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Abstract 
Studying the social behaviour of small or cryptic species often relies on constructing networks from sparse point-based 
observations of individuals (e.g. live trapping data). A common approach assumes that individuals that have been detected 
sequentially in the same trapping location will also be more likely to have come into indirect and/or direct contact. However, 
there is very little guidance on how much data are required for making robust networks from such data. In this study, we 
highlight that sequential trap sharing networks broadly capture shared space use (and, hence, the potential for contact) and 
that it may be more parsimonious to directly model shared space use. We first use empirical data to show that characteristics 
of how animals use space can help us to establish new ways to model the potential for individuals to come into contact. We 
then show that a method that explicitly models individuals’ home ranges and subsequent overlap in space among individuals 
(spatial overlap networks) requires fewer data for inferring observed networks that are more strongly correlated with the true 
shared space use network (relative to sequential trap sharing networks). Furthermore, we show that shared space use networks 
based on estimating spatial overlap are also more powerful for detecting biological effects. Finally, we discuss when it is 
appropriate to make inferences about social interactions from shared space use. Our study confirms the potential for using 
sparse trapping data from cryptic species to address a range of important questions in ecology and evolution.

Significance statement
Characterising animal social networks requires repeated (co-)observations of individuals. Collecting sufficient data to char-
acterise the connections among individuals represents a major challenge when studying cryptic organisms—such as small 
rodents. This study draws from existing spatial mark-recapture data to inspire an approach that constructs networks by esti-
mating space use overlap (representing the potential for contact). We then use simulations to demonstrate that the method 
provides consistently higher correlations between inferred (or observed) networks and the true underlying network com-
pared to current approaches and requires fewer observations to reach higher correlations. We further demonstrate that these 
improvements translate to greater network accuracy and to more power for statistical hypothesis testing.

Keywords Home range · Point-based observations · Social network · Space-sharing · Sparse observations · Trapping data

Communicated by D. Paul Croft

 * Klara M. Wanelik 
 klara.wanelik@biology.ox.ac.uk

 * Damien R. Farine 
 damien.farine@ieu.uzh.ch

1 Department of Evolution, Ecology and Behaviour, Institute 
of Infection, Veterinary and Ecological Sciences, University 
of Liverpool, Liverpool, UK

2 Department of Biology, University of Oxford, Oxford, UK

3 Department of Evolutionary Biology and Environmental 
Studies, University of Zurich, Zurich, Switzerland

4 Division of Ecology and Evolution, Research School 
of Biology, Australian National University, Canberra, 
ACT  2600, Australia

5 Department of Collective Behaviour, Max Planck Institute 
of Animal Behavior, Konstanz, Germany

/ Published online: 26 August 2022

Behavioral Ecology and Sociobiology (2022) 76: 127

http://crossmark.crossref.org/dialog/?doi=10.1007/s00265-022-03222-5&domain=pdf


1 3

Introduction

Social networks are central to addressing many of the key 
questions in ecology and evolution (Cantor et al. 2021). 
However, network construction remains a major challenge 
in many systems because large numbers of observations 
are needed to construct meaningful networks (Whitehead 
2008a; Farine and Whitehead 2015). Recent technological 
improvements for collecting proximity, contact, or interac-
tion data allow much more detailed networks to be con-
structed by improving the temporal resolution at which the 
data are collected (Douglas et al. 2006; Rutz et al. 2012; 
Ryder et al. 2012; Berkvens et al. 2019). However, for 
many smaller or more cryptic species, where observation 
remains difficult, many studies still rely on collecting data 
by trapping individuals and inferring indirect and/or direct 
contacts from observations of different individuals occur-
ring in the same trap at different times (i.e. sequential trap 
sharing events; e.g. Perkins et al. 2008; Porphyre et al. 
2008; Grear et al. 2009; Grear et al. 2013; VanderWaal 
et al. 2013; Davis et al. 2014). To date, no study has quan-
tified whether the sparse observations typical of such stud-
ies allow us to construct robust social networks (an issue 
highlighted in relation to disease transmission; Tompkins 
et al. 2011; White et al. 2017) and, therefore, whether we 
can extract meaningful biological relationships from these 
networks.

Sequential trap sharing networks can be constructed using 
a range of different data collection methods that record the 
location of individuals at particular times through trapping 
events, most commonly live-capture traps and camera traps, 
but also increasingly using RFID detections (Sabol et al. 
2018). These methods are characterised by having the capa-
bility to observe multiple individuals in the same location(s) 
over time. Individuals that are then observed (trapped) at 
the same location are considered to be connected, with 
binary edges (there or not) between them, or, if construct-
ing a weighted network, with the number of detections or 
number of locations at which both individuals were recorded 
defining the strength of their connection. However, trapping 
typically only detects single individuals at any one time, 
hence why we call these ‘sequential trap sharing events’. 
When using such data to construct networks (herein sequen-
tial trap sharing networks), studies such as those listed above 
assume that two individuals that are detected in the same 
location are more likely to have had some form of contact 
(some studies, such as VanderWaal et al. 2013, use such an 
approach to solely model the potential for indirect contact). 
However, here we argue that sequential trap sharing events, 
and resulting sequential trap sharing networks, are unlikely 
to provide accurate information about direct or indirect con-
tacts among individuals.

The ability to construct robust contact networks from 
sequential trap sharing events will heavily depend on how 
well detecting two individuals in the same trap, sequentially, 
generalises to the patterns of space-sharing between the two 
individuals away from trapping locations. On the one hand, 
observing two individuals in the same trapping location 
provides some certainty that they have come into indirect 
contact with each other (at least within some informative 
timeframe). Given sufficient amounts of data, it is then 
plausible to assume that the tendency to be detected in the 
same location will also correlate with the tendency to have 
direct contact. On the other hand, observations of animals 
at the same location could easily over-estimate the chance 
of direct and/or indirect contact between individuals. Take, 
for example, a trap that sits at a shared boundary between 
two individuals’ home ranges, detecting both individuals. If 
these are also detected once each at two additional traps in 
each of their respective home ranges, then we would infer 
an edge weight of 0.2, whereas in reality, the actual area of 
overlap is negligible. Thus, sequential trap sharing networks 
may be prone to error at low trapping rates. Such insights 
were previously also reported for telemetry-based networks 
(Gilbertson et al. 2021).

Constructing a sequential trap sharing network then tac-
itly invokes the assumption that repeatedly observing two 
individuals in the same trap (at different times) informs us 
about their broader likelihood of sharing space away from 
trapping locations. When using sparse datasets, due to indi-
viduals being rarely trapped, this inference is substantially 
limited by stochasticity because they can only capture a 
tiny proportion of all true space-sharing events. These limi-
tations therefore raise the question of whether these data 
may be better modelled under a different set of logic and 
assumptions.

