominant negative. The homeobox-containing proteins
BarH1 and BarH2 have been first identified inDrosophila.Homologues have been described in vertebrate, namedBarH-like or BARHL. In mice, BARHL have been previously referred to as
mammalian BarH (MBH1 and MBH2). C. elegans Bar homeodomain gene (CEH30) represents the homologue of Drosophila BarH1 and BarH2 and their vertebrate counterparts.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7849982

Bou-Rouphael and Durand TCF/LEF in Vertebrate Head Development

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


having a remarkably evolutionarily conserved structure,
distribution, and function. The spectrum of TCF/Gro
transcriptional targets is large. Both TCF/LEF and Gro/TLE
proteins interact with other TFs, and are targets for
developmental signals, which influence their activities. The
extent and importance of TCF repressive roles, and their
regulatory modes during embryogenesis are neither fully
grasped, nor fully understood.

In this review, we present the activities and regulatory modes
of TCF as transcriptional repressors with a focus on the
developmental roles of Barhl2. Specific attention is given to
the transcriptional events leading to the formation of the
Organizer, as well as the roles and regulations of the Wnt/
β-catenin pathway in the growth of the caudal forebrain. We
present core activities of TCF/LEF in Embryonic Stem Cells
(ESCs) self-renewal and pluripotency, and maintenance of
NSCs, as well as their identified deregulations and the
emergence of cancer.

Transcriptional Regulation of Wnt Target
Genes by the TCF/LEF Factors – A Focus on
the TCF-Mediated Transcriptional
Repression
TCF/LEF proteins are the major mediators of Wnt-responsive
gene transcription in the nucleus. In the absence of Wnt ligands,
β-catenin is phosphorylated by the destruction complex
containing Glycogen Synthase Kinase 3β (GSK3β), Casein
Kinase 1 (CK1), Adenomatous Polyposis Coli (APC) tumour
suppressor protein, and Axin. Phosphorylated β-catenin is
targeted towards ubiquitination and further proteasome-
mediated degradation. In the nucleus, inhibitory TCF/LEF
members are bound on Wnt Cis-Regulary-Motifs (W-CRM),
interact with co-repressors such as Gro/TLE proteins, and act
as transcriptional repressors. Conversely, inWnt-stimulated cells,
the destruction complex is inhibited leading to the cytoplasmic
accumulation of β-catenin and further nuclear translocation.

FIGURE 1 | BARHL2 regulatory mode of Wnt canonical pathway. (A) Upon Wnt binding to Frizzled (Frz) and Low-Density Lipoprotein Receptor-related Protein
(LRP) family of receptors 5 and 6, the multiprotein destruction complex components (Scaffold protein AXIN, Adenomatous Polyposis Coli (APC) tumour suppressor
protein, Casein Kinase 1 (CK1), and Glycogen Synthase kinase 3β (Gsk3β)) are recruited to the receptor complex, where they are internalized. Frz binds to Disheveled
(DVL) keeping AXIN and Gsk3β inactive. β-catenin (β-cat) escapes degradation, accumulates and translocates into the nucleus, where it binds to activating T-Cell
Factors such as TCF7. TCF7 bound onWnt-Cis regulatory motif (W-CRM) acts as transcriptional activator. (B) In the absence of Wnt ligands, the destruction complex is
activated. Gsk3β and CK1 phosphorylate β-cat, allowing for its recognition by the E3 ubiquitin ligase (Ub) and targeting it for ubiquitination and proteasomal degradation.
In the nucleus, the co-repressive factor Groucho (Gro) binds through its Glutamine (Q)-rich domain to TCF7l1 inducing a transcriptional repression. (C) In Wnt-stimulated
cells, the presence of BARHL2 inhibits the cell response to β-cat. BARHL2 interacts with the Tryptophan/Aspartic acid (WD)-rich domains of Gro4 via its Engrailed
Homology 1 (EH1) motifs and interacts with TCF7l1. The domain mediating BARHL2-TCF7l1 interaction is unknown. BARHL2 stabilizes the TCF7l1/Gro4 complex,
reinforcing transcriptional repression of Wnt target genes. The complex containing TCF7l1, Gro, and BARHL2 could recruit histone deacetylases (HDAC), which induces
inherited epigenetic modifications.
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FIGURE 2 | (A) Structural organization of the TCF/LEF proteins. Invertebrate (Pangolin (Pan) in Drosophila, POP1 in C. elegans), and vertebrate T-Cell Factor/
Lymphoid Enhancer Factor (TCF/LEF) proteins share several highly conserved domains: the N-terminal β-catenin-binding domain (BCBD) shown in dark yellow, the
DNA-binding domain which contains a High-Mobility Group box (HMG-box) shown in green and a Nuclear Localization Signal (NLS) shown in grey. The DNA-binding
domain is preceded by a less well-defined binding sequence for the Groucho/Transducin-like enhancer of split (Gro/TLE) (Gro-binding sequence, GBS) shown in
dark red. Several protein isoforms are encoded by the genome of vertebrate, except for TCF7l1. The Context-dependent Regulatory Domain (CRD) is less conserved
and is encoded by three exons. One of them, indicated in orange, can be alternatively spliced in all vertebrate isoforms except TCF7L1. Black dotted lines indicate
possible alternative splicing. In TCF7l1 and in TCF7l2, this CRD domain is flanked by two small motifs LVPQ shown in blue at its N-terminal end, and SxxSS shown in pink
at its C terminal end, which contribute to TCF7L1/2 repressive activity. Whereas these two motifs are always present in TCF7l1, in TCF7l2 they can be alternatively
spliced. Less conservation is found in the C-terminal tail, as it is highly variable in length. The long (E) tails shown in light blue contain additional regulatory domains: the
C-clamp DNA-binding motif shown in violet, present in most invertebrate and in the vertebrate TCF7l2 and TCF7, and two C-terminal-binding protein (CtBP) motifs
(PLDLS) shown in dark blue, found in TCF7l1 and TCF7l2. Isoforms of TCF7 and LEF1 expressed from alternative promoters and encoding proteins lacking BCBD
behave as dominant-negative. Alternative splicing also generates proteins with short (B) tails shown in light yellow. LEF1 isoform lacks the C-terminal tail. This scheme is
inspired by (Hoppler and Waterman, 2014). (B) Schematic representations of Gro/TLE proteins functional domains. Sequence comparison of the Drosophila Groucho
(Gro) (NP_001247309.1), human TLE4 (NP_001269677.1), mouse Groucho-related gene 4 (GRG4) (NP_001289876.1), and C. elegans UNC-37 (NP_491932.1)
reveals the presence of five domains. The two most highly conserved domains are: 1- the amino-terminal glutamine-rich (Q) domain shown in dark yellow that contains
two amphipathic α-helices (AH1 and AH2) and is required for Gro/TLE oligomerization, and interactions with other proteins including the TCF/LEF proteins; and 2- the
Tryptophane/Aspartic acid (WD)-repeats shown in red that mediates protein-protein interactions, such as those with the Engrailed Homology (EH1)-containing proteins.
The central portion of Gro/TLE is less well conserved and contains a Glycine/Proline-rich (GP) domain implicated in the recruitment of the Drosophila Rpd3/mammalian
Histone Deacetylase (HDAC) shown in orange, a central portion (CcN) domain shown in green containing a Nuclear Localization Signal (NLS) shown in grey, and a Serine/
Proline-rich (SP) domain shown in violet. Phosphorylation sites are found in both the CcN and SP domains. Numbers indicate the positions of the boundary amino acids
(aa). GRG-5 only contains the Q-rich domain and a GP-rich domain with aa differences compared to the long forms of Gro/TLE, which impede its ability to interact with
HDAC. GRG-5 acts as a dominant negative.
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Increase in the nuclear β-catenin levels transiently converts TCF/
LEF into transcriptional activators (Figures 1A,B) (reviewed in
MacDonald et al., 2009).

Observations from mammalian cells (Schuijers et al., 2014),
flies (Franz et al., 2017), and amphibian (Nakamura et al., 2016)
among others, reported the requirement of TCF/LEF for the
transcriptional regulation of most β-catenin target genes,
supporting the classical model of Wnt transcriptional
regulation. Mammalian cells lacking all four genes encoding
TCF/LEF proteins display perturbations in the association of
β-catenin with DNA. In such cells, β-catenin was found to
regulate different transcriptional targets (Doumpas et al.,
2019), revealing that only when TCF/LEF is absent, β-catenin
autonomously regulates a subgroup of genes whose transcription
does not initially require TCF/LEF. Genome-wide analysis
methods identified Wnt/TCF target genes that are available at
http://www.stanford.edu/group/nusselab/cgi-bin/wnt/.

TCF/LEF Members and Structure
TCF/LEF sequence alignment and phylogenetic trees in species
such as the hemichordate Saccoglossus kowalevskii (S.
kowalevskii), Caenorhabditis elegans (C. elegans), Drosophila
melanogaster, Hydra magnipapillata, and Ciona intestinalis
reveal the presence, in the TCF/LEF structure, of the four
major binding domains found in vertebrate (Atcha et al., 2007;
Žídek et al., 2018), indicating that the TCF/LEF in invertebrate is
probably the ancestral precursor of that described in vertebrate.
Further complexity has been added through evolution following
the emergence of the different TCF/LEF isoforms in mammals
which are generated through alternative transcription, translation
start sites, and alternative splicing (reviewed in Hoppler and
Waterman, 2014).

Structural and functional analysis of TCF/LEF provided
important cues on the domains mediating their transcriptional
activities (Figure 2A). On their N-terminal region, all TCF/LEF
isoforms have a β-catenin-binding domain (BCBD), which
contains 50 amino acids (aa). Three sets of aa are involved in
the TCF/LEF-β-catenin interactions: residues 2–15 (known as the
β-hairpin module) fit into the groove of the central Armadillo
(Arm) repeat domain (the homologue of the vertebrate β-catenin
and signal transducer of wingless (Wg) signaling in flies).
Residues 16–29 form an extended strand, and residues 40–51
form an α-helix (Graham et al., 2000). TCF/LEF interaction with
β-catenin is necessary for their activity (Kratochwil, 2002).
Isoforms of TCF7 and LEF1 expressed from alternative
promoters, and encoding proteins lacking BCBD, behave as
dominant-negative (van de Wetering et al., 1997; Hovanes
et al., 2001). Recognition of the specific DNA sequence motif
(CCTTTGAT(G/C)) by TCF/LEF is mediated by a highly
conserved High Mobility Group (HMG)-box, whose DNA-
binding domain structure and general mechanisms of DNA
binding and bending, have been extensively studied (van Beest
et al., 2000; reviewed in; Malarkey and Churchill, 2012). This
HMG-box is followed by a Nuclear Localization Signal (NLS).
The BCBD and the DNA-binding domain are separated by a less
conserved context-dependent regulatory domain (CRD), partly
encoded by an exon (exon VI), which can be alternatively spliced

