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Among the new energy storage devices, aqueous zinc ion batteries (AZIBs) have become
the current research hot spot with significant advantages of low cost, high safety, and
environmental protection. However, the cycle stability of cathode materials is
unsatisfactory, which leads to great obstacles in the practical application of AZIBs. In
recent years, a large number of studies have been carried out systematically and deeply
around the optimization strategy of cathode material stability of AZIBs. In this review, the
factors of cyclic stability attenuation of cathode materials and the strategies of optimizing
the stability of cathode materials for AZIBs by vacancy, doping, object modification, and
combination engineering were summarized. In addition, the mechanism and applicable
material system of relevant optimization strategies were put forward, and finally, the future
research direction was proposed in this article.
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INTRODUCTION

In response to the global climate crisis, the research of new energy storage devices has been widely
focused on expanding the application of renewable energy to replace fossil energy (Tan et al., 2020a;
Wang et al., 2020a; Gan et al., 2020; Cai et al., 2021a; Liu et al., 2021a; Cai et al., 2021b; Deng et al.,
2021; Zhao et al., 2021). In the field of new energy storage, lithium-ion batteries have been widely
used because of their high energy density and wide working voltage (Park et al., 2021; Xia et al., 2021;
Feng et al., 2022). However, the scarcity of lithium resources increases the cost of lithium batteries,
and the majority of the organic electrolyte used are poisonous or flammable, reducing the safety of
lithium batteries (Li et al., 2021a; Du et al., 2021; Hou et al., 2021). Comparatively, zinc metal has the
advantages of non-toxic, low cost, and redox potential, which is more suitable for aqueous
electrolytes (Yao et al., 2021). Moreover, the high density and multi-charge of zinc render
aqueous zinc ion batteries (AZIBs) with excellent energy density, which makes it have great
application prospects (Gao et al., 2021). However, the low cycle stability of AZIBs is an
inevitable problem. As one of the most core components, cathode materials for the
improvement of AZIB performance critically depend on the optimization of stability. The
storage mechanism and capacity attenuation of zinc ions in AZIBs system have not been fully
clarified. Thus, the latest research progress is necessary to be summarized, which is conducive to
providing the following research direction.

Herein, the primary factors causing the performance degradation of cathode materials for AZIBs
are summarized, and optimization strategies for the stability of cathode materials are introduced.
Finally, according to the optimization strategy introduced in the summary, some problems to be
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further studied will be put forward, and the subsequent
optimization research of stability will be prospected.

PERFORMANCE DEGRADATION OF
CATHODE MATERIALS

The strong electrostatic interaction and large steric effect between
divalent Zn2+ and the main structure of cathode materials in
AZIBs lead to poor cyclicity and very slow intercalation kinetics.
Meanwhile, the pH, additives, types, and concentrations of zinc
salts in the electrolyte will also affect the energy storage
characteristics of cathode materials. The attenuation of
cathode material performance is mainly divided into the
following situations:

Irreversible phase transition: During the charge–discharge
process of the battery, Zn2+ intercalation, ion/molecule co-
intercalation, and conversion reaction are likely to cause
irreversible damage to the structure of cathode materials
(Chen et al., 2020). For instance, ZnxMnO2 will be formed
when Zn2+ is inserted into the space of MnO2 with a layered
structure, while MnOOH with a tunnel structure will be formed
whenH+ is inserted into the material in solution (Liu et al., 2021b;
Ma et al., 2021). This phase transition in varying degrees will
destroy part of the original structure, resulting in the attenuation
of performance. Moreover, the H+ insertion process is usually
accompanied by-products [such as Zn4SO4(OH)6·5H2O] with the
change of pH, which will cause the adhesion of insulation
corrosion on the cathode surface and also continuously reduce
the electrochemical activity of the cathode (Li et al., 2019).

Cathodic dissolution: The dissolution and diffusion of cathode
materials in electrolytes are irreversible to a certain extent, which will
cause the instability of the material structure. For example, the
Jahn–Teller effect in high-valence manganese-based oxides induces
the irreversible transformation of someMn3+ toMn2+ in the process
of cathode discharge and then will destroy the main structure of
materials (Heo et al., 2021). In addition, for most material systems
such as vanadium-based compounds, Prussian blue and analogs, and
their structures are not stable in electrolytes, and irreversible
dissolution will occur when the cathode is discharged for a long
time (Wan and Niu, 2019; Li et al., 2021b).