One potential solution is to use trapping data to explic-
itly model shared space use. Spatial overlap networks take 
a different order of inference to sequential trap sharing net-
works. First, observations (e.g. trapping data) are used to 
characterise individual-level space use. Only then are these 
space use data linked to those of other individuals in order 
to infer the amount of spatial overlap between individuals, 
where edge weights range from 0 if two individuals have 
no spatial overlap to 1 if they completely overlap. This 
assumes that the more they overlap, the more they are likely 
to have some amount of contact. This could have several 
advantages. First, given that methods for estimating space 
use can require as few as three observations per individual 
(to create a polygon), it is possible that first estimating space 
use and then estimating spatial overlap could be a relatively 
powerful approach when data are limited. Second, spatial 
overlap networks may rely less on high trapping rates as, for 
example, trapping two individuals with overlapping ranges 
in interspersed traps (but never in the same trap) can still 
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inform spatial overlap networks, but would incorrectly sug-
gest no potential for (direct or indirect) contact when using 
a sequential trap sharing network. Despite these potential 
benefits, to date, there has been no direct quantification of 
the robustness of either sequential trap sharing or spatial 
overlap networks and how these might perform under dif-
ferent sampling regimes.

It has been suggested that the data-intensive nature of 
networks may act as a barrier to the more widespread use of 
networks in the fields of ecology and evolution, with wildlife 
systems often being data limited (Craft and Caillaud 2011). 
Recent investigations into networks based on co-occurrence 
data (Farine and Strandburg-Peshkin 2015; Hart et al. 2022) 
and direct observation methods (Davis et al. 2018) have 
highlighted how data-hungry networks are. Constructing 
a meaningful network requires sufficient observations to 
accurately estimate each of the many relationships (both 
present and absent) that connect all individuals in a popu-
lation (specifically: n(n−1)

2
 edges in an undirected network). 

Thus, the sampling intensity needed to maintain a minimum 
number of observations per individuals and, critically, the 
co-observations of pairs of individuals (dyads) grows quad-
ratically with the number of individuals represented in a 
given network. By contrast, quantifying individual space use 
would result in a linear relationship between population size 
and sampling effort.

Previous studies quantifying the data required to con-
struct meaningful social networks from co-occurrence data 
have suggested that a good rule of thumb is that an average 
of 15 opportunities to co-observe all pairs of individuals are 
needed (i.e. of potential associations or interactions, which 
could be both individuals together or just one individual 
in the absence of the other; Farine and Strandburg-Peshkin 
2015; Davis et al. 2018). Importantly, more observations are 
required for accurately defining network structure when the 
differences in the relationship among dyads are more uni-
form through a population (Whitehead 2008a, b; Hart et al. 
2022), such as we expect in less social species. However, 
these estimates of effort may not translate well to quantify-
ing shared space use networks, as space use is a property that 
can be characterised at the level of the individual.

Addressing the question of how much data need to be 
collected is also crucially important because many studies 
that have constructed sequential trap sharing networks do 
not report the mean number of observations per individual 
(Webber and Vander Wal 2019). Furthermore, the majority 
of those that do have been based on relatively few observa-
tions per individual. In one of the better examples, Van-
derWaal et al. (2013) had a mean of 11 trapping events per 
individual, meaning that they would have, at most, a mean 
of 22 potential observations from which to characterise 
dyadic edge weights in their network (observing two indi-
viduals apart 11 times each would give the denominator of 

an association index—e.g. the proportion of time individu-
als were associated—of 22, see Hoppitt and Farine 2018). 
The sparser the observations (e.g. trapping events), the less 
likely it is that detecting two individuals at the same trap on 
different days is likely to capture information about the real 
contacts between those individuals. Understanding how the 
number of trapping events relates to the robustness of net-
work estimates remains a major gap in knowledge.

The choice of which data to include when constructing 
networks from sequential observations of individuals in 
space (e.g. trapping data) can also have an impact on how 
meaningful the resulting network is. Many studies have used 
sequential trap sharing networks to study the potential for 
indirect transmission events. These have typically defined 
a temporal threshold within which the observation of two 
individuals in the same place must occur for these observa-
tions to be counted as a connection. The choice of thresh-
old is directly inspired by biology, commonly the lifetime 
of a disease vector or pathogen in studies using networks 
to characterise indirect disease transmission. For example, 
Porphyre et al. (2008) used 28 days (maximum survival of 
Mycobacterium bovis in the environment) and Perkins et al. 
(2008) used 14 days (the time needed for an infective L3 lar-
val stage of Heligmosomoides polygyrus to develop from the 
eggs of an infected host). However, such temporal definitions 
can be at odds with the definition and biological motivation 
behind applying a network approach.

For studies that rarely observe individuals, but where 
individuals have relatively stable ranging areas, trapping 
data are most powerful when used to define the potential for 
individuals to co-occur (and possibly encounter one another) 
anywhere within their respective home ranges, rather than 
whether they actually did co-occur (and possibly encounter 
one another) at the particular location where the trap was 
set. Some studies can regularly (and almost synchronously) 
observe or recapture individuals (such as Smith et al. 2018 
who used PIT-tag readers at the entrance of burrows), and are 
therefore able to directly relate observed space sharing events 
(e.g. within a burrow on a given visit) to indirect contacts, or 
even direct contacts if the temporal gap between detections is 
very short. This is because observations of individuals, and 
subsequently space sharing events, are occurring at the same 
spatial and temporal scales as disease transmission events or 
social behaviours that form part of the study of interest (see 
Farine 2018 for further discussion). Restricting the temporal 
scale for defining connections also reduces the data available 
from which the strength of connections between individu-
als can be estimated, which is counter-productive when ani-
mals are relatively sedentary. For example, a study that traps 
individuals once every few months, and discards a detec-
tion between two individuals in the same trap 15 days apart 
because of a maximum 14-day transmission period, would 
be putting too much certainty on the time-gap in detections 
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relative to the certainty they have in terms of detecting indi-
viduals in the first place. Using observations spaced more 
widely apart in time forms connections between individu-
als that describe the system more generally as opposed to 
attempting to precisely quantify the actual connections 
among individuals (although these should correlate given 
sufficient observations, e.g. Sabol et al. 2018).