in all TCF/LEF except TCF7L1. Two conserved aa motifs, LVPQ
and SxxSS, flank exon VI in Xenopus Tcf7l1 and Tcf7l2, but not in
Tcf7 or Lef1, and can be alternatively spliced in Tcf7l2. Mutations
in these two motifs validate their strict requirement for Tcf7l1
repressive activity. Furthermore, their insertion into the lef1
sequence abolishes Lef1 activator capacity, as detected through
its inability to induce an ectopic secondary axis when injected
ventrally in Xenopus embryos (Pukrop et al., 2001; Gradl et al.,
2002; Liu et al., 2005). Other studies suggest that the Gro/TLE-
binding domain encompasses the entire CRD and part of exon
VII. Indeed, alternative splicing within the CRD (exon V to exon
VII) modifies the interactions of TCF/LEF with Gro/TLE (Young
et al., 2019) (reviewed in Hoppler and Waterman, 2014). The
C-terminal tail is the most variable region among the TCF/LEF,
where much of the aa sequence exhibit a low level of conservation.
The C-terminal tail exists either as a long C-terminal extension,
referred to as E tail, that contains additional domains, or as a
short C-terminal extension, referred to as B tail, lacking the
additional transcriptional regulators’ binding domains.
Whereas TCF7L1 only carries an E tail, the LEF1 gene lacks
the E-tail-encoding exon (Atcha et al., 2003). The E-tails encode
two copies of a specific short motif (PLDLS) that binds the
evolutionarily conserved co-repressor phosphoprotein
C-terminal-Binding Protein (CtBP). Indeed, CtBP binds to
both Tcf7l1, and the Tcf7l2 isoforms carrying an E tail
(Brannon et al., 1999; Valenta et al., 2003; Fang et al., 2006).
An additional small, highly conserved 30 aa motif (CRARF) is
present in invertebrate TCF/LEF and in vertebrate splice variants
Tcf7-E and Tcf7l2-E, but not in Tcf7l1. CRARF is required for the
β-catenin-mediated transcriptional activation of the lef1
promoter, and forms a C-Clamp (Cysteine-rich domain) that
allows TCF/LEF to bind an additional DNA motif known as the
Helper site (5′-RCCGCCR-3′) (Atcha et al., 2007; Ravindranath
and Cadigan, 2014).

A Brief Picture of the Evolution of the TCF/
LEF Family
TCF/LEF are metazoan inventions (Adamska et al., 2010). In
choanoflagellates, which are unicellular eukaryotes considered
the closest known relatives to metazoans, there is no evidence
supporting the existence of any TCF/LEF protein and the only
found component of theWnt pathway is GSK3 (King et al., 2008).
In invertebrate genome, only one Tcf/Lef gene is detected
(reviewed in Hoppler and Waterman, 2014). One exception is
found in the phylum of Platyhelminthes, in which five Tcf/Lef
have been found in the genome of the flatworm Schmidtea
mediterranea. Only two of these Tcf/Lef have a putative
BCBD, which suggests a function in mediating Wnt
transcription (Brown et al., 2018).

Most of our knowledge about TCF/LEF activity in invertebrate
derives from studies performed in Drosophila and C. elegans. As
in vertebrate, their Tcf/Lef is converted from a transcriptional
repressor to activator by increasing nuclear levels of β-catenin.
DrosophilaArm/β-catenin promotes transcriptional activation by
binding Pangolin (Pan), the Tcf/Lef in fly (referred to as Tcf) (van
de Wetering et al., 1997). Consequently, co-repressors such as
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Gro are displaced, allowing Arm binding to transcriptional co-
activators such as Pygopus (Pygo) (Parker et al., 2002). As in
vertebrate, in the absence of Arm, Tcf acts as a transcriptional
repressor (Cavallo et al., 1998). Transcriptional repression appears to
be directly mediated by the Tcf/Arm interactions with a specific
DNA sequence motif (AGAWAW). The exchange of the
AGAWAW motif into a standard Tcf-binding site
(CCTTTGAT(G/C)) reversed the mode of regulation, resulting in
Wnt-mediated activation instead of repression. Whereas both
transcriptional activation and repression require binding of Arm
to the N-terminal part of Tcf, allosteric regulation has been proposed
to explain differences in Tcf/Lef transcriptional capacity. Indeed, Tcf
binding to different DNA motifs may allow its interaction with
distinct co-regulators, which subsequently controls its
transcriptional activity (Blauwkamp et al., 2008).

In C. elegans, loss-of-function phenotypes indicate a dual
regulatory mode for the Tcf/Lef termed POsterior Pharynx
defect (POP1). An interesting mechanism has been reported for
mesoderm and endoderm fate specification during embryogenesis
(Rocheleau et al., 1997; Thorpe et al., 1997). At the four-cells stage,
two sister cells, the anterior (MS) and the posterior (E) are fated to
respectively generate the mesoderm and the endoderm. Higher
levels of pop1 are detected in the MS blastomere (Lin et al., 1995),
where it represses the transcription of Wnt-responsive endoderm-
determining gene end1 through the recruitment of the histone
deacetylase HDA-1 and UNCoordinated (UNC)-37 (the
homologue of the Gro/TLE) (Calvo et al., 2001). In a POP1
mutant, both blastomeres adopt an endoderm-like fate.
However, in the E blastomere receiving Wnt signals, WRM1/
β-catenin binds to the N-terminal domain of POP1 protein and
decreases its nuclear levels, alleviating POP1 repressive activity,
which will then activate the expression of end1 and induce the
specification of the endodermal fate (Rocheleau et al., 1997; Shetty
et al., 2005). Another model proposes that the switch of POP1 from
a transcriptional repressor to an activator depends on its DNA-
binding site. The C-terminal tail of POP1 contains a C-clamp,
which enables POP1 to recognize another DNA motif (the Helper
site). When Wnt signaling is activated, β-catenin stabilizes the
interaction between the C-Clamp of POP1 and the Helper sites
found in the end1 sequence, which enables end1 transcription
(Bhambhani et al., 2014).

The vertebrate TCF/LEF are somewhat
specialized in transcriptional activation or
repression
In vertebrate, the founder members of the TCF/LEF family are
TCF7 (van de Wetering et al., 1991) and LEF1 (Travis et al.,
1991), initially identified as lymphocyte-regulators in mice. The
two other members, TCF7l1 and TCF7l2 have been characterized
few years later (Castrop et al., 1992).

TCF/LEF are largely expressed during vertebrate
embryogenesis in some overlapping but also distinct regions
including the central nervous system, suggesting a functional
redundancy of the TCF/LEF members. For instance, in mice,
Tcf7l2 and Lef1 transcripts are detected in the mesencephalon and
the diencephalon (Korinek et al., 1998). In zebrafish, tcf1 and lef1

expression overlaps in the tail bud, fin buds and paraxial
mesoderm (Veien et al., 2005). Observations made in lung
epithelial progenitors also supports redundant and additive
functions between the different TCF/LEF members (Gerner-
Mauro et al., 2020). However, genetic mutants lacking a single
Tcf/Lef gene, as well as double knockout (KO) mutants, exhibit
severe developmental alterations (van Genderen et al., 1994;
Galceran et al., 2000), indicating expanded and diversified
roles for each TCF/LEF. Based on these findings among
others, a specific activity as Wnt transcriptional activator and/
or repressor has been attributed to each TCF/LEF.

Lef1 and Tcf7l2 KO mice show reduced Wnt transcriptional
activity and are considered tomostly act as activators of the pathway
(Korinek et al., 1998; Kratochwil, 2002). Similarly, analysis in
zebrafish reveals activating functions for Tcf7, Lef1, and Tcf7l2.
Loss of Lef1, expressed in several embryonic tissues, specifically the
neural crest, decreases β-catenin activity (Dorsky et al., 1999, 2003).
Additional observations from Tcf7l2 mutants show that it
maintains proliferation of the intestinal epithelium through
activating Wnt target genes’ transcription (Muncan et al., 2007).

In contrast, numerous studies strongly argue that Tcf7l1
mediates Wnt repressive activity. Mice depleted of Tcf7l1 gene
phenocopy those with ectopic activation of Wnt signaling,
suffering severe forebrain abnormalities in addition to
perturbations in the midbrain and hindbrain (Merrill et al.,
2004). Similarly, the zebrafish genome contains two tcf7l1
genes, headless hdl/tcf7l1a (Kim et al., 2000) and tcf7l1b
(Dorsky et al., 2003), giving a total of five tcf/lef genes. The
two Tcf7l1 appear to normally act as transcriptional repressors.
hdl/tcf7l1a mutants exhibit truncated Tcf7l1 protein, which
cannot undergo nuclear translocation. Such mutants show
severe head defects including a lack of eyes, forebrain, and a
part of the midbrain, a hallmark of Wnt overactivation. This
phenotype could be rescued by overexpressing tcf7l1b, which in
this context also act as a negative regulator of the Wnt pathway
(Dorsky et al., 2003). Compared to zebrafish, the medaka genome
contains a single tcf7l1 gene. Medaka lacking tcf7l1 have the same
phenotype as the double-mutant zebrafish hdl/tcf7l1b (Doenz
et al., 2018).

Some of the most informative studies regarding
transcriptional activities of the four TCF/LEF members came
from investigating the development of Spemann organizer (SO)
in the amphibian Xenopus (also see next section). The early
Xenopus embryo expresses three maternally inherited tcf/lef
mRNAs: tcf7, tcf7l1 and tcf7l2 (Molenaar et al., 1998; Houston
et al., 2002; Roël et al., 2002). Tcf/Lef activities are not redundant
during mesoderm induction in amphibian. At late blastula/early
gastrula stages, maternally encoded tcf7l1 represses the dorsal
organizer genes’ expression (Houston et al., 2002), whereas both
tcf7 and tcf7l2 act as transcriptional activators of SO genes
(Standley et al., 2006). In this developmental context, whereas
an activating form of tcf7l1 can rescue the Tcf7-morphant
phenotype, only a constitutive repressor form of tcf7l1 rescues
the Tcf7l1-morphant phenotype (Liu et al., 2005). Taken
together, these observations indicate that during early Xenopus
mesoderm induction, Tcf7l1 is mostly required for
transcriptional repression, whereas Tcf7 and Tcf7l2 mostly
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mediate transcriptional activation. Interestingly, lef1 transcripts
are first detected after the mid-blastula transition (MBT)
(Molenaar et al., 1998), and during mesoderm induction, Lef1
transcriptional activity appears to be redundant with that of Tcf7
(Liu et al., 2005).

The Interaction Between TCF/LEF and Gro/
TLE: A Partnership at the Core of TCF
Inhibitory Activity
All the TCF/LEFmembers need to bind with nuclear co-factors to
regulate target genes’ transcription. A key insight into the
mechanism of Wnt transcriptional inhibition mediated by the
TCF was the finding that they can directly bind to members of the
Gro/TLE family of transcriptional co-repressors.

Structure and Interactions of Gro/TLE
Co-repressors
Gro/TLE are evolutionary conserved nuclear proteins. The
invertebrate genome encodes a single member: Gro, initially
identified in Drosophila, and UNC-37 in C. elegans, both of
which antagonize signaling by Wnt (Cavallo et al., 1998; Calvo
et al., 2001). Four members have been identified in human,
known as TLE1-4, and in mice, named the Groucho-Related
Genes (GRG1-4) (reviewed in Jennings and Ish-Horowicz, 2008;
Turki-Judeh and Courey, 2012). In mice, a fifth family member
(GRG-5) has also been identified as a gene encoding a shorter
variant. GRG-5 is thought to act as a naturally occurring
dominant negative (Table 1) (Brantjes, 2001; Wang et al., 2004).

