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The high performance and stability of wheat genotypes for yield, grain protein

content (GPC), and other desirable traits are critical for varietal development

and food and nutritional security. Likewise, the genotype by environment (G × E)

interaction (GEI) should be thoroughly investigated and favorably utilized

whenever genotype selection decisions are made. The present study was

planned with the following two major objectives: 1) determination of GEI for

some advanced wheat genotypes across four locations (Ludhiana, Ballowal,

Patiala, and Bathinda) of Punjab, India; and 2) selection of the best genotypes

with high GPC and yield in various environments. Different univariate [Eberhart

and Ruessll’s models; Perkins and Jinks’ models; Wrike’s Ecovalence; and

Francis and Kannenberg’s models], multivariate (AMMI and GGE biplot), and

correlation analyses were used to interpret the data from the multi-

environmental trial (MET). Consequently, both the univariate and multivariate

analyses provided almost similar results regarding the top-performing and

stable genotypes. The analysis of variance revealed that variation due to

environment, genotype, and GEI was highly significant at the 0.01 and

0.001 levels of significance for all studied traits. The days to flowering, plant

height, spikelets per spike, grain per spike, days to maturity, and 1000-grain

weight were specifically affected by the environment, whereas yield was mainly

affected by the environment and GEI. Genotypes, on the other hand, had a

greater impact on the GPC than environmental conditions. As a result, a multi-

environmental investigation was necessary to identify the GEI for wheat

genotype selection because the GEI was very significant for all of the

evaluated traits. Yield, 1000-grain weight, spikelet per spike, and days to

maturity were observed to have positive correlations, implying the feasibility

of their simultaneous selection for yield enhancement. However, GPC was

observed to have a negative correlation with yield. Patiala was found to be the

most discriminating environment for both yield and GPC and also the most
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effective representative environment for GPC, whereas Ludhiana was found to

be the most effective representative environment for yield. Eventually, two NILs

(BWL7508, and BWL7511) were selected as the top across all environments for

both yield and GPC.

KEYWORDS

grain protein content, stability analysis, G × E interaction, univariate analysis,
multivariate analysis, wheat

Introduction

Bread wheat (Triticum aestivum L.) is considered to be the

most valuable source of calories and protein across the world

(Pal et al., 2022). It is widely grown in different parts of the

world, including India, where it is an important staple crop,

particularly in the northern region (mainly Punjab State). In

many studies, grain protein content (GPC) has been observed

to be the most important factor influencing end-use quality

and thus has a significant impact on the economic importance

of wheat (Saini et al., 2020). As a direct consequence, GPC

improvement in wheat has become a top priority in wheat

breeding research projects, particularly for those looking at

improvement in nutritional quality (Shewry, 2009; Gudi et al.,

2022), especially for the people who cannot afford

supplements to fulfill their daily recommended intake of

protein. Since a negative association is generally observed

between GPC and grain yield, developing an elite wheat

cultivar having higher yield potential and GPC is

considered a major challenge, taking the current growing

rate of food requirements into consideration. Breeders can

target desirable stable genotypes having high yield potential

and GPC based on the results of selection in different

environments and more advanced approaches such as

genomic selection (Sandhu et al., 2021a, 2021b; Gill et al.,

2021, 2022; Saini et al., 2022). Biotic as well as abiotic stresses

usually play a considerable role in grain yield and GPC

fluctuations, which are closely associated with the

immediate response of cultivars to environmental changes

(Verma et al., 2015). This type of inconsistency or

alteration is known as genotype by environment interaction

(GEI), and it has been observed in several crops, including

wheat (Ahmed et al., 2011; Mengesha et al., 2019; Ahakpaz

et al., 2021).

Wheat breeders have always faced difficulty integrating both

high grain yield and high GPC into individual wheat genotypes,

mainly because of the following factors: 1) grain yield and GPC

are highly influenced by the environment; 2) GPC and grain yield

typically have a negative correlation with each other; and 3) both

yield and GPC have low to moderate level of heritability and are

controlled by a large number of genes (Khazratkulova et al.,

2015). Further, the wide range of environmental dependent

variables that are available in wheat growing regions brings up

the idea that there might be a strong directional interaction

present between genotype and environment. This interaction,

therefore, occurs whenever the yield potential of individual plant

is significantly influenced by the environment in which they are

evaluated (Malosetti et al., 2013). To study GEI, two major steps

are always considered to be performed: 1) phenotypic

characterization of the germplasm in a multi-location trial,

which subsequently demonstrates the possible existence of

environmental diversity available in growing regions; and 2)

analysis of the observed data to explain the structure of the

current interaction between genotype and environment and

consequently to display the possible environmental-related

parameters that help predict the behavior of genotypes in

untested environments (Hilmarsson and Roi, 2021). As a

result, rather than selecting according to the average

performance of cultivars conferring a wider level of

adaptation, it is preferred to arrange environments with

identical G x E performances into mega-environments to

select individual plants conferring local adaptations to

different environmental circumstances (Gauch and Zobel,

1997; Gauch, 2013). Moreover, designing a multi-

environmental trial to verify the stability and performance

(mainly in terms of yield) of wheat genotypes is a critical

requirement for successfully developing and releasing elite

wheat varieties.