In this study, we conduct a quantitative evaluation of the 
robustness of sequential trap sharing and spatial overlap net-
works to different sampling regimes. We first use empiri-
cal data to highlight that characteristics of how animals use 
space can help us to establish new ways to model the poten-
tial for individuals to co-occur (and potentially encounter 
one another). We then describe a new method for character-
ising shared space use network that more generally estimates 
home range overlap. We show that using this method can 
generate a network that generally (1) is more strongly cor-
related with the true shared space use network, (2) is a more 
accurate representation of the true space sharing network 
and, therefore, (3) has greater power to detect biological 
effects present in the true shared space network, relative to 
sequential trap sharing networks. Importantly, the spatial 
overlap method requires many fewer observations than using 
sequential trap sharing networks to reconstruct meaning-
ful shared space use networks and many fewer observations 
than what has been suggested in the more general guidelines 
for social networks (e.g. 15 potential observations per dyad; 
see above). We also confirm that the approach is relatively 
robust to the underlying home range characteristics of ani-
mals. Finally, we discuss the topic of inference from shared 
space use networks, and how appropriate it is to link network 
data with biological processes.

Materials and methods

Our study consists of three core components. First, we use 
a large empirical dataset to highlight characteristics of how 
animals use space, specifically that they have a core and 
a periphery to their home range. Second, we estimate the 
ability for data on sequential trap sharing events by individu-
als to generate shared space use networks that are robust 
to different sampling regimes using simulated data. Third, 
we describe a new method, inspired by the core-peripheral 
nature of animal home ranges, for defining network edges. 
We use the same simulated data to show that this spatial 
overlap method generates observed shared space use net-
works that are, for a given number of captures per individual, 
more strongly correlated with the true shared space use net-
work, are a more accurate representation of the true shared 
space use network, and are more powerful at detecting bio-
logical effects present in the true shared space use networks 

relative to networks generated directly from the observed 
sequential trap sharing events. We further demonstrate that 
spatial overlap networks can be constructed using different 
methods for estimating individual space use with resulting 
network varying in their performance and that our findings 
are robust to our modelling assumptions. All simulations 
were run in R version 3.3.1 (R Core Team 2016) using the 
packages vegan version 2.4–3 (Oksanen et al. 2017) and sna 
version 2.4 (Butts 2016).

Modelling home ranges in an empirical dataset

There is a large body of literature on how best to model ani-
mal space use, and it is widely accepted that many animals 
have a core and a periphery to their home range (Hayne 
1949, 1950; Calhoun and Casby 1958; Jennrich and Turner 
1969; Schoener 1981; Swihart and Slade 1989; Spencer 
et al. 1990; Slade and Russell 1998; Zamora and Moreno-
Amich 2002; Klein and Cameron 2012). We test whether 
this holds true in a large-scale empirical dataset for a popu-
lation of field voles (Microtus agrestis), and in so doing, the 
utility of this simple representation of home range for mod-
elling the space-use behaviour of large numbers of animals.

We use part of a dataset from a study of M. agrestis in 
Kielder Forest, UK (55°13′ N, 2°33′ W) that involved captur-
ing individuals using live-trapping methods. Access to the 
study site was provided by the Forestry Commission. Full 
details are given in Jackson et al. (2014). The site was moni-
tored across 2 years (2009–2010) by monthly trapping ses-
sions between February and November and contained a live-
trapping grid (0.375 ha) of 150 (10 × 15) regularly spaced 
traps (at 3–5 m intervals) placed in optimal habitat. Animals 
were marked with passive radio frequency transponders 
(AVID plc, East Sussex, UK) and monitored over time, thus 
providing sequences of capture and recaptures. This data-
set is comprised of 347 individuals and 678 trapping events. 
Because we used a published dataset, we were blind to any 
treatments undertaken as part of the original study.

M. agrestis is a polygynous species, with strictly ter-
ritorial males. Home ranges of M. agrestis vary across 
different locations, habitats and across different times of 
the year. A review of nine studies, all conducted in later 
summer, but across a range of locations and habitats and 
using a range of different home range estimation methods, 
found that female home ranges varied in size from 30 to 
900  m2 while males home ranges varied in size from 200 
to 1500  m2 (Borowski 2003). Large males also have the 
largest home ranges (Borowski 2003). In our own study 
population, there is evidence for differences in the degree 
to which large males, small males and females are dis-
couraged by distance (Davis et al. 2014). We estimate 
home range parameters for females and large males (mean 
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weight ≥ 25 g) as an example, which we go on to use in 
our simulations (see the ‘Simulation procedure’ section).

Simulation procedure

In brief, our study used the following procedure (see Fig. 1):

(1) We simulated a set of 100 individuals with home ranges 
defined by a centroid and characterized by a negative 
sigmoidal curve that highlights the declining probabil-
ity P of an individual to be detected at an increasing 
distance (d) away from the centroid of its home range:

(1)P(d) =
1

1 + e−a−bd

where a describes the overall size of the home range, b 
describes the steepness of the edge of the home range 
and d is the logarithmic distance from the centroid. 
Our choice of negative sigmoidal curve was inspired 
by the core-peripheral nature of animal home ranges, 
and a large-scale empirical dataset for a population of 
field voles (M. agrestis), but we validate that our results 
are robust even when home ranges are defined using a 
uniform distribution. We defined the true shared space 
use network as the amount of overlap in the home range 
profiles across all combinations of individuals (see 
detailed methods below).

(2) We randomly placed simulated individuals in a spa-
tial area containing T traps laid out in a stratified grid. 
We then simulated observation datasets that contained 
detections of individuals at traps, where the detection 
probability for a given individual in a given trap was 

Fig. 1  Schematic showing the simulation process: a Simulation of 
the true shared space use network with edge weights between two 
individuals (e.g. individual 1 and individual 2) equal to the overlap 
between their respective home ranges (here depicted along a one-
dimensional slice). Each home range modelled using a negative 
sigmoidal curve with class-specific parameters (a and b; Eq. 1) that 
captures the decreasing probability of observing individuals as the 
distance away from the centroid increases, and the overlap between 
the two-dimensional surfaces produced by the negative sigmoidal 
curves being calculated using Eq. 2. b Generating a simulated obser-
vation dataset by calculating the probability for a given individual to 
be observed in a given trap based on its home range profile (crosses 
represent centroids; circles represent trapping probabilities; the bigger 
the circle, the greater the probability of detecting an individual at a 

trap), then simulating observations by drawing from a binomial dis-
tribution {0,1} with the probability of getting a 1 for a given individ-
ual in a given trap defined by this trapping probability. c Generating 
a sequential trap sharing network, where nodes represent individuals 
and where edge weights are calculated using Eq. 3. d Generating an 
overlap network, where nodes represent individuals, and where edge 
weights represent the overlap between two individuals’ observed 
home range profiles. First, the observed centroid was calculated for 
each individual. Then, we modelled class-specific home ranges using 
a negative sigmoidal curve (using a GLM regression). Third, we used 
Eq. 2 to calculate home range overlaps as an estimate of shared space 
use (i.e. the edge weights), as in a but with the observed home range 
profiles and centroid values

Page 5 of 15    127Behavioral Ecology and Sociobiology (2022) 76: 127



1 3

determined by the position of the trap relative to the 
home range profile of the individual defined in Eq. 1 
(higher closer to the centroid, lower further away from 
the centroid) or using a uniform distribution centered 
on the individual centroids.