A conserved structural organization comprising five domains
characterizes Gro/TLE proteins (Figure 2B). Lacking a DNA-
binding domain, Gro/TLE rely on their interaction with
transcription factors for their specific recognition of promoter
and/or enhancer DNA sequences. The highly conserved
N-terminal glutamine-rich (Q) domain contains two motifs
termed the amphipathic α-helices (AH1 and AH2), which
mediate both Gro/TLE homo-oligomerization and their
interactions with various transcription factors, including TCF/LEF
(reviewed in Jennings and Ish-Horowicz, 2008). The central portion
of Gro/TLE contains three less well-conserved domains. Gro/TLE
was found to bind to the Drosophila Hdac known as Rpd3 (Chen
et al., 1999), and with the mammalian HDAC1 an interaction
mediated by the glycine (G) and proline (P)-rich domain (GP)
(Chen et al., 1999; Arce et al., 2009). Second, the central (CcN)
domain which includes a NLS, and third, a Serine (S) Proline (P)-
rich domain (SP) generally involved in repression. The CcN and SP
domains contain phosphorylation sites, which can modulate Gro/
TLE-mediated repression (reviewed in Jennings and Ish-Horowicz,
2008). Of note, GRG5 contains the TCF/LEF binding domain and a
GP domain that carries mutations impeding its ability to interact
with HDAC (Brantjes, 2001). At their C-terminal end, Gro/TLE
have a four tryptophan-aspartic acid repeat domain (WD), which is
highly conserved across evolution. The WD motif is involved in
nucleosome binding and condensation (Sekiya and Zaret, 2007), and
mediates Gro/TLE interactions with repressor proteins. The WD
motif of Gro/TLE interacts with two distinct peptidic motifs, the

Engrailed Homology-1 (EH1)motif, and theWRPW (Trp-Arg-Pro-
Trp) motif.

The EH1 motif is a Phenylalanine/Isoleucine/Leucine (FIL)-rich
domain (FxIxxIL), required for transcriptional repression in vitro
and in vivo (Smith and Jaynes, 1996;Muhr et al., 2001; Jennings et al.,
2006). The EH1 motif is found in a large number of HD-containing
TFs involved in neuronal specification such as Gastrulation Brain
homeobox 2 (GBX2), Orthodenticle homeobox 2 (OTX2)
(Heimbucher et al., 2007), Forkhead box (FOX) family of TFs
(Yaklichkin et al., 2007), Engrailed (EN) (Jimenez et al., 1997)
and BARHL that are notably the only Gro/TLE partners
containing two EH1 domains (Offner et al., 2005). The TF
Dorsal is involved in DV axis patterning in Drosophila. Dorsal
was found to physically interact with Gro. Interestingly, in embryos
lacking Gro, Dorsal functions as a transcriptional activator rather
than as a repressor (Dubnicoff et al., 1997). It has been demonstrated
that Gro interacts with a motif with partial homology to the EH1,
located in the C-terminal part of Dorsal (Flores-Saaib et al., 2001).
This interaction is weak and is stabilized by the presence of
additional Gro-binding repressors (Valentine et al., 1998).

The second Gro/TLE-interacting motif is the WRPW present in
basic-helix-loop-helix (bHLH) proteins including the Hairy/
Enhancer of Split (E(spl))/HES proteins, transcriptional repressors
that function as downstream targets of activated Notch receptors
(Grbavec et al., 1998) (reviewed in Cinnamon and Paroush, 2008;
Turki-Judeh and Courey, 2012). In the absence of Notch signaling,
Gro/TLE is recruited via Hairless to a complex containing
Suppressor of Hairless (Su(H)) and CtBP, which represses Notch
target genes, including E(spl). Upon activation of Notch signaling,
the Notch intracellular domain (NICD) enters the nucleus, displaces
the Gro-containing complex, recruits Mastermind (Mam) on Su(H)
an interaction which further results in the transcriptional activation
of E(spl). E(spl) encoded factors interact with Gro/TLE to repress
proneural genes (reviewed in Cinnamon and Paroush, 2008; Turki-
Judeh and Courey, 2012). In Drosophila, and mammals association
ofGro/TLE to bHLHproteins is required in cell fate decisions during
tissue development including neurogenesis, segmentation, sex
determination and myogenesis (Paroush, 1994; Jimenez et al.,
1997). The WRPW motif has been demonstrated to be a
functional transcriptional repression domain. It is sufficient to
confer active repression to Hairy-related proteins or a
heterologous DNA-binding protein through its ability to recruit
Gro/TLE to target gene promoters (Fisher et al., 1996). Similar to
Dorsal, in Drosophila, the Runx family member Lozenge that
contains a WRPW motif exhibit low affinity for Gro/TLE and
requires the Cut HD protein to form a stable repressive complex
(Canon, 2003).

Gro/TLE Acts as Co-repressor in the
Presence and Absence of β-catenin
The Gro/TLE-binding site in the central portion of TCF/LEF
extends and overlaps the β-catenin binding site (Daniels and
Weis, 2005). Therefore, association of Gro/TLE with TCF/LEF
counteracts the TCF/β-catenin transactivation activity (Cavallo
et al., 1998; Roose et al., 1998; Brantjes, 2001). Together with
other observations, these data lead to the generally accepted
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model where β-catenin activates Wnt-responsive genes by simply
displacing Gro/TLE. Whereas recent studies provide arguments
for a more complex regulation of Wnt-driven transcriptional
switch (reviewed in Ramakrishnan et al., 2018), a large spectrum
of genes are regulated by both β-catenin and Gro/TLE through
their respective interactions with TCF/LEF. Chromatin
immunoprecipitation sequencing (ChIP-seq) data from
Xenopus embryos provide over 80% correlation between
β-catenin and Gro/TLE-binding sites (Nakamura et al., 2016).
In mouse hair follicle stem cells, more than half the genes
occupied by TCF/LEF are also occupied by Gro/TLE (Lien
et al., 2014).

The way Gro/TLE mediate transcriptional repression is still a
matter of debate. Recent observations indicate that Gro/TLE
could act either short distance via modulating RNA-
polymerase II (RNA-Pol II) activity, and/or long distance via
chromatin remodeling. ChIP-seq analysis combined to RNA-seq
data performed in Drosophila identified the Gro/TLE direct
targets. Such analysis suggested that Gro/TLE doesn’t affect
the recruitment of RNA-Pol II to the transcription start sites
but further increases RNA-Pol II pausing time (Kaul et al., 2014).
Other studies indicate that in some context, Tcf/Gro complex
promotes compaction of the chromatin when the canonical Wnt
pathway is switched off. As previously mentioned, Gro/TLE
interact with Hdac. In the presence of an Hdac-inhibitor, Wnt
target genes are de-repressed (Billin et al., 2000). It is therefore
possible that Gro/TLE interaction with Hdac drives long distance,
transmittable changes in the chromatin state. Other studies argue
that Hdac recruitment does not account for full co-repressor
activity, suggesting that another Gro/TLE-dependent silencing
could occur via tetramerization of Gro on a Tcf7l1/Gro complex,
thereby promoting structural transitions of chromatin leading to
transcriptional repression (Sekiya and Zaret, 2007;
Chodaparambil et al., 2014).

The Gro/TLE and TCF/LEF interaction(s) in
Early Axis Specification
In Xenopus embryos, injection of gro represses transcription of
Wnt target genes (Roose et al., 1998), and mutations in Gro/TLE-
binding sites of tcf7l1 reduces Tcf7l1 repressive activity (Liu et al.,
2005; Tsuji and Hashimoto, 2005). Analysis performed on the
Xenopus siamois (sia) promoter demonstrated that Tcf/Lef-
binding sites mediate both basal repression and β-catenin-
dependent activation at the W-CRM (Brannon et al., 1997;
Fan et al., 1998). More recently, large-scale analysis
demonstrates that in the dorsal blastomeres, Gro/TLE binds to
the same W-CRM as β-catenin (Yasuoka et al., 2014; Nakamura
and Hoppler, 2017; Afouda et al., 2020). In this context a few lines
of evidence indicate that β-catenin activates Wnt-responsive
genes by displacing the whole Tcf7l1/Gro repressor complex
and replacing it with an activator complex, containing
β-catenin in association with Tcf7 (Chambers et al., 2017)
(reviewed in Cinnamon et al., 2008; Sokol, 2011;
Ramakrishnan et al., 2018)

In conclusion, the mechanisms by which Gro/TLE mediate
transcriptional repression in the presence and/or absence of TCF/

LEF are still not fully understood. To add complexity, both TCF/
LEF and Gro/TLE proteins are targets for developmental signals,
which influence the affinity of Gro/TLE to TCF/LEF and/or
W-CRM. Thereby, the developmental and cellular contexts in
which Gro/TLE repression causes epigenetic regulations via the
binding of HDAC by Gro/TLE as well as the exact role(s) of such
transcriptomic regulations during development are still poorly
understood.

TCF/LEF AND BARHL2 IN THE
DEVELOPMENTAL DYNAMICS OF
SPEMANN ORGANIZER (SO)

Both Tcf/Lef Repressor and Activator
Functions Are Required for Normal SO
Development
One of the earliest, well-documented, and evolutionarily conserved
functions of Wnt/β-catenin signaling is the induction of the
blastopore lip organizer. The discovery made by Spemann and
Mangold in 1924 has revolutionized our understanding of
embryonic axis formation. In their classic transplantation
experiment in newt, the authors showed that a mesodermal
region - the dorsal lip of the blastopore - of a gastrula embryo
induces a secondary axis including a complete nervous system
when grafted ventrally (reviewed in De Robertis et al., 2000). This
primary embryonic organizing center known as SO determines the
dorso-ventral (DV) body axis. Requirement of canonical Wnt
signaling for axis formation has been demonstrated following
overexpression of Wnt signaling components. For instance, in
Xenopus, wnt1 (McMahon and Moon, 1989), wnt8 (Sokol et al.,
1991), and β-catenin (McCrea et al., 1993) can induce a complete
dorsal axis when overexpressed ventrally. A similar phenotype has
been observed when two Wnt inhibitors are depleted: Tcf7l1
(Merrill et al., 2004) and Axin2 (Zeng et al., 1997). More
recently, it was shown in non-bilaterian metazoan species that
the same molecular mechanism was used for inducing secondary
axes as in chordates: the Wnt/β-catenin signaling, indeed
demonstrating that the emergence of the Wnt/β-catenin driven
blastopore-associated axial organizer predates the cnidarian-
bilaterian split, which occurred over 600 million years ago
(Kraus et al., 2016).