Analysis of variance (ANOVA) is generally performed to

ascertain the presence of GEI utilizing the data collected from

the multi-environment trials. These measures are further used

to distinguish between random (including location,

replication, year, and environment) and fixed effects (such

as genotypes). Nonetheless, one of ANOVA’s major flaws is its

inability to distinguish genotypic variances in a non-additive

base as an interaction between genotype and environment

(Shahriari et al., 2018). In the literature, different statistical

methods have been used to explain different parts of GEI.

These methods have led to the identification of stable

genotypes across locations by measuring genotypic stability.

Two different approaches, including univariate (Eberhart and

Ruessll’s models, Perkins and Jinks’ models, Wricke’s

Ecovalnece, and Francis and Kanenberg’s model) and

multivariate (AMMI and GGE biplot) stability prediction

procedures, are generally utilized to better understand the

phenotypic stability patterns. Pattern analysis, cluster analysis,

principal component analysis (PCA), and biplot analysis are

commonly utilized multivariate techniques for discovering
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trends of GEI (Myint et al., 2019). The biplot techniques are

currently applied to diagrammatically represent the complex

relationships available between the variables (genotypes,

environments, and GEI) as well as to determine relatively

stable genotypes throughout the environments and similarly

prove the interaction structures (Shahriari et al., 2018).

Singular value decomposition (SVD) and visual

presentation of two-way matrices, such as the GEI

statistical data, are used to develop biplots. The two most

commonly used biplot analysis methods are as follows: 1) the

additive main effects and multiplicative interaction (AMMI)

model and 2) the genotype main effects and GE effects (GGE)

model (Gauch, 2008). Furthermore, plant breeders are more

interested in the above-mentioned statistical methods (AMMI

and GGE) because these methods can be applied to any two-

way measure, which can come from a variety of experiments.

The AMMI model employs ANOVA to examine the main

effects of genotypes and environments, as well as PCA to look

at residual interaction features (Singh et al., 2019). In AMMI1,

the PCA1 and substantial effect of the trait are represented by

the abscissa line and ordinate, respectively. But AMMI2 is a

graphical depiction of summarized information based on both

PC1 and PC2 values, which has significant privileges as

compared to regression-based statistical tools. The GGE

biplot provides a more significant diagrammatical depiction

as compared to AMMI model to identify genotypes conferring

best performance across all the environments under study

(Shrestha et al., 2021).

Furthermore, as the environment in specific areas becomes

more unpredictable over time, yield stability and broad

adaptability are becoming increasingly important (Singh et al.,

2019). In cereals, the AMMI technique was used in multi-

environment experiments to characterize the most stable

cultivar(s) (Sabaghnia et al., 2008; Sharifi et al., 2017). Several

other studies have been successfully implemented cultivar

stability analysis using both genotype and environmental

assessments, as well as the GGE biplot-adopted multi-

environment test, with great success (e.g., Mostafavi et al.,

2011; Bishnoi and Om Perkash, 2020; Ruswandi et al., 2021).

On the other hand, Gauch et al. (2008), criticized the GGE biplot

structure for decomposing G +GxE, but still reported that biplots

interpret G + GxE more accurately than AMMI matrices. GGE

biplot analyses have widely been utilized to characterize mega-

environments, examine genotype rankings, and further identify

discriminativeness and representativeness in evaluated

environments (Verma et al., 2015). In a multi-dimensional

environment, AMMI can better identify GEI and depict it

using a biplot. Both GGE and AMMI analysis models have

been utilized successfully in many studies to investigate

interaction patterns in multi-environment trials to discover

stable genotypes of different cereals, including wheat (Singh

et al., 2019; Hilmarsoon and Rio, 2021; Khan et al., 2021).

The objectives for this study were to examine GEI, the

performance and stability of advanced wheat genotypes, the

correlation of grain yield with GPC and agronomic traits, and

to ascertain the representativeness and discriminativeness

abilities of the environments where wheat is grown.

Materials and methods

Plant materials

The current research was conducted in the Department of

Plant Breeding and Genetics, Punjab Agricultural University

(PAU), Ludhiana, Punjab, India. For this study, a total of

13 wheat genotypes, including 9 near isogenic lines (NILs) and

4 checks, including one advanced breeding line (BWL6228),

and three commercial wheat varieties (PBW761, PBW725 and

HD3086), were utilized. A set of NILs was previously

generated in Department of Plant Breeding and Genetics,

PAU, with an aim to introgress Gpc-B1 gene from

GLUPRO into the background of a high-yielding wheat

variety (PBW550). PBW550 was released by Punjab

Agricultural University, Ludhiana, for cultivation under

timely sown irrigated condition of north western plain zone

(NWPZ), including Punjab. The variety is known for its short

duration, bold, hard, and amber colored shiny grain with

above average quality parameters. From this set of

developed NILs, we selected the 9 most agronomically

superior wheat NILs for the present study (information on

pedigree of these NILs is provided in Table 1). Subsequently,

the presence of Gpc-B1 in the above-mentioned NILs using the

appropriate KASP marker (data not provided) was also

confirmed. For the purpose of the analysis, all the NILs and

checks were termed as genotypes.