In conclusion, the performance degradation of cathode
materials is not only due to the influence of the electrolyte
environment but also related to its own structural
characteristics and reaction mechanism. Moreover, according
to the research reported at present, the cycle stability of
cathode materials can be optimized from four aspects:
introduction of vacancy, substitution/gap doping, object
modification, and combination engineering.

STABILITY OPTIMIZATIONS FOR
CATHODE MATERIALS

Introduction of Vacancy
The introduction of an appropriate amount of vacancy
engineering (oxygen vacancy, metal vacancy, etc.) has been

confirmed that it not only can reduce the bandgap, improve
the conductivity, and promote the diffusion kinetics of H+/Zn2+

to improve the capacity but also enhance the structural stability to
inhibit its dissolution, so as to improve the cycle stability (Wang
et al., 2020b; Luo et al., 2020; Tan et al., 2020b; Cao et al., 2021;
Tong et al., 2021; Cui et al., 2022). Zhang et al. achieved the
doping of Cu2+ substituting Mn3+ by solvothermal and annealing
and synthesized oxygen-containing vacancy Mn2O3 (OCu-
Mn2O3) (Liu et al., 2020a). The uniform distribution of
oxygen vacancies can adjust the internal electric field and
crystal structure by compensating the non-zero dipole
moment (in Figure 1A), thereby promoting the reaction
kinetics and improving the stability of the crystal structure.
Unlike the rapid decline in the capacity of Zn||Mn2O3 battery
(capacity retention less than 50%), the capacity of Zn||OCu-
Mn2O3 battery still retains 88% of the initial capacity after 600
cycles at 1 Ag−1. In addition, Peng et al. prepared pristine V6O13

(p-VO) via electrodeposition and the self-assembly process, and
then, oxygen-deficient V6O13 cathode (Od-VO) was obtained by
annealing (Liao et al., 2020). Simulated results indicated that the
introduced oxygen vacancy can reduce the Gibbs desorption free
energy of Od-VO, which is more conducive to the desorption of
Zn2+ than p-VO (shown in Figure 1B). The prepared Od-VO
cathode has displayed roughly a capacity retention rate of 95%
after 200 cycles at 0.2 Ag−1, which is significantly higher than
p-VO cathode (collapsed within 180 cycles). Moreover, Kim et al.
synthesized in situ growth of ZnMn2O4@C with Mn deficiency
(Mn-d-ZMO@C) from the ZnO-MnO@C nanocomposite by
solvent dry process and annealing methods (Islam et al.,
2021). As shown in Figure 1C, ZnO-MnO@C transformed
into Mn-d-ZMO@C via an aging process in electrolytes, which
was along with the formation of Zn4(OH)6SO4·5H2O (ZBS) on
the surface. Furthermore, Mn-d-ZMO@C and by-products
realized reversible conversion by reacting with Zn2+ and Mn2+,
respectively. The Zn/Mn-d-ZMO@C cell still maintained 84% of
the highest capacity (98 mAh g−1) after 2000 cycles at 3 Ag−1.
Thus, it can be seen that some vacancy optimization strategies
reported recently have provided detailed analyses of the
concentration and location distribution of introduced
vacancies. However, more material systems need to be further
studied to verify the universality of the optimization mechanism
of this strategy.