(3) From the simulated observation datasets, we con-
structed a sequential trap sharing network.

(4) Finally, we applied a novel method to construct a spatial 
overlap network, based on estimating individual home 
ranges and estimating home range overlap among indi-
viduals.

Below we describe steps 1–4 in more detail:

1. Simulating true networks
  We first drew N sets of x and y coordinates from a 

uniform distribution, where the boundaries of the distri-
bution correspond to the edges of our study area (in our 
case, from 0 to 10 in each dimension). For each individ-
ual, we also randomly allocated a sex (male or female) 
and drew home range parameters (a and b in Eq. 1) 
based on the sex, giving males a larger home range than 
females. Home range parameters for males and females 
were based on the empirical data (see ‘Modelling home 
ranges in an empirical dataset’ section), with added 
noise drawn from a normal distribution with standard 
deviation equal to 0.05 times the home range parameter 
in question (a or b) to simulate individual-level variation 
in home range profile.

  For each simulation, we generated a true shared space 
use network, with edge weights representing the amount 
of overlap in the home range between each pair of indi-
viduals. This was done numerically by overlaying the 
two individuals’ 2D home range profiles and calculating 
the area under the two surfaces (Fig. 1a). Specifically, 
we predicted the probability of detecting each individ-
ual in a grid overlapping both their home ranges, using 
Eq. (1), and calculated the overlap (the edge weight 
between individuals 1 and 2, E1,2 ) by dividing the sum 
of the lowest values at each point on the grid (x, y) by 
the sum of the largest values at each point, according to 
the following equation:

where Pn

(
√

(

xn − x
)2
+
(

yn − y
)2

)

 is the probability of 

observing individual n , with a home range centred at 
( xn, yn ), at location (x, y) from Eq. 1. X and Y  represent 
the set of grid coordinates that encompass the home 
ranges of both individuals or the range of coordinates 
covering the entire study area, with the spacing between 

(2)E1,2 =

∑

X

∑

Ymin(P1(

�

�

x1 − x
�2
+
�

y1 − y
�2
),P2(

�

�

x2 − x
�2
+
�

y2 − y
�2
))

∑

X

∑

Ymax(P1(

�

�

x1 − x
�2
+
�

y1 − y
�2
),P2(

�

�

x2 − x
�2
+
�

y2 − y
�2
))

grid points being substantially smaller than the home 
ranges (e.g. every 0.1 m).

  To confirm that our results are not dependent on the 
definition of the true network, we also repeat our simu-
lations by generating square home ranges with a uni-
form probability across their range. We do so by setting 
female home ranges to a 2.5 × 2.5 square, and male home 
ranges to a 3.5 × 3.5 square, roughly approximating dif-
ferences in the observed empirical home ranges (results 
presented in Supplementary information).

2. Simulating observations of individuals in traps
  We first calculated the probability for a given indi-

vidual to be observed in a given trap. We defined this 
probability based on the distance of the trap to the cen-
tre of the individual’s home range using Eq. 1 (or giv-
ing a uniform probability to each trap within the home 
range when using uniform home ranges). We repeatedly 
did this for all combinations of individuals and traps 
(‘trapping probability’ in Fig. 1b). We then used these 
probabilities to simulate observations by drawing from 
a binomial distribution {0,1} (‘simulated detections’ 
in Fig. 1b). We incremented the number of draws from 
this sampling process to generate more observations. 
Because draws resulted in variable numbers of obser-
vations, we then calculate the mean number of obser-
vations per individual, allowing us to make our results 
more easily interpretable.

3. Generating sequential trap sharing networks
  Each simulated dataset contained the number of 

detections of each individual in each trap. We gener-
ated a sequential trap sharing network for each simulated 
dataset with the edge weight between individual 1 and 
individual 2 ( E1,2 ) defined as follows:

where traps1 ∩ traps2 is the set of traps in which both indi-
viduals were detected, and traps1 ∪ traps2 is the set of traps 
in which either or both individuals were detected (Fig. 1c).

4. Generating networks based on overlapping home ranges
  We then applied a novel method for generating shared 

space use networks based on first estimating a popu-
lation’s home range profile(s) from a simulated obser-
vation dataset and then calculating the overlap in the 
observed home range profiles of each pair of individuals 
based on the distance between their observed centroids. 
Our method operates as follows. First, we calculate each 
individual’s observed centroid by taking the mean of 
all of the detected locations. Second, we calculate the 
distance between this centroid and all of the traps where 
it could have been captured. Third, we calculate the 

(3)E1,2 =
|

|

traps1 ∩ traps2
|

|

|

|

traps1 ∪ traps2
|

|
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observed home range profile for individuals, which (for 
a representative, sparse dataset) we achieve by fitting a 
negative sigmoidal curve (Eq. 1; fitted using a Bernoulli 
GLM, with 0 indicating an individual was not detected 
at a particular trap, and 1 indicating an individual was 
detected at a particular trap) for males and females sepa-
rately, thereby generating a relationship representing the 
average home range profile for each sex (see discussion 
for justification for this strategy of combining individu-
als, as well as alternative strategies). Fourth, we use the 
observed profiles calculated for each individual to esti-
mate overlap in space use between each pair of individu-
als using Eq. 2 (Fig. 1d).

  We also tested whether spatial overlap networks are 
robust to different implementations by calculating home 
ranges using minimum convex polygons (MCPs) and 
estimating pairwise overlaps between individuals’ poly-
gons (these results are presented in the Supplementary 
information).