Investigations from the past decades lead to the current model
of SO development. Before initiation of zygotic transcription,
Tcf7l1 represses gene transcription throughout the embryo
(Figure 3) (Molenaar et al., 1996; Houston et al., 2002).
Accumulation and stabilization of β-catenin by maternal
determinants in the nucleus of the dorsal cells, inhibit Tcf7l1
repressors’ activity (Schneider et al., 1996; Larabell et al., 1997),
and activate the transcription of sia and siamois homologue 2
(twin) (Lemaire et al., 1995; Carnac et al., 1996), which in turn
activate the transcription of 123 genes, including goosecoid (gsc)
and chordin (chd), leading to the formation of the SO territory. All
genes de-repressed by β-catenin in this region have been
identified (Ding et al., 2017b). sia and twin are directly
regulated by binding Tcf/Lef to their promoters, and poised
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for transcriptional activation by β-catenin before the Mid blastula
transition (MBT) (Brannon et al., 1997; Laurent et al., 1997; Fan
et al., 1998; Blythe et al., 2010). In the absence of β-catenin,
Tcf7l1, together with Gro/Tle, inhibit sia and twin transcription
(Roose et al., 1998). More recently, a thorough transcriptomic
analysis, combined with genome-wide β-catenin association
using ChIP-seq, identified stage-specific direct Wnt target
genes. The direct comparison of genome-wide occupancy of
β-catenin with a stage-matched Wnt-regulated transcriptome
reveals that only a subset of β-catenin-bound genomic loci are

transcriptionally regulated by Wnt signaling. The differences in
classes of direct Wnt target genes appear to be context specific,
and dependent on the presence of co-factors such as FoxH1,
Nodal/TGFβ signaling (Afouda et al., 2020), BoneMorphogenetic
Protein (BMP), and FGF signaling (Nakamura et al., 2016). These
studies reveal that the cellular transcriptional responses to Wnt
signal are highly dependent on the context, and thereby on the
tissue, the developmental steps, the presence of co-factors and/or
activation of co-signaling pathways (reviewed in Nakamura and
Hoppler, 2017).

FIGURE 3 | Barhl2 switches off early β-catenin response during establishment of Spemann organizer in Xenopus. (A) Maternally encoded Tcf7l1 represses Wnt
target genes’ transcription (e.g., siamois-1 (sia1)) throughout the entire embryo except dorsally in the presumptive organizer territory starting at stage 7. (B) Dorsally
(green area), nuclear β-catenin (β-cat) level locally increases allowing its interaction with T-Cell Factor (probably mostly Tcf7 and Tcf7l2), and the initiation of sia1
transcription. Between stage 8 and 9, Sia1, together with β-cat, induce expression of the dorsal early β-cat target signature including goosecoid (gsc) and chordin
(chd) leading to the formation of Spemann organizer (SO). Evidence argues that around the same time, sia1 induces barhl2 transcription. Barhl2 being a part of a
repressive complex together with Groucho-4 (Gro4), Tcf7l1, and Histone deacetylase-1 (Hdac1), switches off the early β-cat dorsal signature via an inherited epigenetic
regulatory mode thereby limiting SO establishment in time and/or space. SO gives rise to the prechordal plate and the notochord, two tissues that send planar and
vertical signals to the overlying prospective neuroepithelium. At stage 10, signals secreted by the SO, including Bone Morphogenetic Protein (Bmp) inhibitors and Wnt
signals, enable initiation of the dorsal developmental program: The first blastopore lip cells invaginating into the embryo will give rise to the prechordal plate, followed by
the cells that will generate the notochord. Together, the prechordal plate, and the notochord, will send planar and vertical signals that both induce and pattern the
overlying neuroepithelium and thereby constitute a secondary organizer (the axial organizer). The prechordal plate plays a major role in inducing and patterning of the
anterior neural plate, generating the forebrain and midbrain. The notochord participates in formation of the Sonic hedgehog (Shh)-secreting floor plate and induces and
patterns the posterior neural plate (reviewed in Stern, 2002;Wessely and De Robertis, 2002; Niehrs, 2004;Wilson and Houart, 2004; Hoch et al., 2009; Ozair et al., 2013;
Brafman and Willert, 2017). V, ventral; D, dorsal; BP, blastopore; NP, neuroepithelium; A, Animal pole; V, Vegetal pole.
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The Evolutionary Conserved BARHL
Proteins Interact Independently With Both
Gro/TLE and TCF/LEF
The Bar-class HD, BarH1 and BarH2, are HD-containing
transcription factors initially discovered in Drosophila (Kojima
et al., 1991; Higashijima et al., 1992). Barhl genes have
subsequently been identified in fish (zebrafish, medaka),
amphibian (Xenopus), birds (chicken), mammals (mouse,
human), nematode (C. elegans) and S. kowalevskii among
others (Lowe et al., 2003; Pani et al., 2012; Yao et al., 2016).
Phylogenetic analysis shows that BARHL1 and BARHL2 proteins
are extremely well conserved in the chordate phylum and are
predominantly expressed in the central nervous system (CNS),
where their expression patterns are distinct but partially
overlapping (Figure 4) (Bulfone, 2000; Patterson et al., 2000;
Offner et al., 2005; Colombo et al., 2006) (reviewed in
Schuhmacher et al., 2011). BARHL1 and BARHL2 are
involved in diverse processes such as the acquisition of a
neural identity in the retina, specification of commissural
neurons in the spinal cord and cell migration in the
cerebellum and the hindbrain (Chellappa et al., 2008; Ding
et al., 2009; Jusuf et al., 2012) (reviewed in Reig et al., 2007).

BARHL proteins are characterized by a conserved HD
sequence of about 60 amino acids, which forms a three-
dimensional helix-loop-helix structure required for their
fixation to DNA (Figures 4A,B) (Gehring et al., 1994). Unlike
other homeoproteins, BARHLs contain a tyrosine (Y) at site 49 as
opposed to phenylalanine (F) at this site of the HD. Whilst the
biological significance behind this substitution is unknown; it is
thought that there could be a difference in the specificity of the
DNA recognition motif. BARHL sequence also contains an NLS,
and at their amino-terminal region, two EH1 domains. Sequence
comparison reveals a conserved domain with an unknown
function at the C-terminal part of BARHL proteins.

Biochemical experiments performed in both mammalian cells
and Xenopus embryo validate the physical interaction between
BARHL2 and Gro/TLE. Surprisingly, BARHL2 was found to
interact with TCF/LEF, more specifically TCF7l1, and
dramatically enhance the ability of TCF7l1 to co-
immunoprecipitate Gro4/TLE4, at least in mammalian cells.
This interaction is independent of TCF7L1 binding to Gro/
TLE. Functional observations confirm that Barhl2 enhances
the capacity of to repress transcription, and abolishes the
β-catenin-driven activation of TCF/LEF target genes
(Figure 1C) (Sena et al., 2019).

Barhl2 Normally Limits SO Formation
Through Enhancing the Ability of Tcf to
Repress Transcription
In Xenopus, barhl2 is not expressed maternally. Whereas
W-CRM have been identified in the barhl2 loci (Nakamura
et al., 2016), barhl2 is neither part of the early dorsal
β-catenin signature, nor induced by overexpression of RNA
coding for wnt8b. It is however expressed following the
initiation of early β-catenin induction, and its expression

increases following sia1 mRNA overexpression (Owens et al.,
2016; Session et al., 2016; Ding et al., 2017b; Sena et al., 2019),
suggesting that at these developmental stages, barhl2
transcription is under the control of both sia1 and β-catenin
(Figure 3).

In Xenopus, overexpression of barhl2 generates massive
developmental defects including loss of the SO territory and
all anterior structures, including the cement gland and the head.
In contrast, Barhl2 depletion expands both the organizer territory
and its signaling activity, as detected through a massive increase
in neuroepithelium size, and patterning alterations (Offner et al.,
2005; Sena et al., 2019). Experimental evidence demonstrates that
these developmental defects are direct consequences of Barhl2
normally enhancing Tcf7l1-mediated transcriptional repression.
These observations lead to a model in which stabilization of
β-catenin first de-represses Tcf7l1, and then initiates the dorsal
developmental program through activating Tcf7 and/or Tcf7l1.
The presence of Barhl2 locks Tcf7l1 and/or Tcf7 in an inhibitory
state, and consequently limits induction of the dorsal
development program. In this way Barhl2 participates in
progression of the blastula development, and normally limits
SO formation in time and/or in space.

Analysis of Barhl2 proteins that are mutated either in their
ability to interact with DNA, or to bind Gro/TLE, indicate that its
normal role requires both. As previously stated, Gro/TLE can
silence target genes by tetramerizing on a Tcf7l1-Gro complex
(Chen et al., 1999; Chodaparambil et al., 2014). It is therefore
possible that Barhl2 enhances the binding of the complex to
histones, associated with the long-term silencing of Tcf/Lef target
genes through increasing Gro/TLE stoichiometry in a protein
complex containing Tcf7l1. Moreover, the presence of Hdac1 is
detected in a protein complex containing Barhl2, Tcf7l1 and
Gro4. Hdac1 depletion promotes SO development. In parallel,
Barhl2 depletion promotes key organizer genes’ acetylation.
Thereby, Hdac1 activity could contribute to the Barhl2-
mediated repression of Wnt target genes. ChIP-qPCR
observations on the promoter of gsc indicate that both Barhl2
and Tcf7l1 can interact with the same Tcf-W-CRM in the absence
of an adjacent Barhl2-W-CRM.

Overall, these observations are consistent with Barhl2 acting
over long distance via its specific binding on DNA, perhaps on
super-enhancers as previously suggested (Lin et al., 2016), and
inducing long-term silencing of SO target genes maybe viaHdac1
activity and/or direct interaction with chromatin. In this way
Barhl2 irreversibly locks cells in a SO identity.

IN THE DIENCEPHALIC PRIMORDIUM,
BARHL2 LIMITS WNT/TCF ACTIVITY

Patterning and Growth of the Diencephalic
Territory Requires High Levels of Wnt
Signals and the Presence of the Morphogen
Sonic HedgeHog (Shh)
The forebrain (telencephalon and diencephalon) is derived
from the most anterior part of the neuroepithelium: the
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FIGURE 4 | BARHL proteins are highly conserved through evolution. (A) Scheme of BARHL1 and BARHL2 proteins. Both proteins share high similarities in their aa
sequences. The most conserved regions are the two Engrailed Homology (EH1) domains shown in yellow and green, the homeodomain (HD) shown in brown, the
Nuclear Localisation Signal (NLS) shown in violet, and a functionally uncharacterized C-terminal region. (B)Multiple sequence alignment of BARHL proteins. Shown is a
representative selection of some BARHL2 protein sequences in vertebrate including frog Xenopus laevis (NP_001082021.1), fish Danio rerio (NP_991303.1),
mouse Mus musculus (NP_001005477.1) and human Homo sapiens (NP_064447.1) among several other vertebrate sharing the same amino acid (aa) sequences,
together with the human BARHL1 protein sequence (NP_064448.1), in addition to the invertebrate roundworm Caenorhabditis elegans Bar homeodomain CEH-30
(NP_508524.2) and hemichordate acornworm Saccoglossus Kowalevskii Barhl (NP_001158386.1). Mouse MBH1 (mammalian BarH1) is referred to as BARHL2.