Substitution/Gap Doping
As reported earlier, the vacancy defects caused by doping
modification have been confirmed stabilizing the crystal
structure of cathode materials. Besides, the substitution doping
of multivalent metal ions can effectively reduce the formation
energy of cathode materials, which can effectively inhibit the
collapse of crystal structure (Kim et al., 2021; Li et al., 2020). Ni
et al. synthesized Mn-substituted zinc hexacyanoferrate materials
(MZHCFs) using a simple precipitation method (Ni et al., 2021).
The substitution ofMn ions in the N-bonded sites can restrain the
cubic-rhombohedral phase transition and the dissolution of
active materials in electrolytes, resulting in improving the
structural stability. As shown in Figure 1D, the MZHCF
(MZHCF-7) with Mn content of 7% retained 94% of the
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initial capacity (far more than 17% of ZnHCF) after 500 cycles at
0.25 Ag−1, displaying a significant synergistic optimization effect.
In addition, the gap doping of heteroatoms (especially metals
with similar ion radius) has been proved to effectively stabilize the
phase transition structure and inhibit the dissolution of materials,
which contributes to improving the reversibility of cathodic
electrochemical reaction (Xu et al., 2021a; Chen et al., 2021).
Moreover, Wang et al. obtained multivalent cobalt (Co2+, Co3+)-
doped Mn3O4 nanosheets (Co-Mn3O4/CNA) based on carbon
nanosheets array by electrodeposition on the basis of Co-MOF
precursors prepared in water bath and annealing (Ji et al., 2021).
Doped Co2+ in the interlayer of initial phase change products δ-
MnO2 can play a supporting role due to strong adsorption energy
(in Figure 1E). Meanwhile, doped Co4+ in the [MnO6] octahedral
structure can improve the conductivity of Mn4+ and maintain a
high specific capacity, which is owing to its low energy bandgap.
In the subsequent charge–discharge process, cobalt with different
valence states not only plays a supporting role in the phase change
products but also can effectively inhibit the Jahn–Teller effect and
promote the diffusion of ions. The prepared Co-Mn3O4/CNA
cathode can still maintain 80% of the initial capacity after 1,100
cycles at 2 Ag−1. Nevertheless, the current research on doping

modification has not further analyzed the influence of doping
position and the proportion of different doping components on
the stability of optimized materials. Furthermore, the similarities
and differences of optimization mechanisms from different
doping elements still need to be further discussed.

Object Modification
The stability optimization strategy of cathode materials also
includes object modification methods such as intercalation and
surface coating. Moreover, object modification has been proved
to effectively promote the reversibility of the reaction process and
inhibit the dissolution of structures (Zhang et al., 2021). For
layered cathode materials, the insertion of highly stable objects
can promote the interlayer reversible transfer of Zn2+ (Liu et al.,
2020b; He et al., 2021a; He et al., 2021b; Li et al., 2021c). Li et al.
synthesized MoS2/graphene nanomaterials with a sandwich
interlayer structure by solution stirring in an argon
atmosphere at room temperature (Li et al., 2021d). Figures
2A–C show that reduced graphene oxide (rGO) was inserted
between MoS2 layers, resulting in the significant expansion of the
MoS2 layer spacing and the sharp decrease in the Zn2+ migration
barrier. In addition, the stable flow structure alleviates the

FIGURE 1 | Vacancies and doping modification of cathode materials. (A) Atomic structure models of a single layer height in Mn2O3 and Ocu-Mn2O3, respectively;
(B) illustrations of the Zn2+ storage/release for p-VO and Od-VO; (C) schematic illustration for the reaction mechanism of the in situ formed Zn/Mn-d-ZMO@C; (D)
schematic diagram of the reaction mechanism of MZHCFs; (E) schematic illustration of Zn|| Co-Mn3O4/CAN battery. Reproduced with permission (Liu et al., 2020a; Liao
et al., 2020; Islam et al., 2021; Ji et al., 2021; Ni et al., 2021).
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instability caused by interlayer stacking. The prepared cathode
has a capacity retention rate of 88.2% after 1,800 cycles at 1 Ag−1,
and its optimization effect is significantly outstanding compared
with the previously reported transition metal sulfide cathode.

In addition, the surface coating belongs to the modification of the
electrode/electrolyte interface, which is an effective strategy to inhibit
dissolution and phase transformation of cathode materials (Gao
et al., 2020). It has been confirmed that coating materials with high
stability and conductivity can effectively improve the specific
capacity and cycle stability of the cathode (Bin et al., 2021; Xu
et al., 2021b; Ren et al., 2021; Xing et al., 2021). Yang et al. prepared
an independent flexible membrane (CNT/MnO2-PPy) composed of
carbon nanotubes and polypyrrole (PPy)-coated MnO2 nanowires
through typical in situ reaction self-assembly and vacuum filtration
(Zhang et al., 2020a). MnO2 nanowires coated with PPy (about 5 nm
in thickness) are uniformly dispersed in highly conductive and
interconnected carbon nanotube networks, improving the
reaction kinetics and structural stability of the cathode (in
Figure 2D). After 1,000 cycles at 1 Ag−1, the optimized electrode
still maintained 87.4% of the initial capacity. Nevertheless, the range
of structural modification materials used at present is limited, and
the related synthesis processes still do not meet the needs of
economic efficiency. Then, there are still some challenges in
practical application.