Testing environments and crop
management practices

The research trials were conducted across four locations

(Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab for two

consecutive main crop seasons (2019–20 and 2020–21) in

Punjab, India. Temperature, rainfall (Table 2) and other

ecological conditions differed significantly across the

environments (integration of location and time). In each

environment, the experiment was conducted in a

randomized block design (RBD) with three replications.

Each genotype was planted in a separate plot of size 5.4 m2

(4.5 m long with six rows, and the distance between two rows

was 20 cm). One experimental trial was sown at the wheat

experimental area, wheat section, Department of Plant

Breeding and Genetics, PAU, Ludhiana, and the other three

were sown at the regional research stations (RRSs) of PAU

located in Ballowal, Patiala, and Bathinda, respectively. All the
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trials were sown from November 10—November 25 in both the

years 2019–20 and 2020–21. In each year, during the cropping

season, weeding, irrigation, fertilizer application, and all other

field management activities were applied according to the

standard agronomical package recommended by PAU

(https://www.pau.edu/content/ccil/pf/pp_rabi.pdf). The

TABLE 1 List and pedigree of the selected genotypes (nine NILs, one advanced breeding line and three released varieties) evaluated in the present
study.

S. No. Genotypes Gpc-B1 Pedigree

1 BWL6228 − BWL 2760/BWL 1879//BWL 2752/BWL 1797

2 BWL6964 + PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

3 BWL7493 − PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

4 BWL7495 − PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

5 BWL7497 − PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

6 BWL7504 + PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

7 BWL7506 + PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

8 BWL7508 + PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

9 BWL7509 + PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

10 BWL7511 + PBW550//Yr15/6*Avocet/3/2*PBW550/4/GLUPRO/3*PBW568//3*PBW550

11 PBW 761 − PBW550//Yr15/6*Avocet/3/2*PBW550

12 PBW725 − PBW621//GLUPRO/3*PBW568/3/PBW621

13 HD3086 − DBW 14/HD 2733//HUW 468

+ indicates the presence of Gpc-B1, gene and −indicates the absence of Gpc-B1, gene.

Genotype 1 is an advanced breeding line, the genotypes 2–10 are near-isogenic lines, and genotypes 11–13 are released wheat varieties.

TABLE 2 Details of environmental condition for the experimental locations (Ludhiana, Ballowal, Patiala, and Bathinda) during two consecutive years
(2019–20, and 2020–21).

Pincode Location Latitude Longitude Altitude
(m)

Year Env.
Condition

Nov. Dec. Jan. Feb. Mar. Apr.

141001 Ludhiana 30˚90′10´´ 75˚80′71´´ 247 2019–20 Temperature 11–30°C 5–24°C 2–22°C 5–26°C 10–29°C 15–37°C

Rainfall 35.2 mm 46.8 mm 39.8 mm 15 mm 69 mm 13.2 mm

2020–21 Temperature 9–31°C 4–26°C 4–24°C 6–33°C 13–35°C 14–40°C

Rainfall 16.6 mm 6 mm 11 mm 17 mm 5 mm 14.3 mm

141202 Ballowal 30˚77′09´´ 75˚74′73´´ 246 2019–20 Temperature 11–30°C 5–24°C 2–22°C 5–26°C 10–29°C 15–37°C

Rainfall 16.2 mm 23.4 mm 19.5 mm 8.2 mm 25.3 mm 6.9 mm

2020–21 Temperature 9–31°C 4–26°C 4–24°C 6–33°C 13–35°C 14–40°C

Rainfall 6.3 mm 5 mm 8 mm 11 mm 4 mm 8.2 mm

147001 Patiala 30˚34′49´´ 76.33754 280 2019–20 Temperature 11–30°C 5–24°C 2–22°C 5–26°C 10–29°C 15–37°C

Rainfall 11.2 mm 27.1 mm 16 mm 6.7 mm 21 mm 9.9 mm

2020–21 Temperature 9–31°C 4–26°C 4–24°C 6–33°C 13–35°C 14–40°C

Rainfall 6 mm 5 mm 7 mm 8 mm 3 mm 11.2 mm

151005 Bathinda 30˚11′08´´ 74˚56′52´´ 210 2019–20 Temperature 10–32°C 2–23°C 3–22°C 5–27°C 11–30°C 14–40°C

Rainfall 9 mm 13.2 mm 11.2 mm 4 mm 9 mm 3.2 mm

2020–21 Temperature 8–33°C 4–36°C 2–23°C 6–36°C 14–40°C 12–43°C

Rainfall 5 mm 7 mm 6 mm 3 mm 5 mm 2 mm

Source: https://www.timeanddate.com/weather/india/
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standard rate of fertilizer prescribed by PAU (N = 50 kg/acre,