(Continued )
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prosencephalic neural plate. Fate mapping analysis revealed
that the telencephalon emerges from the most anterior part of
the neural plate, whereas the diencephalon is formed within
the caudal forebrain.Whereas inhibition of Wnt pathway is
strictly necessary for telencephalic development (Glinka et al.,
1998) (reviewed in Wilson and Houart, 2004), growth and
patterning of the diencephalic territories (thalamus and
epithalamus) require high levels of Wnt. While the Wnt1 or
Wnt3A KO mice lose both the midbrain and hippocampal
areas, double Wnt3A/Wnt1 mutant embryos exhibit an
additional reduction in the diencephalon, caudal hindbrain,
and rostral spinal cord (Thomas and Capecchi, 1990; Lee et al.,
2000). Conversely, ectopic expression of Wnt1 or Wnt3A
induces the enlargement of the neural tube along the DV
axis, without altering the cellular identities of diencephalic
neurons (Megason and McMahon, 2002; Panhuysen et al.,
2004). Zebrafishmasterblind (mbl)-mutant embryos carrying a
mutation in the GSK3-binding domain of Axin1, which
constitutively activates Wnt signaling, show a net reduction
in the telencephalic and retinal territories in favor of the
diencephalic territory (Heisenberg, 2001). Indeed, the
diencephalic primordium, more specifically the diencephalic
alar and roof plates, express Wnt ligands such as Wnt3,
Wnt3A, Wnt8B, Wnt4 and Wnt2B (Colombo et al., 2006;
Juraver-Geslin et al., 2011, 2014; Schuhmacher et al., 2011).
Wnt target genes’ expression as well as the Wnt signaling
machinery are enriched in the thalamus of all vertebrate
analyzed so far (Jones and Rubenstein, 2004; Shimogori
et al., 2004; Quinlan et al., 2009; Mattes et al., 2012).

Besides its role in fate determination, Wnt promotes cell-
cycle progression, and cell growth. Its ability to modulate the
activity of GSK3β promotes a general increase in protein
stability, specifically that of β-catenin (Taelman et al.,
2010), and through activation of Target of Rapamycin
(TOR) pathway, it stimulates growth and protein synthesis.
β-catenin nuclear accumulation induces TCF/LEF-mediated
expression of the proto-oncogene c-Myc (He et al., 1998),
which encodes a bHLH leucine zipper (bHLHZip) TF that
has two distinct roles in the G1 progression. On one hand, it
increases the expression of CyclinD1 and CyclinD2 that
promotes progression from the G1 to the S phase; on the
other, it represses the cell cycle inhibitors p27Kip1 and
p21Cip1, thereby promoting cell cycle progression, and
enhancing cell proliferation (reviewed in Juraver-Geslin and
Durand, 2015).

The Sonic hedgehog (Shh)-secreting Mid-Diencephalic
Organizer (MDO), also known as the Zona Limitans
Intrathalamica (zli), develops within the diencephalic
primordium (Larsen et al., 2001). Within the thalamic complex,
Shh secreted by zli cells participates in the survival, growth, and
patterning of neuronal progenitor subpopulations (Hashimoto-Torii
et al., 2003; Scholpp et al., 2006, 2007; Vieira and Martinez, 2006).
Mice lacking Shh show severe defects in most of the diencephalic
territory (Chiang et al., 1996; Ishibashi and McMahon, 2002).
Investigation of the chick neural tube growth revealed an
epistatic relationship between Shh and Wnt in progression of the
G1 cell cycle phase: Shh permits transcriptional activation of Tcf7l1
and Tcf7l2, which then induces β-catenin dependent expression of
Cyclin-D1 (Alvarez-Medina et al., 2008). Phenotypic observations of
Shhmutated mice suggest a conservation of these interactions in the
diencephalon. Such mice develop a reduced diencephalon with
decreased Tcf7l2 expression (Ishibashi and McMahon, 2002).

In the Diencephalon, Barhl2 Acts as a Brake
on Progenitors’ Proliferation by Limiting
Wnt Activity
Shh and Wnt synergistically promote proliferation in the alar
diencephalon, whereas cell-cycle analysis in chicken and mice
reported slow proliferation kinetics in the diencephalon
compared to its neighboring territories (reviewed in
Martínez and Puelles, 2000). Moreover, diencephalic
changing patterns observed upon manipulation of Wnt
activity appear to be primarily due to altered fate
specification rather than changes in proliferation (reviewed
inWilson and Houart, 2004). barhl2 transcripts are detected in
the diencephalic histogenic field at late gastrula/early neurula
stages in Xenopus (Offner et al., 2005; Juraver-Geslin et al.,
2011), zebrafish (Staudt and Houart, 2007), and mice (Mo
et al., 2004). In the diencephalic anlage, Barhl2 acts upstream
of Shh in establishment of the zli and its absence generates
massive defects specifically in the patterning of the alar
diencephalon (Juraver-Geslin et al., 2014; Yao et al., 2016;
Ding et al., 2017a) (reviewed in Sena et al., 2016). Besides its
role in zli formation, Barhl2 normally limits diencephalic
progenitors’ proliferation: Barhl2-depleted Xenopus embryos
exhibit both a dramatic hyperplasia, and a neuroepithelial
architectural disorganization in the caudal forebrain
(Juraver-Geslin et al., 2011, 2014). In depth analysis of
Barhl2-depleted embryos revealed an excessive Wnt

FIGURE 4 | Alignments are generated by ClustalW. Identical aa within the conserved regions are highlighted. EH1 domains (yellow and green) are highly conserved in
vertebrate. However, only the second EH1 domain (green) is found in roundworm and acornworm. The most conserved region between vertebrate and invertebrate is
the HD (brown), preceded by a NLS (purple). Other conserved aa, specifically those located on the C terminus, haven’t been functionally characterized and are depicted
in grey. The HD of BARHL proteins contains a tyrosine (Y) at site 49 (red asterisk), as opposed to phenylalanine (F49) in other homeoproteins. Below the protein
sequences is a key denoting conserved sequence (*), conservative mutations (:), and semi-conservative mutations (.). Phylogenetic trees showing evolutionary distance
between (C) the BARHL protein sequences in invertebrate and vertebrate, and (D) a larger selection of vertebrate BARHL2 protein sequences. The Trees were
constructed by NGPhylogeny.fr (Lemoine et al., 2019) using FastME2.0 program which provides distance algorithms to infer phylogenies based on the balanced
minimum evolution approach. The trees are drawn to scale, which represents the number of differences between sequences through evolution.Drosophila melanogaster
(NP_001259642.1) shows several divergent regions: fly BarH1 (mammalian BARHL2) protein carries the first EH1 domain and HD but has several additional aa found on
the N-terminal and C-terminal parts. BARHL2 protein sequence is similar in all higher vertebrate (less than 2% difference).
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transcriptional activation that stimulates neuroepithelial cell
proliferation and induces defects in β-catenin intracellular
localization together with an upregulation of axin2 and
cyclinD1. Measurement of the relative velocity of the cell
cycle in Barhl2-depleted embryos reveals a shortening of the
cell cycle length (6 versus 8 h). As the length of the S-phase in
these cells remains unchanged (1.5 h), and CyclinD1 is part of
the G1-S cell cycle checkpoint, Barhl2 probably acts on the
length of G1 phase (Juraver-Geslin et al., 2011).

Interestingly, in the developing diencephalon, a non-apoptotic
function of the effector caspase, Caspase-3, limits neuroepithelial cell
proliferation by inhibiting the activation of Tcf/Lef by the β-catenin
(Juraver-Geslin et al., 2011). In this context, Caspase-3 acts either in
parallel, or downstream of Barhl2, and its activity does not depend on
its apoptosis-effector function. In addition, in the neuroepithelium,
Caspase-7 acts as the executioner Caspase leading to cell death (Sena
et al., 2020). Indeed, how Barhl2 regulates Caspase-3 non-apoptotic
activity in Xenopus and limits β-catenin levels and stability in the
developing diencephalon is unknown.

In conclusion, in the caudal forebrain, Barhl2 acts as a brake
on Wnt transcriptional activation, probably through the
stabilization of the inhibitory Tcf/Gro complex. Barhl2 could
increase the length of diencephalic progenitors’G1 phase, thereby
modulating neuronal progenitors’ response to extracellular
signals, including those of Wnt and Shh.

Wnt Signals Influence Diencephalic Barhl2
Expression
What are the extracellular signals influencing Barhl2 expression and
activity in the caudal forebrain? Wnt3a is expressed in E9.5 mice
(Louvi et al., 2007) at the onset of Barhl2 expression in the same
territories. Pioneer studies performed inDrosophila presented thewg
pathway as a positive regulator of barhl2 expression in the notum.
barhl2 expression was lost in clones mutated for Arm (reviewed in
Reig et al., 2007). Conversely, the expression of a constitutively active
form of arm induces an ectopic expression of barhl2 in the pre-
scrutum, associated with a decrease of wg (Sato et al., 1999). In
Xenopus, RNA-sequencing analysis revealed that both morpholino-
mediated depletion of Tcf7l1, and pharmacological activation of
Wnt canonical signaling, induce an increase in barhl2 transcripts
(Wills and Baker, 2015; Stevens et al., 2017).

Taken together, these observations suggest a model where
Barhl2 could be a direct, or an indirect, target of the canonical
Wnt signaling pathway. In return, Barhl2 would establish a
negative feedback loop that limits Wnt’ activity.

OTHER REGULATORS OF TCF/LEF-Gro/
TLE TRANSCRIPTIONAL ACTIVITY

Transcription Factors Binding to Tcf7l1
Influence Its Repressor Activity in a Positive
And/Or Negative Way
Beside Barhl2, other co-repressors influence Tcf7l1 inhibitory
activity. Indeed, cDNA expression screens performed in

mammalian cells, combined with functional analysis in
Xenopus, identified 45 inducers and 96 inhibitors of Tcf/Lef
activity (Freeman et al., 2015). Co-repressors’ modes of action
are diverse, sometimes divergent between vertebrate and
invertebrate, and involve protein–protein interactions, changes
in Tcf7l1 affinity for Wnt-target gene promoters, recruitment of
co-repressors or co-activators, modulation of protein stability,
and nuclear translocation.