Estimating the robustness of shared space use 
networks to different sampling regimes

The ultimate aim of any network we construct is to be able 
to reliably test a hypothesis of interest. To test the perfor-
mance of our novel spatial overlap network method against 
traditional sequential trap sharing networks, we generated 
1000 true networks (Fig. 1a). For each true network, we 
produced simulated observation datasets that varied in sam-
pling intensity (number of draws from a binomial distribu-
tion {0,1} given a probability of observing an individual in a 
trap; Fig. 1b). We designed this such that the sampling inten-
sity corresponded to a mean number of observations per 
individual ranging between 1 and 30 (regardless of trapping 
grid density), thus capturing the spectrum of what has been 
reported in the literature. For each simulated observation 
dataset, we generated a sequential trap sharing network and a 
network using the spatial overlap approach by reconstructing 
separate negative sigmoidal curves (or home range profiles) 
for large males and females (Fig. 1c).

We assessed the performance of each of these observed 
shared space use networks for three metrics. First, we cal-
culated the correlation between the edge weights in the 
observed network and the edge weights in the true network 
using a Mantel test. The correlation provides a measure of 
relative position of each edge, such that when the correlation 
is 1, the position of each edge from the observed network is 
the same as the positions from the true network, irrespective 
of any changes in scale. Second, we calculated a measure 
of accuracy by taking the mean of the absolute differences 
between the observed and true network edge weights. The 
accuracy provides a measure of whether the estimated edges 
in the observed network are on the same scale as those in 

the true network. Third, we calculated a measure of power 
by finding the proportion of observed networks in which we 
could detect a significant biological effect—here the differ-
ence in mean degree (sum of edge weights) between large 
males and females (large males were given a larger home 
range than females, see point 1 of the simulation proce-
dure)—that is present in the true network (and estimated false 
positives by re-running the simulations without any differ-
ence between large males and females). We estimated signifi-
cance for each simulated observation dataset by comparing 
the observed difference in mean degree between large males 
and females to the distribution of differences in 100 permuted 
networks. We used node permutations, which involved ran-
domising the assignment of sex to the identities of each indi-
vidual. We deemed the effect from an observed network to 
be significant if fewer than three of the randomised networks 
generated a difference that was larger than the observed one 
(two-tailed test at p = 0.05; see Farine 2017).

Variants

We repeated the procedure described above for true networks 
with varying effect sizes for the difference in mean degree 
(sum of edge weights) between large males and females by 
varying the b parameter, resulting in the following: (a) an effect 
size half that in our empirical dataset, (b) an effect size equal to 
that in our empirical dataset, (c) an effect size twice that in our 
empirical dataset (see the ‘Results’ section). We also repeated 
the procedure using trapping grids of differing densities: (a) a 
10 × 10 grid and (b) a 19 × 19 grid within the same area.

Results

Modelling home ranges in an empirical dataset

Consistent with space use theory, we found evidence for a 
declining probability of an individual field vole to use space 
further away from the centre of its home range. Further-
more, we characterised this empirical relationship, between 
probability of detection and distance from centroid, using 
a negative sigmoidal curve (Eq. 1; fitted using a Bernoulli 
GLM, with 0 indicating an individual was not detected at a 
particular trap, and 1 indicating an individual was detected 
at a particular trap). We found evidence for large males hav-
ing a larger home range (a = 2.08, b =  − 4.82) than females 
(a = 2.83, b =  − 6.21; interaction term between sex and dis-
tance from centroid: p < 0.001; Fig. 2), resulting in a differ-
ence in mean degree of 1.8 between these two classes. We 
used these class-specific curves, and the resulting difference 
in mean degree, as the primary method (presented in the 
main text) to generate true shared space use networks in our 
simulations.
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Performance of simulated observed networks 
with varying numbers of captures per individual

The number of individuals detected at least once at a trap 
increases with the number of captures per individual, start-
ing from a mean of 31.3 individuals (out of a total population 

of 100 individuals) present at a mean of 1.3 captures per 
individual, and reaching a mean of 100.0 individuals (i.e. 
the whole population) present at approximately 10 captures 
per individual (Fig. 3c).

Correlation

As the mean captures per individual increases, the sequential 
trap sharing network becomes more strongly correlated with 
the true network. At a mean of 1.9 captures per individual, 
the Mantel correlation coefficient between the sequential trap 
sharing network and the true network is 0.4. The correlation 
coefficient plateaus from a mean of approximately 20 cap-
tures per individual, reaching a maximum of 0.8 at a mean 
of 28.7 captures per individual. The spatial overlap network 
shows broadly the same pattern, but is, for a given number 
of captures per individual, typically more strongly correlated 
with the true network than the sequential trap sharing net-
work. At a mean of 1.9 captures per individual, the correla-
tion coefficient between the spatial overlap network and the 
true network is 0.5. The correlation coefficient also plateaus 
earlier, from a mean of approximately 10 captures per indi-
vidual, and reaches a higher maximum of 1.0 (Fig. 3a).

Accuracy

As the mean number of captures per individual increases, the 
sequential trap sharing network becomes more accurate. At 
a mean of 1.9 captures per individual, the mean of the abso-
lute differences in edge weights between the true network 
and sequential trap sharing networks is 6.4 ×  10−2, which 
reaches a minimum of 3.9 ×  10−2 at a mean of 28.7 captures 
per individual. The spatial overlap network shows broadly 

Fig. 2  Class-specific negative sigmoidal curves for M. agrestis 
describing the change in probability of detection with increasing 
distance from the centre of an individual’s home range. Line shows 
the fitted home range profile for large males and females. Points 
show the raw data (whether, 1, or not, 0, an individual was detected 
at a location). Distances are measured in trapping grid cells (1 grid 
cell = 3–5 m)

Fig. 3  Performance of observed networks with varying numbers of 
captures per individual on a 10 × 10 trapping grid, as measured by 
a correlation, Mantel correlation between edge weights in observed 
and true networks; b accuracy, mean of absolute differences in edge 
weights between observed and true networks (lower values = more 

accurate networks); and c number of individuals in observed net-
works. Individual data points are plotted and a LOESS smoother 
added to aid visual interpretation. Panel c refers to the data in the 
simulated observation dataset, which is identical for both methods
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the same pattern, but is more accurate for a given number of 
captures per individual. For example, at a mean of 1.9 cap-
tures per individual, the absolute difference in edge weights 
to the true network is 6.1 ×  10−2. The mean of differences for 
the spatial overlap network also reaches a lower minimum 
of 2.3 ×  10−2 (Fig. 3b).