p = 25 kg P2O5/acre, and K = 12 kg K2O/acre) was applied for

raising the crop. In each research location, the field was

mechanically prepared in accordance with the local farmers’

interests. Furthermore, insect and disease prevention practices

were implemented wherever required. Similarly, manual

weeding was practiced as per requirement, and weeds were

controlled with herbicide application prior to and after field

preparation and also across the surrounding marginal areas of

the experimental field.

Data collection

Data was recorded on different traits including number of

days to flowering (DTF), number of days to maturity (DTM),

plant height (cm; PH), number of spikelet per spike (SPS),

number of grains per spike (GPS), thousand grain weight (g;

TGW), grain yield (kg/plot), and grain protein content (%; GPC).

These traits have an immediate and positive impact on grain yield

and quality. Pre-harvest (viz., DTF, DTM, PH) and post-harvest

(viz., GPS, SPS, TGW, yield and GPC) data were collected in the

field, wheat quality laboratory, and molecular wheat laboratory,

wheat section, Department of Plant Breeding and Genetics, PAU.

Five randomly selected individual plants from each plot were

considered for data recording. Data on the various traits was

collected on wheat genotypes for two consecutive years

(2019–20 and 2020–21) in the following manner: The DTF

was recorded when 75% of the spikes emerged from boots in

each plot. The DTM was recorded as the number of days from

sowing to date when 75% of the spikes in plots turned yellow. PH

was measured using the meter rod by placing the meter along the

plant from base to tip of the ear at maturity. SPS was determined

by counting the number of total spikelets on each spike. The

GPS was measured by threshing the representative spikes

individually and collecting, cleaning, and counting the grains

manually. From harvested grains, 1000 seeds were taken from

each plot, and their weight was recorded as a TGW. After

threshing of each plot, the grain was weighted and considered

as yield per plot. The whole grain analyzer “Infratec1241” (M/S

Foss Analytical AB, Sweden) was used to measure the GPC in the

grains. It is based upon the principle of near-infrared light, which

is transmitted through the grains. The 200 g grain samples were

scanned with a bandwidth of 7 nm in the range of 850–1050 nm,

and there were 100 data points per scan.

Statistical analysis

Using different packages of R software version 4.0.5, the data

on different quantitative traits was subjected to a combined

ANOVA to determine whether there was any variation among

all the variables considered during the current study.

Environments were considered random variables, while

genotypes were treated as fixed variables. The Pearson

correlation along with the pattern were prepared using

“corroplot” package of R software, using the following model

given as:

rG � cov (A, B)����������
var(A) . var(B)

√ Where cov (A, B) indicates the

covariance present between independent and dependent

traits, and var (A), and also var (B) shows the genetic

difference of independent and dependent trait (Sandhu

et al., 2021a). For further analysis, we only utilized the data

on GPC and grain yield, as they are both considered the critical

traits in terms of total wheat production and nutritional

security. To study the GEI, first, the univariate stability

analysis of the genotypes under study was conducted using

regression analysis based on the six different univariate

stability measures: Eberhart and Russell’s (1966) regression

coefficient (bi) and deviation from regression (S2di) determine

the performance of a genotype across different environments

(Changizi et al., 2014). The Eberhart and Russell’s (1966)

stability model is given as: Yij = μi + βiIj + δij, where the Yij

indicates the evaluation of ith (i = 1, 2, 3,. . .. . ., x) genotype

across the jth (1, 2, 3,. . .. . ., n) environment, μi is the genotype

mean, βi indicates the regression coefficient, δij shows the

deviation from the regression coefficient, and Ij is the

environmental index identified by subtracting the total

mean from each environmental mean (Francis and

Kanenberg’s 1978). coefficient of variability, which shows

the CV% of every individual genotype as a stability

parameter. Perkins and Jinks (1968), regression coefficient

(Bi) and deviation from regression (DJi), using the following

model as represented here: Yij = μ + AGi + AEj + GEij + ERij,

where Yij is the performance of ith genotype in the jth

environment, μ represents general mean over all the

genotypes and environments, AGi is additive genetic

portion of ith genotype, AEj shows the additive

environmental portion of jth environment, GEij represents

the GEI of ith genotype in jth environment, and ERij is the

experimental error for ith genotype in the jth environment.