CtBP, first described in Xenopus and later in rodents and
human, binds to the C-terminal part of Tcf7l1-E and Tcf7l2-E
isoforms. In fly, CtBP appears to be required for both
activation of some Wnt targets and the repression of
others, in parallel to, and independently of Tcf/Lef (Fang
et al., 2006). However, the vertebrate CtBP acts as a co-factor
for Tcf7l1, enhancing its repressor activity (Brannon et al.,
1999; Xia et al., 2011). Lack of both Gro/TLE-binding domain
and of the C-terminal region of Tcf7l1 leads to target genes’
transcriptional activation (Gradl et al., 2002). Notably,
during Xenopus SO formation, the C-terminal part of
Tcf7l1, which recruits the CtBP, is not required (Liu et al.,
2005). In colorectal cancer cells, TCF7l1 recruits both CtBP
and HDAC1 to repress expression of the Wnt antagonist
DICKKOPF4 (DKK4) (Valenta et al., 2003; Eshelman et al.,
2017). Besides CtBP, Tcf7l1 directly interacts with the
methyl-CpG-dependent transcriptional repressor Kaiso in
Xenopus. This interaction results in their mutual
disengagement from the respective DNA-binding sites in
such a way that Tcf7l1 can be inhibited following Kaiso
overexpression both in cell lines, and Xenopus embryos
(Daniel and Reynolds, 1999). Kaiso cooperates with Tcf7l1
to repress β-catenin target genes such as sia, through
epigenetic regulation (Park et al., 2005). The interaction of
Kaiso with Tcf7l1 depends on Kaiso zinc-finger domains, and
on the HMG-box DNA-binding domain of Tcf/Lef factors
(Ruzov et al., 2009). The LIM (Lin-11, Islet-1, and Mec-3; the
three original members of the family) protein HIC-5
[Hydrogen Peroxide-Induced Clone 5, also termed ARA-55
(Androgen Receptor Activator of 55 kDa)] has been also
identified as a binding partner to Tcf7l1 and Tcf7l2.
Overexpression of HIC-5 acts as a negative regulator of a
subset of Tcf/Lef family members, and can suppress
secondary axis formation in Xenopus (Ghogomu et al.,
2006). Important modulators of TCF/LEF activity are also
found in the family of SOX (SRY-related HMG box) factors
containing over 20 members (reviewed in Kormish et al.,
2009; Bernard and Harley, 2010). In both mammalian cells
and Xenopus, SOX17 and SOX4 directly bind to the HMG-
box of TCF7l1, TCF7l2 and LEF1, an interaction that
modulates the stability of the TCF/β-catenin complex
(Sinner et al., 2007). More recently, SOX17 was shown to
functionally cooperate with Wnt/β-catenin to specify an
endodermal fate while repressing the meso-ectodermal
fate. In this context, SOX17 and β-catenin co-occupy
hundreds of key enhancers. In some cases, SOX17 and
β-catenin synergistically activate transcription, apparently
independently of TCF/LEF, whereas on other enhancers,
SOX17 represses β-catenin/TCF-mediated transcription to
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spatially restrict gene expression domains. In this context,
SOX17 acts as a tissue-specific modifier of the TCF/LEF
responses (Mukherjee et al., 2021). Another modulator of
the canonical Wnt signaling is SOX9, which was found to
associate with β-catenin and further inhibit its activity (Topol
et al., 2009). Further observations show that SOX9 proteins,
together with Kru€ppel-like factor 4 (KLF4), suppress the Wnt-
induced transcription through competing with TCF/LEF for the
same β-catenin promoter sites, inhibiting the β-catenin-TCF/LEF

(more specifically TCF7l2) binding and transcriptional activity
(Sellak et al., 2012).

Post-Translational Modifications Influence
Both TCF/LEF and Gro/TLE Interactions
Besides the spatial and temporal distribution of repressor
partners, PTM, including ubiquitination and/or
phosphorylation of TCF/LEF and Gro/TLE, influence

FIGURE 5 | Some Post-Translational Modifications modulating the transcriptional activities of TCF7l1 and Gro/TLE. Post-translational modifications (PTM)
including phosphorylation and/or ubiquitination of (A) T-cell factor-like-1 (TCF7l1) and (B) Groucho/Transducin-like enhancer of split (Gro/TLE) influence
positively, or negatively, the transcriptional output of TCF7l1/Gro complex. (A) (a) TCF7l1 bound onW-CRMwith co-repressors normally limits transcription. (b)
The Homeodomain-Interacting Protein Kinase-2 (HIPK2) acts as a positive or negative regulator of Wnt target genes’ expression. Phosphorylation of
TCF7l1 by HIPK2 decreases TCF7l1 affinity to target genes’ promoter and enables transcription through the β-catenin/T-Cell Factor-7 (β-cat/TCF7) complex.
(c) Conversely, phosphorylation of the transcriptional activators Lymphoid Enhancer Factor-1 (LEF1) and TCF7l2 abolishes their binding to the promoter and
blocks gene transcription. (B) (a) Gro/TLE together with DNA binding Co-repressor normally limits RNA Pol II mediated transcription. (b) The Receptor Tyrosine
Kinase (RTK) phosphorylates Gro/TLE through the Mitogen-Activated Protein Kinase (MAPK) pathway, resulting in a decrease of Gro/TLE repressive activity.
Gro/TLE mediates crosstalk between Notch and MAPK signaling pathways. Notch signaling activation leads to the expression of the Enhancer of split E(spl),
which is a major transcriptional repressor of Notch target genes. E(spl) complexes with Gro/TLE to block target genes’ expression, including proneural genes.
Phosphorylation of Gro/TLE by the MAPK pathway inhibits its function as a repressor. (c) When Wnt signaling is activated, the E3 ubiquitin ligase (UBR5)
polyubiquitinates Gro/TLE in flies. Similarly, in vertebrate, the X-linked Inhibitor of Apoptosis (XIAP) is recruited to the transcriptional complex containing TCF7l1
and Gro/TLE, and monoubiquitinates Gro/TLE. Mono/polyubiquitination of Gro/TLE enables its degradation by the proteasome and blocks its re-association to
TCF7l1, allowing the recruitment of the transcriptional co-activator β-cat to the activating TCF/LEF, and further expression of Wnt target genes. W-CRM, Wnt-
Cis regulatory motif; EGFR, Epidermal Growth Factor Receptor.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 78499814

Bou-Rouphael and Durand TCF/LEF in Vertebrate Head Development

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


positively or negatively, Gro/TLE-TCF/LEF interactions (reviewed
in Cinnamon et al., 2008; Turki-Judeh and Courey, 2012;
Ramakrishnan et al., 2018). In gastrulating Xenopus embryos
and in mammalian cells, phosphorylation of TCF7l1 by the
Homeodomain Interacting Protein Kinase 2 (HIPK2) inhibits its
capacity to bind its target genes (Figure 5A). β-catenin was found
to serve as a scaffold that promotes HIPK2 interaction with TCF7l1
and the subsequent dissociation of TCF7l1 from the target gene
promoter, thereby opening the way for β-catenin interaction with
the non-phosphorylated TCF7, and activation ofWnt target genes’
transcription (Figure 5Ab). Mutated TCF7l1 proteins resistant to
Wnt-dependent phosphorylation function as constitutive
inhibitors. HIPK2-dependent phosphorylation also causes the
dissociation of LEF1 and TCF7l2 from their targets’ promoter
(Figure 5Ac) and its effect is thereby highly context specific:
HIPK2 up-regulates transcription by phosphorylating TCF7l1, a
transcriptional repressor, but inhibits transcription by
phosphorylating LEF1, a transcriptional activator (Hikasa et al.,
2010; Hikasa and Sokol, 2011). Alternatively, in mouse embryonic
stem cells (mESCs), β-catenin inactivates TCF7l1 by removing it
from DNA, which is followed by TCF7l1 protein degradation.
Interestingly, in this context, genetic cues indicate that TCF7l1
inactivation appears to be the only required effect of the TCF7l1/
β-catenin interaction (Shy et al., 2013).

Gro/TLE co-repressors are targets of PTM, which modulate their
affinity not only for Wnt effectors, but also Notch, and Epidermal
Growth Factor Receptor (EGFR) signaling cascades (Figure 5B).
One example comes from studies in Drosophila demonstrating that
EGFR signaling, mediated via theMitogen-Activated Protein Kinase
(MAPK), phosphorylates Gro/TLE, and leads to the weakening of its
repressor function, and attenuation of Gro/TLE-dependent
transcriptional silencing by the E(spl) proteins, which are the
effectors of the Notch cascade (Figure 5Bb). Reversibly, when
RAS/MAPK signaling is impeded, Gro/TLE-mediated repression
is enhanced both in vitro and in vivo. Thus, downregulation of Gro/
TLE-dependent repression by MAPK modulates the transcriptional
output of the Notch pathway, and possibly of other pathways
(reviewed in Cinnamon et al., 2008). In both Drosophila and
human cell lines, the E3 ubiquitin ligase UBR5 is required for
Wnt cellular response. In this context, Wnt signaling induces the
ubiquitination of Gro/TLE by UBR5, which happens downstream of
β-catenin stabilization (Figure 5Bc). In vivo observations argue that
ubiquitination inactivates Gro/TLE, thereby enablingArm/β-catenin
to activate transcription (Flack et al., 2017). Interestingly,
inactivation of Gro3/TLE3 occurs via the activity of AAA
ATPase Valosin-containing protein (VCP, also known as p97).
VCP unfolds ubiquitinated proteins via its ATPase activity and
disrupts ubiquitinated Gro3/TLE3 tetramerization, a process
required for Gro/TLE to repress Wnt targets (Chodaparambil
et al., 2014). Moreover mono-ubiquitination of Gro3/TLE3 by the
E3 ubiquitin ligase XIAP (X-linked Inhibitor of Apoptosis) at its
N-terminal Q-rich domain disrupts the ability of Gro3/TLE3 to bind
TCF7l1, and consequently inhibits TCF7l1 repressor activity. XIAP
is recruited to the Gro/TCF complex upon Wnt pathway activation,
which enhances β-catenin/TCF complex assembly and the initiation
of a Wnt-specific transcriptional activation program (Hanson et al.,
2012). Because UBR5 and XIAP ubiquitinate Gro3/TLE3 in distinct

ways (poly vs. mono) and at different locations on the Gro3/TLE3
protein, it is possible that the two E3 ligases modulate the Wnt
transcriptional switch either in parallel, or simultaneously,
depending on the cellular context. In addition to its
ubiquitination activity, XIAP has been shown to play a role
in inhibiting Caspases. In vertebrate, XIAP directly binds to
and functionally blocks Caspase-3, Caspase-7 and Caspase-9
proteolytic activity (reviewed in Liston et al., 2003). However,
there is no evidence for the XIAP-mediated degradation of
vertebrate Caspases in vivo, which appears to depend on the
type of ubiquitination and on the cell type.

Evolutionary Conservation of BARHL
Protein’s Structure and Functions
As previously described, BARHL1 and BARHL2 proteins have a
strong degree of homology between one another. BARHL2 is highly
conserved amongst distant species in the evolutionary scale, as
observed through the high aa sequence conservation throughout its
entire sequence (Figure 4). Besides, they are amongst the TFs
essential for patterning the body axis of the developing embryo that
are conserved in simpler organisms beyond the phylum of
chordates. For example, genetic programs ancestral to the ones
required for vertebrate development were found conserved in
hemichordates. In S. kowalevskii, which is thought to be the
closest species to the common ancestor at the base of the
phylogenetic tree of chordates, Barhl2 ortholog gene shares close
similarities in its distribution and expression patterns compared to
chordates (reviewed in Röttinger and Lowe, 2012; Sena et al., 2016).
A conserved Shh Brain Enhancer (SBE1) has been discovered in
mice with an equivalent function to that described in the S.
kowalevskii. SBE1 directly regulates Shh expression in the zli
through binding the second intron of the Shh gene. Diverse
transcription factors, including Otx2 and Barhl2, directly
regulate SBE1 within the zli. Functional analysis in both species
demonstrated sufficient conservation between Barhl2 and one of
the S. kowalevskii barHHD for both binding, and activating CRM,
thereby controlling Shh expression (Yao et al., 2016) (reviewed in
Sena et al., 2016).