Power

As the mean number of captures per individual increases, the 
ability to detect a true biological relationship (i.e. the power) 
of the sequential trap sharing network also increases. For 
example, there is nearly double the chance of detecting a true 
positive at a mean of 4.3 captures (5.2%) compared to 1.9 cap-
tures (3.1%). However, the power remains low for small effect 
sizes even after large numbers of captures. The spatial overlap 
network shows broadly the same pattern, but has consistently 
greater power to detect an effect for a given number of captures 
per individual, above a mean of approximately 3 captures per 
individual. For example, at 4.3 captures per individual there 
is more than double the chance of detecting a true positive in 
the spatial overlap network (11.8%) compared to the sequential 
trap sharing network (5.2%). The power of the sequential trap 
sharing network increases continuously and reaches a maxi-
mum power of 35.2% at a mean of 28.7 captures per individ-
ual. The power of the spatial overlap network plateaus at a 
mean of approximately 10 captures per individual, reaching a 
much higher maximum of 81.7% (Fig. 4a). Below 3 captures 
per individual, the sequential trap sharing and spatial overlap 
networks have similar power to detect an effect.

Below 5 captures per individual, the sequential trap shar-
ing and spatial overlap networks have a similar rate of false 
positives. At a mean of 9.7 captures per individual, the false 

positive rate of the spatial overlap network reaches a maxi-
mum of 8%, but reduces again with more sampling. The 
false positive rate of the sequential trap sharing network 
remains between 2 and 3% (Fig. S3a).

Sensitivity to the modelling framework

We found that our results were generally robust to our modelling 
assumptions. When using a different method to simulate our 
true network (uniform home ranges), the spatial overlap network 
remained more strongly correlated with the true network than 
the sequential trap sharing network when data were sparse, and 
comparably strongly correlated when more data were available 
(see Supplementary information; Fig. S1a). The spatial overlap 
network was also comparable in its power and accuracy to the 
sequential trap sharing network (Figs. S1b, S2b and S3c). How-
ever, we did not find that our results were robust to different 
implementations of spatial overlap networks. When using a dif-
ferent method to estimate home ranges and subsequent overlap 
between individual home ranges (MCPs), the spatial overlap 
network generally performed less well than the sequential trap 
sharing network (Fig. S4) except in terms of power to detect an 
effect, where it performed better than the sequential trap sharing 
network but less well than our own implementation (Fig. S2a). 
The false positive rate was comparable to that of the sequential 
trap sharing network (Fig. S3b).

Performance of observed networks with varying 
effect sizes

Only the power of the observed networks changes as a result 
of varying effect sizes.

Fig. 4  Performance of observed networks with varying numbers of 
captures per individual on a 10 × 10 trapping grid, as measured by the 
power of observed networks to detect a biological effect present in the 
true network. Proportion of true positives shown on y-axis, and mean 

of mean captures per individual shown on x-axis. Repeated for true 
networks with varying effect sizes: a an effect size half that in our 
empirical dataset, b an effect size equal to that in our empirical data-
set, c an effect size twice that in our empirical dataset
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Power

As the effect size increases, there is a corresponding increase 
in the power of the sequential trap sharing network, above a 
mean of approximately 3 captures per individual. For exam-
ple, at a mean of 4.3 captures per individual, there is a 2.3% 
chance of detecting a true positive if the effect size is half 
that found in our empirical data, 5.2% chance if the effect 
size is equivalent to that found in our empirical data, and 
a 24.5% chance if the effect size is twice that found in our 
empirical data. The spatial overlap network shows broadly 
the same pattern. At a mean of 4.3 captures per individu-
als, there is a 7.0% chance of detecting a true positive if the 
effect size is half that found in our empirical data, 11.8% 
chance if the effect size is equivalent to that found in our 
empirical data, and 28.8% chance if the effect size is twice 
that found in our empirical data. Below approximately 3 cap-
tures per individual, sequential trap sharing and spatial over-
lap networks have similar power, regardless of effect size.

Changing trapping grid density

Observed networks change in all three metrics (correlation, 
accuracy and power) as a result of varying trapping grid 
density. Grid density also changes the number of individu-
als present in both observed networks when the number of 
captures per individual is low. For example, at 1–2 captures 
per individual, on a 19 × 19 grid, a mean of 77.2 individuals 
(out of a total population of 100 individuals) are present in the 
observed networks (compared to 31.3 on a 10 × 10 grid; see 
above). However, all individuals in the population are present 
in the observed networks (i.e. mean of 100.0 individuals) from 
a mean of approximately 10 captures per individual, regardless 
of grid density (Fig. 5c).

Correlation

A higher density grid leads to a weaker correlation between 
the sequential trap sharing network and the true network, 
for a given number of captures per individual (Fig. 5a). For 
example, at a mean of approximately 2 captures per individ-
ual, the Mantel correlation coefficient between the sequential 
trap sharing network and the true network is 0.4 on a 10 × 10 
grid and 0.2 on a 19 × 19 grid. The sequential trap sharing 
network reaches the same maximum correlation coefficient 
of 0.8 on a 19 × 19 grid and on a 10 × 10 grid (see above). 
The correlation between the spatial overlap network and true 
network differs very little between the 10 × 10 and 19 × 19 
grid (Fig. 5a). At a mean of approximately 2 captures per 
individual, the correlation coefficient between the spatial 
overlap network and the true network is 0.5 on a 10 × 10 grid 
and 0.6 on a 19 × 19 grid. The spatial overlap network also 

reaches the same maximum correlation coefficient of 1.0 on 
a 19 × 19 grid and on a 10 × 10 grid (see above).

Accuracy

A higher density grid leads to a slightly less accurate sequen-
tial trap sharing network for a given number of captures per 
individual (Fig. 5b). At a mean of approximately 2 captures 
per individual, the absolute difference in edge weights to the 
true network is a very similar 6.4 ×  10–2 on a 10 × 10 grid and 
6.5 ×  10–2 on a 19 × 19 grid. However, the minimum abso-
lute difference in edge weights for the sequential trap shar-
ing network is slightly higher on a 19 × 19 grid (5.0 ×  10−2) 
compared to a 10 × 10 grid (3.9 ×  10−2; see above). A higher 
density grid has little effect on the accuracy of the spatial 
overlap network for a given number of captures per indi-
vidual (Fig. 5b). For example, at a mean of approximately 
2 captures per individual, the absolute difference in edge 
weights of the spatial overlap network to the true network 
is 6.1 ×  10−2 on a 10 × 10 grid and 5.8 ×  10−2 on a 19 × 19 
grid. The minimum absolute difference in edge weights for 
the spatial overlap network is 2.3 ×  10−2 on a 10 × 10 grid, 
and 2.6 ×  10−2 on a 19 × 19 grid.