Furthermore, the Wricke’s (1962) ecovalence (Wi), which

indicates the GEI for individual genotypes across all the

tested environments. Ecovalence, is used identify the

effective contribution of the genotypes to the overall GEI,

and calculated through the given formula:
�∑[xij − Xi.

q − X.i
p − X..

pq], where Xij is the evaluation of ith

genotypes in jth environment, Xi. = total sum of ith

genotype across all the studied environments, X. i = total

sum of ith environment for all the studied genotypes, q is

all the environments, and p shows all the genotypes. Then the

multivariate approaches for stability analysis were conducted

according to AMMI and GGE biplot using different statistical

packages available in R studio. The “metan” package of R

studio was applied for AMMI analysis, while the

GGEBiplotGUI package was employed for GGE biplot
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based analysis. In the AMMI model, the ANOVA and PCA are

merged together into an individual statistical package.

Therefore, GEI is subjected to PCA analysis only when

primary verification has already been completed using

ANOVA (Neisse et al., 2018). The equation for AMMI

model is given as below: Yge = μ + αg + βe + Σnλnγgnδen +

ρge, where in case of the additive factors, Yge is showing the

grain yield for a particular (g) genotype in an (e) environment,

where μ stand for grand mean, αg indicates deviation of

genotype from the mean, βe is deviation of environment

from the mean, λn stands for singular value of n

component, γgn indicates the value of eigenvector for

genotype (g) and δen is the value of eigenvector for e and

ρge; which is known as residual (Rad et al., 2013). Furthermore,

the equation for GGE biplot model is represented as: Pij =

(yij—μ—δj)/λj = (βi + ϵij)/λj, where Pij is the matrix for

genotype i and environment j, μ represents the grand

mean, δj is the column (environment) main effect, λj is an

evaluating factor, βi is the row (genotype) main effect, and ϵij
represents GEI, and yij is G and E two-way table (Yan and

Tinker, 2006). Also, the GGE biplot involves a group of

bioplot-based platforms for the interpretation of

interactions present between the genotype and the

environment. In general, in both GGE biplot and AMMI,

the graphical images are used to answer the critical queries

about G x E evaluation on a visual basis (Pour-Aboughadareh

et al., 2022). In addition, in both the biplot analyses, the results

are further interpreted based on the criteria mentioned by

Khan et al. (2021).

Results

Correlation

Figure 1 provides information regarding the correlation values

and patterns among the different traits in question with a particular

focus on yield and GPC across all the environments. Yield was

observed to have a highly significant negative correlation with GPC

(−0.52), while conferring a highly significant positive correlation

with TGW (0.66), DTM (0.57). GPC had a highly significant

negative correlation with DTF (−0.55), PH (−0.57), DTM (-0.83),

TGW (−0.75), and yield (−0.52).

Pooled analysis of variance for yield, grain
protein content and their related traits

The pooled ANOVA was performed to unravel the main

effect and determine the interaction present within and among

FIGURE 1
Pattern of correlation and level of significance observed among different traits across all the environments in 13 bread wheat genotypes. DTF,
Number of days to flowering; PH, Plant height; SPS, Number of spikelets per spike; GPS, Number of grain per spike; DTM, Number of days tomaturity;
TGW, 1000-grain weight; GPC, Grain protein content.
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the sources of variations that are analyzed during the present

study. The pooled ANOVA concerning all the eight traits is

presented in Table 3. The variance due to genotype (G),

location (L), year (Y), G × Y, G × L, and G × Y × L for all

the eight traits was highly significant, either at 0.001% or at

0.01% level of significance. A high level of variability was

observed in wheat genotypes for key traits related to yield

and GPC.

Univariate analyses

The data for different regression stability analyses is

presented in Table 4 (concerning GPC, and yield) and

Supplementary Table S1 (concerning DTF, DTM, SPS, GPS,

TGW, and PH). In this study, we focused specially on yield and

GPC. For yield, based on the Eberhart and Russell (1966)

model, the deviations from the regression (S2di) indicated

that, BWL7495, BWL7509, and PBW761 are stable genotypes

and, accordingly, the coefficient of regression (bi) showed that

they are adaptable, particularly to unfavorable environments

(bi = 0.7491 for BWL7495, bi = 0.5863 for BWL7509, and bi =

0.607 for PBW761), but BWL7511 showed adaptability

specific to high-yielding environments (bi = 1.1432). The

genotypes, BWL7495, BWL7509, PBW725, HD3086, and

PBW761 are categorized in the class of stable and high-

yielding genotypes, which are adapted particularly to low-

performing environments. These genotypes are grouped in

this class based on their regression values, which is lower than

one. Based on mean grain yield, the BWL7497, BWL7509,

PBW761, and PBW725 showed the highest yield and,

therefore, were preferred over other genotypes. These

genotypes are grouped based on their mean in the high-

yielding class. Based on Perkins and Jinks regression

analysis, the genotype BWL6964 had a positive coefficient,

but the genotypes, BWL7495, BWL7509, and PBW761 had

negative coefficient values. Consequently, BWL6964 was

observed to be stable due to its highest regression value and

adapted specifically to high-yielding environments.