In C. elegans, the cephalic chemosensory neurons (CEM)
undergo PCD during hermaphrodite embryogenesis but not in
males (Sulston et al., 1983), a process relying on CEH30, a Bar-
HD transcription factor (Schwartz and Horvitz, 2007). CEH30
protein interacts with UNC-37, which is the C. elegans
homologue of Gro/TLE, through its N-terminal EH1 motif. It
thereby prevents cell death (Peden et al., 2007) and inhibits
transcription of egl-1 gene, which encodes the executioner cell
death protein CED-3, one of the major components of the PCD in
worm (Nehme et al., 2010). Sequence comparison between
human BARHL2 and CEH-30 proteins reveals 64% identical
amino acids in the region including the HD and the motif
immediately next to the HD on the C-terminal side called the
BARC motif (Bar homeodomain C-terminal motif) (Figure 4).
Interestingly, murine Barhl1 or Barhl2 genes compensate for the
loss of function of CEH-30 in C. elegans (Schwartz and Horvitz,
2007), which is consistent with a conservation of Barhl genes’
function through evolution.
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THE CORE ROLE OF TCF7L1 AS A
TRANSCRIPTIONAL INHIBITOR INDRIVING
EMBRYONIC AND NEURAL STEM CELLS
TOWARDS DIFFERENTIATION

In Mouse Embryonic Stem Cells, Inhibition
of TCF7l1-Mediated Repression Promotes
Self-Renewal and Pluripotency
mESC isolated from the inner cell mass of the blastocyst, the pre-
implementation stage mammalian embryo, are characterized by
their ability to self-renew and to differentiate into all types of
somatic cells, a process referred to as pluripotency (reviewed in
Chen et al., 2017). A specific core set of transcription factors
including OCT4 (Octamer-binding transcription factor 4),
NANOG, SOX2 and KLF4 form regulatory circuitry consisting
of autoregulatory and feedforward loops thereby supporting
pluripotency and self-renewal of these cells (Boyer et al.,
2005). Extracellular signaling including LIF/JAK/STAT3
(Leukemia Inhibitory Factor/Janus Kinase/Signal Transducer
and Activator of Transcription) (Williams et al., 1988; Ying
et al., 2008), Wnt (Hao et al., 2006; ten Berge et al., 2011),
BMP (Ying et al., 2003), and the MAPK/ERK (Yang et al., 2012)
cascades, influence mESCs fate decision. Indeed, in mESC, Wnt
signaling has been demonstrated to have important, somewhat
difficult to interpret, activities (reviewed in Niwa, 2011; Merrill,
2012). From all these studies, a consensus emerges that inhibition
of TCF7l1-mediated repression is at the core of mESC self-
renewal and pluripotency (Figure 6) (Atlasi et al., 2013)
(reviewed in Sokol, 2011; Wray and Hartmann, 2012).
Reversibly, enhancement of TCF7l1 repressive activity blocks
mESC self-renewal, and allows mESCs to differentiate, even in
the presence of Wnt signaling (Wray et al., 2011).

In mESCs, TCF7l1 is the most expressed member among the
TCF/LEF protein family (Pereira et al., 2006; Salomonis et al., 2010).
Whole-genome approaches including RNA-seq and ChIP-seq show
that TCF7l1 transcriptionally represses many genes important for
maintaining pluripotency, and self-renewal, as well as those involved
in lineage commitment, and stem cell differentiation. TCF7l1
associates with the regulatory regions of 1369 genes (Tam et al.,
2008). Among those regions, 1173 bind TCF7l1 and OCT4 (Cole
et al., 2008) with more than 940 binding TCF7l1, OCT4, SOX2, and
NANOG (Boyer et al., 2005; Pereira et al., 2006;Marson et al., 2008).
Depletion of TCF7l1 generates mESC’ refractory to differentiation
(Cole et al., 2008). Moreover, both the Gro/TLE and CtBP
interacting domains of TCF7l1 are required for OCT4 repression
(Tam et al., 2008). Finally, KLF4 gene contains conserved TCF/LEF
binding sites, and its expression is downregulated by TCF7l1 (Park
et al., 2015). Interestingly, two TCF7l1 isoforms have been
discovered, and are expressed equally in mESCs, where they
regulate both an overlapping, as well as different sets of target
genes. Removal of one of both TCF7l1 isoforms was found
sufficient to stimulate self-renewal and delay the differentiation
through repression of NODAL and KLF4 (Salomonis et al., 2010).
Further analysis revealed that binding of β-catenin to both TCF7l1
and TCF7 contributes to the maintenance of self-renewal and gene
expression, at least partly through their recruitment to OCT4-
binding sites on ESC chromatin (Yi et al., 2011).

The crucial role of TCF7l1 is reinforced by analysis of mESCs
lacking all full-length TCF/LEF. In such cells, re-expression of
TCF7l1 makes mESCs capable of differentiating into the three
lineages, including neuronal cells (Moreira et al., 2017). In this
context, TCF7l1 has been shown to directly interact with OCT4,
and compete with SOX2 at some SOX-CRM, a process under the
influence of MEK/MAPK (Zhang et al., 2013). Indeed, besides
limiting TCF7l1-mediated repression of the pluripotency
network, inhibition of the MAPK/ERK pathway participates in

FIGURE 6 | TCF7l1-mediated repression is at play in committed mouse embryonic stem cells (mESCs). In mESCs, the T-Cell Factor/Lymphoid Enhancer Factor
(TCF/LEF) switch from a transcriptional activator to inhibitor, controls the balance between pluripotency and differentiation. Key pluripotency genes Octamer-binding
transcription factor-4 (OCT4), SRY-box 2 (SOX2), NANOG and Krüppler-like factor-4 (KLF4) mark the pluripotent state of mESCs and are associated with the co-
activators TCF7. In mESCs, TCF7l1 is the most expressedmember of the Tcf/Lef family. TCF7l1 associates with regulatory regions that are bound by OCT4, SOX2,
NANOG, and KLF4. Through interacting with Groucho/Transducin-like enhancer of split (Gro/TLE), TCF7l1 inhibits the expression of “stem cells” genes and allows
mESCs to differentiate. Eliminating TCF7l1 repressive activity on mESCs pluripotency network allows the reacquisition of pluripotency and self-renewal. BARHL2 is
expressed in mESCs during their commitment phase and could participate in drivingmESCs towards irreversible commitment and differentiation by blocking TCF7l1 in a
transcriptional inhibitory state.
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maintenance of pluripotency and self-renewal (reviewed in de
Jaime-Soguero et al., 2018). In mESCs, inhibition of MEK
suppresses LEF1 expression, and depletion of LEF1 partially
mimics the self-renewal-promoting effect of MEK inhibitors.
In the absence of the exogenous factors, cytokines or
inhibitors, depletion of both TCF7l1 and LEF1 enables
maintenance of undifferentiated mESCs (Ye et al., 2017).

In agreement with all these data, Gro/TLE,more specifically Gro4,
is not required for sustaining pluripotency, and suppressing
differentiation genes in mESC. Rather, Gro/TLE activity appears
necessary for early differentiation where it acts to suppress the
pluripotency network, allowing for the initiation of lineage specific
gene expression programs. In mESCs, most of the genes occupied by
TCF7l1 were found co-occupied by Gro/TLE (Laing et al., 2015).
Through interacting with Gro/TLE, TCF7l1 represses NANOG
(Pereira et al., 2006), and repression of OCT4 was found to rely
on TCF7l1/Gro2 interactions (Tam et al., 2008). Interestingly, the
dominant-negative GRG5 is highly expressed in mESC, and its
expression drops once mESCs exit the pluripotent state, to
increase again during neuroectodermal cell specification. Whereas
overexpression of GRG5 promotes self-renewal, its siRNA-mediated
KD deregulates the mESC pluripotent state. Transcriptomic analysis
reveals that, in this context, GRG5 represses mesendodermal-related
genes, and promotes neuronal specification via inhibition ofWnt and
BMP signaling. Moreover, GRG5maintains the self-renewal of NSCs
by sustaining the activity of Notch/HES and STAT3 signaling
pathways (Chanoumidou et al., 2018).

In contrast to what is reported in mESC, in human ESC
(hESCs), Wnt/β-catenin signaling appears to be actively
repressed in an OCT4-dependent manner during self-renewal.
In these cells, activation ofWnt signaling appears to induce loss of
self-renewal, and differentiation into mesodermal lineages
(Davidson et al., 2012). Although such discrepancy is a little
puzzling, it has been shown that generation of neural lineages
from hESCs requires inhibition of Wnt signaling (Tabar and
Studer, 2014) and that activation of Wnt signaling in hESCs-
derived neural precursor cells promotes transcription of
midbrain-like genes through TCF7l2 directly binding the
Engrailed-1 (EN1) promoter (Kim et al., 2018).

The Case of Neural Stem Cells During
Development
Besides its role in development of the CNS, Wnt/β-catenin signaling
is crucial for NSCs maintenance. NSCs emerge from territories that
have kept their neuroepithelium properties and respond to Wnt
signals from embryogenesis through adulthood (Selvadurai and
Mason, 2011; Garbe and Ring, 2012; Borday et al., 2018). In the
subventricular zone of the developing mouse brain, Wnt signaling is
a hallmark of self-renewing, specifically ofNSCs’ (Kalani et al., 2008).
Investigation of the developmental fate of Wnt/
β-catenin–responsive cells in embryonic and postnatal mouse
brain using a reporter for Axin2, demonstrates the continued
importance of persistent Wnt/β-catenin signaling for NSCs and
progenitor cells emergence (Bowman et al., 2013). In mouse adult
hippocampus, where new neurons are continuously generated from
NSCs, expression of the pro-neural TF Neurogenic Differentiation 1

(NEUROD1) is a landmark of cells dropping out of self-renewal and
entering neuronal commitment. Overlapping binding sites for the
TCF/LEF factors and SOX2, a marker of most uncommitted cells of
the CNS, are present in the promoter region of Neurod1. In this
context, Wnt signaling together with removal of SOX2 triggers the
expression of NEUROD1, demonstrating that the SOX2-TCF/LEF
regulatory elements are critical for NEUROD1 expression, and
consequently for the switch from the SOX2-mediated repression
to the TCF/LEF-mediated activation, towards a neuronal fate
((Kuwabara et al., 2009). In neural precursor cells of the mouse’
neocortex, expression of TCF7l1 was found to repress Wnt activity
(Ohtsuka et al., 2011; Kuwahara et al., 2014), and active Wnt
signaling in the rodents’ neocortex apical progenitors sustain
their fate plasticity (Oberst et al., 2019). In cultured rat adult
hippocampal NSCs, fate decision is influenced by the temporal
variations of β-catenin. Optogenetic approaches reveal that
continuous activation of β-catenin in cultured NSCs specifies
neuronal differentiation, whereas short β-catenin signals activate
proliferation but remain insufficient to induce neuronal
differentiation. Loss of β-catenin signals promotes apoptosis in
differentiating cells, which could be due to inappropriate cell-
cycle re-entry (Rosenbloom et al., 2020).