Power

The power of the sequential trap sharing networks changes 
very little with grid density (Fig. 5d). For example, at a mean 
of approximately 2 captures per individual, the chance of 
detecting a true positive is 3.1% on a 10 × 10 grid and 3.2% 
on a 19 × 19 grid. The power of the spatial overlap network 
also changes very little with grid density (Fig. 5d). At a 
mean of approximately 2 captures per individual, the chance 
of detecting a true positive is 3.0% on a 10 × 10 grid and 
3.4% on a 19 × 19 grid.

Discussion

In this study, we quantify the robustness of sequential trap 
sharing and spatial overlap networks to different sampling 
regimes. In doing so, we provide much needed guidance for 
informing the choice of sampling regime when designing 
studies to accurately quantify space sharing among indi-
vidual animals. Using a large-scale empirical dataset for a 
population of field voles (M. agrestis), we also demonstrate 
the utility of modelling space-use behaviour on the basis that 
individuals have a core and a periphery to their home range. 
We then use these insights to develop a new method for 
generating shared space use networks based on estimating 
overlapping home ranges. We show that networks generated 
using the overlap method are generally more strongly cor-
related with the true shared space use network, are a more 
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accurate representation of the true shared space use network 
and are more powerful to detect effects present in the true 
shared space use network relative to sequential trap sharing 
networks.

Our overlap method works particularly well when 
the mean number of captures per individual is low and 
provides the potential to generate meaningful networks 
even from sparse point-based observations of individuals. 
Compared to standard, more restrictive methods that rely 
only on sequential observations at a trap and sometimes 
impose a temporal threshold within which the observa-
tion of two individuals in the same place must occur, our 
method pools data among individuals to arrive at a more 
general estimate of home range profile. In doing so, our 
method accounts for imperfect and heterogeneous observa-
tions (as in e.g. Gimenez et al. 2019). Using these general 
profiles, we then calculate the extent of two individuals’ 
home range overlap, as a function of their observed cen-
troids, to estimate their overlap in space. Our simulation 
results confirm that this approach results in more accurate 
and more representative networks than existing methods 

when data are sparse, mirroring similar findings from stud-
ies simulating social contacts using telemetry data (Gil-
bertson et al. 2021). However, our findings are sensitive 
to the choice of approach. We found that spatial overlap 
networks generally performed less well than sequential 
trap sharing networks when MCPs were used to estimate 
home range overlap, except in terms of power to detect a 
biological effect. MCPs are a non-data-hungry method for 
estimating home range, but suffer from some problems. 
They have the opposite problem at the boundary of two 
individuals’ home ranges, where two individuals can be 
assigned an edge weight of 0 when they were trapped at 
the same trap and, in reality, have some non-zero level of 
overlap. MCPs also assume a uniform density probability 
of occurrence across the home range. We acknowledge that 
MCPs are overly simplistic and encourage empiricists to 
find the method that best models the observed data from 
their animals when estimating their space use.

In our own implementation, we model differences in 
home range profile between large males and females based 
on our empirical data. However, classes of individuals that 

Fig. 5  Performance of observed 
networks with varying numbers 
of captures per individual on 
a 19 × 19 trapping grid, as 
measured by a correlation, 
Mantel correlation between 
edge weights in observed and 
true networks; b accuracy, mean 
of absolute difference in edge 
weights between observed and 
true networks (lower val-
ues = more accurate networks); 
c number of individuals in 
observed networks; and d 
power, proportion of true posi-
tives. Individual data points are 
plotted and a LOESS smoother 
added to a–c to aid visual inter-
pretation. Panel c refers to the 
data in the simulated observa-
tion dataset, which is identical 
for both methods
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differ in their space use will vary between systems, and prior 
knowledge will be necessary to identify these classes, e.g. 
males and females, larger and smaller individuals or younger 
and older individuals (Wolton and Flowerdew 1985; Mikesic 
and Drickamer 1992; Dahle and Swenson 2003; Godsall 
et al. 2014). Given adequate classification and modelling, 
our results show that an increase in correlation and accuracy 
of the spatial overlap method using our own implementation 
translates to greater power at extracting biological effects 
present in the true shared space use network. In our case, we 
modelled differences in mean degree (sum of edge weights) 
between large males and females, but these outcomes should 
be generalisable to other hypotheses. As noted above, the 
spatial overlap network generated from MCPs was also more 
powerful than the sequential trap sharing network, but less 
powerful than our own implementation.

An important, and perhaps unexpected, finding is that 
denser grids of data collection traps can make sequential 
trap sharing networks less strongly correlated with the true 
shared space use network and less accurate (at least when 
the mean number of captures per individuals is below 30). 
This result makes sense when considering sampling sto-
chasticity. The more traps are available, the less likely that 
two individuals, which overlap in space, will be trapped in 
exactly the same trap (unless the number of captures is very 
high and in no way limiting). Subsequently, constructing 
networks from occurrences at the same trap reduces the 
numerator of the edge weight calculation in Eq. 3 (the set of 
traps in which both individuals were detected) and increases 
the denominator (the set of traps in which at least one indi-
vidual was detected). By contrast, we show that, in terms of 
correlation, accuracy and power, our spatial overlap method 
performs equally well, or better, on a denser trapping grid. 
This is because finer-scaled grids provide better estimations 
of individuals’ space use.

It is important to note that networks generated using the 
spatial overlap method do not always perform better than 
sequential trap sharing networks. We show here that the lat-
ter are more accurate and more powerful at detecting bio-
logical effects present in the true shared space use network 
when the effect size is small and the number of captures 
per individual is large (and the trap density is low). In other 
words, if many sequential trap sharing events are observed, 
then a network based on these alone deviates less from the 
true shared space use network and is more likely to detect 
a subtle biological effect present in the true network, rela-
tive to the process of pooling data and generating popula-
tion-wide home range profiles. This finding aligns with the 
simulation results of Gilbertson et al. (2021), who found 
that—for telemetry data—spatial overlap networks also 
became overly dense and less sensitive at higher sampling 
rates (albeit, much higher sampling rates than could ever be 
achieved from trapping data). Thus, studies that use methods 

that produce substantially larger datasets than singular trap-
ping does, such as RFID detections (e.g. Sabol et al. 2018), 
should model the sampling process to determine the most 
powerful approach for a given effect strength.