Furthermore, the variation in the mean value for yield

could be described by the respective responses of genotypes

across environments. The regression value close to 1 confirms

TABLE 3 Combined analysis of variances for grain protein content, yield and key yield-related traits of 13 bread wheat genotypes across eight
environments.

S.V DTF PH SPS GPS

DF SS MS SS MS SS MS SS MS

Genotype 12 1497 124.8*** 2944 245.4*** 53.13 4.43*** 832 69***

Location 3 5006 1668.8*** 3293 1097.6*** 178.47 59.49*** 10425 3475***

Year 1 15 14.48*** 23 23.4*** 29.54 29.54*** 907 907***

G × Y 12 43 3.6*** 172 14.3*** 25.71 2.14*** 178 15**

G × L 36 230 6.4*** 1274 35.4*** 68.70 1.91*** 1468 41***

Y × L 3 49 16.3*** 221 73.7*** 72.90 24.30*** 1713 571***

G × Y × L 36 263 7.3*** 588 16.3*** 91.76 2.55*** 540 15***

S.V DTM Yield TGW GPC

DF SS MS SS MS SS MS SS MS

Genotype 12 653 54.5*** 11.03 0.920*** 978 81.5*** 268.50 22.37***

Location 3 4216 1405.2*** 93.27 31.090*** 4059 1353*** 130.11 43.37***

Year 1 33 32.7*** 0.06 0.064ns 2 1.9ns 12.87 12.87***

G × Y 12 11 0.9ns 9.74 0.812*** 189 15.8*** 16.88 1.41***

G × L 36 441 12.3*** 94.47 2.624*** 723 20.1*** 46.41 1.29***

Y × L 3 340 113.2*** 16.37 5.458*** 54 18.1*** 7.57 2.52***

G × Y × L 36 147 4.1*** 25.66 0.713*** 437 12.1*** 27.69 0.77***

**, 0.01% level of significance.

***, 0.001% level of significance.

ns, Non-significant; DF, Degrees of freedom; SS, sum of squares; MS, Mean square,;S.V, Source of variances; G × Y, Genotype × Year; G × L, Genotype × Location; Y × L, Year × Location;

G × Y × L, Genotype × Year × Location; DTF, Number of days to flowering; PH, Plant height; DTM,Number of days to maturity; SPS, Number of spikeletes per spike; GPS, Number of grain

per spike; TGW, 1000-grian weight, and GPC, Grain protein content.
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that genotypes perform in a stable manner across all the

environments. The genotypes BWL7508 (bi = 1.15, CV =

16.6%, Bi = 0.15, mean = 2.83 kg/plot; Table 4, and

Supplementary Table S2) and BWL7511 (bi = 1.14, CV =

14.87%, Bi = 0.14, mean = 2.81 kg/plot; Table 4, and

Supplementary Table S2) were selected as the most stable

and producing high yield.

In the case of GPC, the (S2di) showed that BWL6228,

BWL6964, PBW761, and PBW725 are the genotypes with high

stability, and based on (bi) they are considered to have specific

adaptation to low-yielding environments (bi = 0.862 for

BWL6228, bi = 0.996 for BWL6964, bi = 0.65 for PBW761,

and bi = 0.134 for PBW725), but BWL7511 is observed to be

particularly adapted to high-yielding environments (bi =

1.2088). The genotypes BWL6228, BWL6964, BWL7497,

BWL7506, PBW761, PBW725, and HD3086 are grouped as

the high-GPC and stable genotypes and showed specific

adaptability to unfavorable environments because they had

regression value of less than 1 (bi < 1). On the other hand,

BWL6964, BWL7504, BWL7508, and BWL7509 had GPC

greater than the average mean, and therefore, they could be

more desirable than other genotypes. They are considered as

TABLE 4 Six univariate stability parameters and standard deviation for (A) yield and (B) GPC of 13 wheat genotypes across four locations (Ludhiana,
Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years 2019–20, and 2020–21. (A) Yield and (B) Grain protein content (GPC).