Combination Engineering
The adjunction of materials with a high stability structure for
combination is also an exploration direction to improve the

stability of cathode (Zhang et al., 2020b; Shan et al., 2021).
The optimization strategy of combination engineering usually
includes carbon-based materials, which can improve the electron
transmission efficiency and structural stability of materials (Yang
et al., 2021; Zeng et al., 2021). Hou et al. synthesized a 3D reticular
graphene-based hydrated vanadium dioxide composite
(Od-HVO/rG) with abundant oxygen vacancies using the
solvothermal method (Huang et al., 2021). The research
confirmed that oxygen vacancy defects can provide more
active sites and promote the reversibility of the reaction, while
the highly conductive and robust rG sponge can promote electron
migration and reduce the accumulation of Od-HVO to improve
the conductivity and structural stability, as shown in Figure 2E.
Compared with HVO (capacity retention of 86.5%) andOd-HVO
(capacity retention of 93.6%), the Od-HVO/rG cathode expressed
scarcely any attenuation after 750 cycles at 5 Ag−1. Moreover, Li
et al. obtained a cathode material (CNT@KMO@GC) composed
of graphene (G), carbon black (CB), and K-sodium manganite
(KxMnO2·yH2O, KMO) based on core–shell carbon nanotube
(CNT) by hydrothermal and solution treatment (Wang et al.,
2021). In Figure 2F, KMO provides the main charge storage due
to the interlayer intercalation of K+ and H2O; CNT provides a
conductive framework for the loaded KMO owing to high
conductivity and structural stability; G and CB provide the
conductive network to reduce the accumulation of active
substances. The prepared cathode has a capacity retention rate
of 65.2% after 10,000 cycles at 5 Ag−1, which is significantly
higher than KMO (39.1% of the initial capacity) and CNT@

FIGURE 2 | Structural modification and composite of cathode materials: (A) Crystal structures of bulk MoS2 and MoS2/graphene; (B,C) the corresponding
migration energy barriers with the variation of the MoS2-to-graphene distance; (D) schematic illustration of freestanding CNT/MnO2-PPy; (E) schematic diagram of Zn2+

(de)intercalating mechanism in Od-HVO/rG; (F) illustration of electron/ion transport and ion diffusions across the electrodes of CNT@KMO@GC. Reproduced with
permission (Zhang et al., 2020a; Li et al., 2021d; Huang et al., 2021; Wang et al., 2021).
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KMO (51.5% of initial capacity). However, the influence of the
composite ratio on stability optimization has not been deeply
analyzed, and the composite research of non-carbon matrix
materials needs to be further explored. Chen et al. revealed the
performance attenuation mechanism of MnO2-based AZIBs by
contrasting with different polymorphs and found that the low
manganese dissolution of R-MnO2 inhibits the degradation of
performance (Liao et al., 2022). Therefore, the reasonable
composite design of MnO2 polymorphs with high initial
capacity and R-MnO2 may have certain advantages in capacity
and stability compared with single crystal form, which provides a
direction for the next optimization.

SUMMARY AND PERSPECTIVES

In summary, the progress of cathode stability optimization for
aqueous zinc ion batteries has been reviewed; the main of which
can be divided into four aspects, including the introduction of
vacancy, substitution/gap doping, object modification, and
combination engineering. Thus, cathode stability optimization
strategies can be designed from three aspects: inhibiting material
dissolution, improving reaction reversibility, and enhancing
structural stability.

However, there are several aspects to be further researched
in the aforementioned optimization schemes of cathode
materials. For quantitative analysis, most of the doping and
composite research studies lack exploring the relationship
between concentration/location and the optimization degree

of stability. For universality analysis, material systems
introduced into optimization research are still limited. For
practical application, some synthetic processes, such as surface
coating, still need to meet the demands of the economy,
efficiency, and safety. In addition, the realization of the
most stable cathode performance needs to eliminate the
factors that reduce the reversibility according to the
reaction mechanism of materials, such as inhibiting the
irreversible dissolution of materials and the formation of
inert by-products. Therefore, these fields to be explored can
be the focuses of stability optimization in the future.
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