We further note that the performance of sequential trap 
sharing networks may also depend on the biological system 
or the ecological conditions it experiences (as in Perkins 
et al. 2009). Our study is based on empirical data on M. 
agrestis sampled during the breeding season. During this 
time, field voles maintain relatively fixed home ranges which 
can be estimated with some certainty (Myllymaki 1977; 
Niethammer and Krapp 1982). However, this is likely to be 
problematic if individuals are highly mobile, resulting in 
constantly shifting home ranges. We would expect a sequen-
tial trap sharing network, with some threshold in the time 
gap between detections, to be better suited to more dynamic 
systems. Our study population also inhabits a relatively 
homogenous landscape, in the form of grassy clear-cuts 
within a coniferous forest. As a result, individuals are not 
expected to vary a great deal in the size of their home range. 
Landscape features, such as hills, in a more heterogeneous 
landscape could result in more variability in home range size 
among individuals, making it difficult to quantify an ‘aver-
age’ home range. If sampling is sufficiently high (Noonan 
et al. 2019), individual differences in home range profile 
could be accounted for when using the overlap method. This 
could be done, for example, by fitting a random effect for 
individual within class-specific regressions. These individ-
ual home range profiles could vary in size (by changing the a 
and b parameters of the negative sigmoidal curve) and/or in 
shape (by replacing the negative sigmoidal curve with a dif-
ferent function or an explicit home range model, e.g. Flem-
ing and Calabrese 2017). A number of approaches, beyond 
MCPs, also exist for modelling individual home ranges that 
could be employed (Winner et al. 2018). However, at higher 
sampling frequencies, a sequential trap sharing network 
could be better suited given the potential loss of performance 
from spatial overlap networks when individuals are detected 
very frequently (Gilbertson et al. 2021).

Shared space use networks are, and will continue to be, 
widely used to shed light on various biological processes. 
For example, individuals that share more space may be more 
likely to compete for resources. Many parasites and patho-
gens are also transmitted through the environment, and so, 
knowing who shares space with whom can tell us something 
about who is likely to transmit infection to whom (Vander-
Waal et al. 2013). It is also true that shared space use, or 
proximity, is a prerequisite for interaction (Farine 2015), but 
whether or not individuals that share space do indeed asso-
ciate, or interact, and thus how far point-based observations 
can be used to draw meaningful inferences, will depend on 
the biology of the system. In some systems, a correlation 
between spatial overlap and direct contact has been described 
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(Robert et al. 2012; Vander Wal et al. 2014), but behaviour 
in particular is important to consider, as some animals might 
actively avoid each other (Davis et al. 2014) whereas others 
might actively seek each other out (Raulo et al. 2021). For 
example, group-to-group social preferences (direct contact) 
in vulturine guineafowl (Acryllium vulturinum) multilevel 
societies are not correlated with home range overlap (Papa-
georgiou et al. 2019). It is therefore important to take care 
when making biological inferences from any network data.

One point we highlight in our study is that the process of 
network generation makes explicit assumptions about the 
biological processes being modelled. Using sequential trap 
sharing events, for example the presence of two individuals 
in the same location within a given pathogen transmission 
period (defined by the lifetime of the pathogen in the envi-
ronment, or the time taken for a pathogen to develop into an 
infective stage), to produce a sequential trap sharing network 
produces networks aimed at estimating space-sharing events 
that actually took place and that may (or may not) have 
resulted in transmission. When observation data are sparse, 
these observed events are likely to represent only a small 
proportion of all events that took place, and thus, the power 
of the network to detect biological effects is low. This could 
explain why observed transmission networks are not always 
robust estimates of transmission processes (Wohlfiel et al. 
2013). By contrast, more generally modelling the overlap-
ping space use among individuals captures the relative prob-
ability of direct or indirect contact taking place among all 
the dyads in a population, which will include both observed 
and unobserved events. Our simulations confirm that defin-
ing networks in this way can produce networks that are more 
powerful at detecting biological effects, especially when 
observations are sparse (see also Gilbertson et al. 2021). 
We use pathogen transmission as an example to illustrate 
our point, but this should be generalisable to other questions.

Our method provides a novel opportunity to generate 
meaningful shared space use networks, and if appropriate, 
to make inferences from shared space use about social inter-
actions, even from sparse point-based observations of indi-
viduals. It therefore unlocks the potential of these data, still 
the most common form of data available for many smaller 
or more cryptic species, to address a range of key questions 
in ecology and evolution.
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Glossary 
Accuracy of observed network: The mean of the absolute differences 
between the edge weights in an observed network and the edge weights 
in a true network.

Sequential trap sharing event: The observation of two 
individuals in the same spatial location, within a given defined 
temporal boundary (if applicable).
Correlation of observed network: The correlation between the 
edge weights in an observed network and the edge weights in a 
true network using a Mantel test.
Home range profile: The change in probability of detection 
with increasing distance from the centroid of an individual (here 
described using a negative sigmoidal curve, but see Discussion). 
Assumes an individual has a core and periphery to their home 
range, with the probability of detection higher closer to the core, 
and lower further away from the core.
Individual centroid: The centre of an individual’s home range. 
Calculated by taking the mean of all the positions it was observed 
in.
Observed network: A network in which the estimation of 
the relationships (here space-sharing) among individuals in 
a population is based on an observed dataset. In our case, we 
simulated observed datasets and created observed networks using 
both sequential trap sharing and spatial overlap approaches.
Power of observed networks: The proportion of observed 
networks in which one can detect a biological effect known to be 
present in the true network.
Sampling intensity: The number of draws from a binomial 
distribution {0,1} given a probability of observing an individual 
in a trap.
Sampling regime: A combination of (i) the trapping grid density 
used in a study and (ii) the sampling intensity in this grid, resulting 
in some mean number of observations per individual for a study.
Sequential trap sharing network: A network based on observed 
sequential trap sharing events only. Edge weights represent 
the number of traps in which both individuals were detected 
(sequentially) divided by the number of traps in which either or 
both individuals were detected.
Shared space use network: A network broadly based on space-
sharing among individuals. Sequential trap sharing networks and 
spatial overlap networks are two different implementations of 
shared space use networks.
Simulated observation dataset (or simulated dataset): A dataset 
that contains detections of individuals at traps, where the detection 
probability for a given individual in a given trap is determined by 
the position of the trap relative to the individual’s true home range 
profile.
Spatial overlap network: A network based on the amount of 
spatial overlap in the home range among individuals. Edge weights 
represent the overlap between two individuals’ home ranges. In our 
case, we calculated home range overlap numerically by overlaying 
the two individuals’ home range profiles and calculating the area 
under the two curves using Eq. 2.
True shared space use network (or true network): A network 
which is a true representation of space-sharing amongst 
individuals in a population, against which observed shared space 
use networks are compared. Edge weights represent the amount of 
overlap in the home range between each pair of individuals.
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