Genotypes Francis and
kanenberg

Eberhart and
russell

Perkins and jinks Wricke’s ecovalence

Sd CV (%) bi S2di Bi DJi Wi

BWL6228 1.1151 22.1484 0.859 1.0742 −0.141 1.1049 6.6854

BWL6964 1.2438 23.5916 1.712 0.4009 0.712 0.4316 4.0149

BWL7493 1.1008 21.2189 1.1536 0.7595 0.1536 0.7902 4.8076

BWL7495 0.5786 11.9541 0.7491 0.097 −0.2509 0.1277 0.9433

BWL7497 1.0779 20.1607 1.3935 0.415 0.3935 0.4457 3.1097

BWL7504 1.0069 20.0641 1.3718 0.2704 0.3718 0.3011 2.1953

BWL7506 1.224 23.878 1.2797 0.9499 0.2797 0.9806 6.1036

BWL7508 0.8715 16.6017 1.1553 0.2299 0.1553 0.2606 1.6313

BWL7509 0.487 9.2235 0.5863 0.085 -0.4137 0.1157 1.1753

BWL7511 0.7742 14.8713 1.1432 0.0562 0.1432 0.0869 0.5791

HD3086 0.7772 14.9953 0.1619 0.6618 -0.8381 0.6925 6.1301

PBW725 0.9882 17.4926 0.8277 0.7876 -0.1723 0.8183 4.993

PBW761 0.4629 8.6203 0.607 0.0467 -0.393 0.0773 0.8983

Genotypes Francis and
kanenberg

Eberhart and
russell

Perkins and jinks Wricke’s ecovalence

Sd CV (%) bi S2di Bi DJi Wi

BWL6228 0.7676 6.0004 0.8626 0.1807 −0.1374 0.2086 1.3248

BWL6964 0.8503 6.2098 0.996 0.1774 −0.004 0.2053 1.232

BWL7493 1.375 10.2205 1.6906 0.3388 0.6906 0.3667 4.0414

BWL7495 1.3797 10.2976 1.7058 0.3207 0.7058 0.3486 4.0147

BWL7497 0.8149 6.2211 0.9703 0.1411 −0.0297 0.169 1.0176

BWL7504 1.0129 7.3816 1.2902 0.0979 0.2902 0.1258 1.0801

BWL7506 0.568 4.2377 0.2713 0.3011 −0.7287 0.329 4.0242

BWL7508 0.9113 6.5333 1.0658 0.2101 0.0658 0.238 1.4447

BWL7509 1.034 7.5539 1.3295 0.0822 0.3295 0.1101 1.0796

BWL7511 0.9777 7.1727 1.2088 0.147 0.2088 0.1749 1.218

HD3086 0.7704 6.6667 0.8192 0.2329 −0.1808 0.2608 1.6908

PBW725 0.4421 3.9949 0.1342 0.1886 −0.8658 0.2165 4.1924

PBW761 0.8594 7.4214 0.6556 0.5571 −0.3444 0.585 3.9679

Sd, Standard deviation; CV, coefficient of variation; bi, Regression coefficient of Eberhart and Russell; S2di, Deviation form regression of Eberhart and Russel; Bi, Regression coefficient of

Perkins and Jinks; DJi, Deviation from regression of Perkins and Jinks; Wi, Wrick’s equivalence.
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high-GPC genotypes based on their GPC mean. According to

Perkins and Jinks’ regression model, the genotype

BWL7495 showed a positive regression value, but the

genotypes BWL6228, BWL6964, BWL7511, PBW761, and

PBW725 showed negative regression values. Therefore,

BWL7495 was recorded as a stable genotype because of its

highest coefficient value (Bi = 0.705) and therefore, it was

adapted particularly to favorable environments. The

regression value near to 1 indicates that genotypes perform

at a stable level across all the environments. The genotypes

TABLE 5 AMMI-based ANOVA for yield, GPC and their related traits of 13 bread wheat genotypes across four locations (Ludhiana, Ballowal, Patiala,
and Bathinda) of Punjab in two consecutive years 2019–20, and 2020–21.

DTF PH

DF SS MS % Explained SS MS % Explained

Environment 7 5069.99 724.28*** 71.37 3537.61 505.37*** 41.54

Genotype 12 1497.07 124.76*** 21.08 2944.48 245.37*** 34.58

G × E 84 536.263 6.385*** 7.55 2033.65 24.210*** 23.88

PC1 18 222.982 12.39*** 41.58 1206.63 67.035*** 59.33

PC2 16 122.378 7.65*** 22.82 432.88 27.055*** 21.29

SPS GPS

DF SS MS % explained SS MS % explained

Environment 7 280.91 40.13*** 54 13045.22 1863.60*** 81.21

Genotype 12 53.135 4.43*** 10.21 832.45 69.37*** 5.18

G × E 84 186.17 2.22*** 35.79 2185.72 26.02*** 13.61

PC1 18 67.120 3.73*** 36.05 1147.88 65.27*** 53.75

PC2 16 37.200 2.33*** 19.98 409.29 25.58*** 18.73

DTM Yield

DF SS MS % explained SS MS % explained

Environment 7 4587.84 655.41*** 78.56 109.64 15.66*** 43.78

Genotype 12 652.52 54.38*** 11.17 11.03 0.92*** 4.40

G × E 84 599.39 7.14*** 10.26 129.80 1.55*** 51.83

PC1 18 347.63 19.31*** 58 69.77 3.88*** 53.75

PC2 16 118.21 7.39*** 19.72 24.91 1.56*** 19.19

TGW GPC

DF SS MS % explained SS MS % explained

Environment 7 4115.20 587.88*** 63.87 150.55 21.51*** 29.52

Genotype 12 977.83 81.49*** 15.18 268.51 22.38*** 52.64

G × E 84 1350.09 16.07*** 20.95 90.98 1.08*** 17.84

IPC1 18 571.13 31.73*** 42.30 46.39 2.58*** 50.99

IPC2 16 390.78 24.42*** 28.94 16.93 1.06*** 18.61

***, 0.001% level of significance.

DF, Degree of freedom; SS, Sum of square; MS,Mean square; G × E, Genotype × Environment; DTF, Number of days to flowering; PH, Plant height; DTM, Number of days to maturity; SPS,