BARHL2 Promotes mESCs Differentiation
Does BARHL2 play a part in mESC biology via its ability to enhance
TCF7l1 repressive activity? Although such a question has not been
directly asked, it is known that BARHL2 is expressed in mESCs
during their commitment phase (Lee et al., 2006). Global expression
profile analysis of mESC lines in which BARHL2 overexpressionwas
induced in a doxycycline-controllable manner, reveals that BARHL2
induces a significant fold-change in more than three thousand genes
with more than two thousand genes being upregulated, and more
than one thousand genes downregulated. In this context, BARHL2
was one of the most influential TF analyzed. Two days following
BARHL2 induction, mESCs start to express mesodermal lineage
markers (Yamamizu et al., 2016). In a study using another BARHL2
overexpression design in mESCs, a significant increase in the
population of neural cells was observed 14 days post-induction
(Teratani-Ota et al., 2016). In this context, Notch signaling
pathway played a significant influence in driving neural
differentiation, and the majority of neuron-like cells generated by
induction of BARHL2 expressed markers of GABAergic neurons.

Work is still needed to understand the context-specific
regulation of TCF/LEF activities in the biology of ESC,
specifically in hESCs. However, studies from the last 15 years
strongly support inhibition of TCF7l1-repression as the necessary
downstream effect of Wnt signaling in the promotion of mESCs’
self-renewal and pluripotency. Reversibly, the formation and
stabilization of the TCF7l1/Gro complex, and its inhibitory
influence on specific chromatin loci, is one of the crucial
switches driving ESCs towards cellular commitment (reviewed
in Sokol, 2011). Genetic and functional studies demonstrated that
the Gene Regulatory Networks (GRN) underlying acquisition/
loss of the pluripotent state are similar in the rodent, fish, and
amphibian’s blastomeres, and in mESCs, with slight differences
observed in hESCs. In early blastomeres, BARHL2-mediated lock
of TCF7l1 in an inhibitory state pushes early SO cells towards
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irreversible commitment and differentiation, arguing for a similar
function in mESCs.

Wnt Signaling Deregulation and Stem Cells:
The Emergence of Cancer
In the past years, an increasing number of studies have
demonstrated that mutations, loss, or aberrant regulation of
Wnt signaling are at the origin of a wide variety of diseases
(reviewed in Noelanders and Vleminckx, 2017; Ng et al., 2019). In
one of its severest forms, Wnt constitutive activation is associated
with diverse cancer types including melanoma, leukemia, breast
cancer, gastro-intestinal cancers, and others (reviewed in Zhan
et al., 2017). Cancer Stem Cells (CSCs), also known as Tumor
Initiating Cells (TICs), are characterized by their “stemness”
characteristics that contribute to tumor progression and drug
resistance and play deterministic roles in cancer recurrence.
Cancer cells exhibit many of the same features as stem cells
including self-renewal and their low level of differentiation.
Whereas the exact connection between cancer and stem cells
is not completely understood, it is well established that both cells
use similar signaling pathway machineries, specifically those of
the Wnt/β-catenin, Shh, MAPK/ERK and Notch pathways
(reviewed in Friedmann-Morvinski and Verma, 2014). In this
section, we focus on the impact ofWnt signaling on CSCs, and on
medulloblastoma (MB), a pediatric tumor of cerebellar origins in
which contributions of both TCF/LEF and the BARHLs are
relevant.

Wnt and Cancer Stem Cells
As observed through activity of a TCF/LEF reporter gene, Wnt/
β-catenin signaling is highly active in various types of CSCs
including colon, lung, breast, and gastric cells (Vermeulen et al.,
2010; Horst et al., 2012). A pharmacological antagonist of
β-catenin/TCF7l2 interaction blocks CSCs’ self-renewal and
suppresses tumorigenesis. Treatment of human colon cancer
cells, and mouse salivary gland cells with such compound did
not only reduce the β-catenin/TCF7l2-mediated proliferation rate
and self-renewal, but also induced the differentiation of tumor
cells (Fang et al., 2016), making it a potential therapeutic target of
the β-catenin-TCF/LEF-dependent tumors, among other tested
drugs (reviewed in Jung and Park, 2020; Walcher et al., 2020;
Zhang and Wang, 2020). Non-coding RNAs have also been
identified as modulators of Wnt-TCF/LEF activity in CSCs.
For example, miR-142, which is absent in normal mammary
cells but highly expressed in mammary CSCs, increases Wnt
activity by inducing degradation of APC, a negative regulator of
canonical Wnt signaling (Isobe et al., 2014). Additionally, the
long non-coding RNA IncTCF7 has been characterized in
hepatocellular carcinoma cells. IncTCF7 maintains CSCs’
properties via TCF7-dependent activation of Wnt signaling
(Wang et al., 2015). Notably, the ability of both normal and
CSCs to maintain long telomeres – an important feature to
prevent their cellular aging – appears to be under direct
transcriptional control of β-catenin-TCF/LEF (Park et al.,
2009; Noureen et al., 2021). Whereas the promoter of the
telomerase enzymatic subunit, TERT, neither bind TCF7l2 nor

TCF7l1, it is enriched with TCF7-binding sites located close to the
transcription start site that binds β-catenin specifically
(Hoffmeyer et al., 2012).

Medulloblastoma
Medulloblastoma (MB), the most common childhood malignant
brain tumor, emerges from the cerebellum and accounts for 30%
of pediatric brain tumors. Integrated genomic studies allowed the
identification of four types of human MB, corresponding to
specific genetic alterations (reviewed in Hatten and Roussel,
2011; Wang et al., 2018). One group is associated with
alterations in the Wnt/β-catenin signaling pathway (15% of
the cases) and originates from brain stem cells. A second
group (25% of the cases) is characterized by the constitutive
activation of the Shh pathway and derives from Granule Neuron
(GN) progenitors. Group 3 (30% of the cases) is specifically found
in infants and is thought to originate from overexpression of the
MYC oncogene in cerebellar NSCs. Whereas group 4 is the most
common MB subgroup (30% of the cases), its underlying biology
is not well understood.

In the rodent brain, the cerebellar upper Rhombic Lip (uRhL)
produces the GNs that constitute the largest neuronal population
in the brain. The GN population exhibits a unique developmental
trait: committed GN progenitors (GNPs) are characterized by a
very long period of “quiescence” occurring before birth, followed
by a long proliferative phase – i.e., 2 weeks in mouse, 2 years in
human - occurring after birth, before their final differentiation
step (reviewed in Leto et al., 2016). Due to this developmental
specificity, this cell population is at risk when it comes to the
appearance of developmental defects, including oncogenic events
(reviewed in Hatten and Roussel, 2011). At birth, the RhL stem/
progenitor cells become responsive to secreted SHH that
stimulates their proliferation and self-renewal. The uRhL
exhibits stem cell niche properties and exhibit positive TCF/
LEF transcriptional activity (Selvadurai and Mason, 2011;
Bowman et al., 2013; Yeung et al., 2014; Borday et al., 2018).
Atonal Homologue 1 (ATOH1/MATH1) is the master gene of
GNPs’ development (reviewed in Leto et al., 2016). ATOH1
directly induces the expression of Barhl1 and Barhl2
(Kawauchi and Saito, 2008). A thorough single-cell RNA-seq
performed on mouse cerebellar cells reveals that Tcf7l1 is
expressed strongly early in the GNPs’ differentiation pathway
(Wizeman et al., 2019), and that Barhl2 expression is uniquely
associated with early fate commitment in the GNPs (Carter et al.,
2018). Taken together, these observations argue that BARHL2
could participate in driving GN stem/progenitor cells towards
irreversible commitment.

Rodent cerebellar uRhL cells are known to be at the origin of
group 2 MB that are associated with deregulation of the Shh
pathway (reviewed in Hovestadt et al., 2020; Garcia-Lopez et al.,
2021). Some tumor-propagating cells from this subgroup are not
only resistant to Shh inhibitors but are also TCF/LEF-dependent
for their self-renewal (Rodriguez-Blanco et al., 2017). in silico
analysis associates BARHL2 expression with the emergence of
group 2 MB, and BARHL1 expression with emergence of group 3
and group 4 MB (Pöschl et al., 2011; Lin et al., 2016). Taken
together, these observations are a good starting point for future
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research that should evaluate whether BARHLs act as roadblocks
for de-differentiation that are corrupted in MB.

CONCLUSION AND PERSPECTIVES

In this review, we provide an overview of the TCF/LEF activities
as transcriptional repressors focusing on the highly evolutionarily
conserved roles of Wnt signaling in axis establishment, neural
proliferation, and stem cell biology. We also described the
importance of the pro-neural TF BARHL2 as an enhancer of
TCF7L1 repressor activities in both SO formation, and forebrain
progenitor proliferation.

Currently, numerous conundrums regarding the
developmental regulation(s) of TCF/LEF activities, including
their interactions with the Barhls, are unresolved. An
important point is to clarify the interactions between Barhl2,
and generally the Barhls, with the different TCF/LEF members:
which Barhl interacts with each of the TCF/LEF family? Are these
interactions specific to the different TCF/LEF isoforms and their
splice variants? What characterizes the TCF/LEF-BARHL
binding interface? Is the interface evolutionarily conserved?
Numerous signaling pathways interplay to orchestrate the
multipotency/commitment/proliferation states of neural stem/
progenitor during embryogenesis. Besides Wnt signaling, the
activation and/or inhibition of TCF/LEF activity is under the
influence of Notch, Shh, and MAPK/ERK pathways. The context,
the repression partners, and the PTM involved in controlling
these subtle levels of regulation in NSCs are still poorly
understood. Exploration of Barhl2 developmental expression
indicates that it is either a direct, or an indirect, target of the
canonical Wnt signaling pathway, thereby contributing to the
establishment of a negative feedback loop, that limits the TCF/
LEF transcriptional activity in neural progenitors. Analysis of
TCF/LEF activity in pluripotent versus committed ESCs indicate
that TCF/LEF mostly act by changing the chromatin state in such
a way that the expression of the pluripotency-related genes is
switched off (reviewed in Sokol, 2011). As BARHL2 blocks
TCF7L1 in a transcriptional inhibitory state, it is tempting to
speculate that BARHL2 participates to driving stem/progenitor
cells towards irreversible commitment, thereby establishing a
roadblock on the cell trajectory towards differentiation.

Another important unresolved question relates to how BARHL2,
TCF/LEF and Gro/TLE act long distance to transcriptionally inhibit
key “commitment” genes. Understanding the specificity of
BARHL2 DNA-binding alone, or together with TCF/LEF, should
be a first step in identifying the set of genes whose expression is
silenced via BARHL2/TCF7L1 activity. Moreover, understanding
how the BARHL2/TCF7L1 modulates the open/close state of the
chromatin, together with probable roles of PTM on the complex
stability and its transcriptional activity, shall prove quite beneficial
beyond understanding early embryogenesis. Finally, in both
amphibian, and rodent, Barhl2 participates in the formation of
the caudal forebrain organizer, partly through its direct activation
of Shh transcription together with Otx2 (Yao et al., 2016) (reviewed
in Sena et al., 2016). Thereby, BARHL2’s function is not strictly
restricted to its activity as a Wnt transcriptional repressor, but
probably depends on the cellular context, adding another level of
complexity that should be taken into consideration.
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