Number of spikelets per spike; GPS, Number of grain per spike; TGW, 1000-grian weight, and GPC, Grain protein content.
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BWL7508 (bi = 1.06, CV = 6.53%, Bi = 0.06, mean = 13.94%),

and BWL7511 (bi = 1.20, CV = 7.17, Bi = 0.20, mean = 13.63%)

were identified as the most stable genotypes and had

high GPC.

Additive main effects and multiplicative
interaction based analysis of variance for
yield, grain protein content and their
related traits

The AMMI based ANOVA involving all the eight

traits evaluated in the present study is given in Table 5.

The results revealed that the DTF, PH, SPS, GPS, TGW,

yield, GPC, and DTM are significantly influenced at a

0.001% level of significance by G, E, and GEI. The

environment explained more than 50% of the total

variation for all the traits except yield, GPC, and PH. For

instance, the proportion of total variation contributed by G, E,

and GEI for grain yield was 43.78, 4.4, and 51.83%,

respectively. In the case of GPC, genotype, GEI, and E

contribution explained 52.64, 17.84, and 29.52% of the total

phenotypic variation, respectively. The genotype contributed

less than 35% of the total observed variation for all the traits

except GPC.

Genotype × environment interaction
based on additive main effects and
multiplicative interaction model

It allowed us the opportunity to look at the biplot graph

when it was chosen to apply AMMI-based analysis to examine

both the adaptability and stability of genotypes. The predicted

variation among and within the main effects of either G or E,

as well as the multiplicative interaction of the GEI, are

efficiently used to explain the biplot graphs. In a biplot

graph, the main effects (mean performance of tested

genotypes) are displayed by the abscissa, while the possible

interaction among the axes (IPCA1 and IPCA2) is represented

by the ordinate (Oliveira et al., 2014). Thus, the higher PCA1,

the higher the proportion of GEI and, consequently, the lower

stability of lines under study or vice versa. By keeping this in

view, a high-yielding genotype with an IPCA1 score adjacent

to the zero line is preferred. On the other hand, poor stability is

related to low performance of the trait, hence this genotype is

FIGURE 2
The “AMMI1” graphs displays the main effect and IPC1 effect values describing relationship among examined genotype and environment of
13 bread wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20, and
2020–21) for (A) yield (kg/plot) and (B) GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and
ENV8 = Bathinda).
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not preferred. Different responses of environment to

genotypic stability for the tested genotypes were observed

in the present study. Figure 2 represents the AMMI1 based

analysis of 13 genotypes and 8 environments for yield, and

GPC. Based on PCA1 value, the ENV4 is determined as the

major player to the stability performance of genotypes in case

of yield and GPC. On the other hand, BWL7495 and

PBW761 for yield (Figure 2A), BWL7504 for GPC

(Figure 2B) secured an IPCA1 value of close to zero

suggesting minor environmental effect on these genotypes.

For AMMI2, the biplot graph representing the

environment and genotype stability performance of yield

and GPC is provided in Figure 3. In case of AMMI2, the

genotypes and environments with lower IPCA1 and

IPCA2 value that are securing a closer position to the

origin are considered as the most stable ones which

explained lower interaction between environment and

genotype. In the present study, the BWL7508, BWL7509,

and BWL7511 for instance, considered as the most stable

wheat genotypes in terms of yield (Figure 3A), based on the

their positions near to the origin. In case of GPC, the

BWL7497, BWL7504, and BWL7511 are suggested as the

most stable ones (Figure 3B). On the other hand,

ENV2 and ENV4 secured positions near to origin and

considered the most stable environments for all the

genotypes in terms of yield and GPC, respectively.

GGE biplot based evaluation of genotype
× environment interaction

The predominant control of the genotype and its interaction

with the environment is considered the fundamental origin of

variations whenever, evaluating the genotypes across the multi-

location trials. The three important indicators which could be

determined by biplot are considered to be capable of defining the

GEI are as follows: 1) the “which-won-where” graph, which is an

efficient pattern to display the principle of GEI; 2) the stability vs.

genotype mean performance across different environments

tested in the study; and 3) the representativeness and

discriminating abilities of the tested environments.

“Which-won-where” approach

The polygon-view of a GGE biplot analysis illustrates the

which-won-where structure of a multi-environment experiment,

which is consequently the most efficient and simplest manner of

FIGURE 3
The “AMMI2” graphs displays both the axes of interaction (IPCA1 and IPCA2) values for genotype effect and genotype by environment
interaction effect of 13 bread wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years
(2019–20 and 2020–21) for (A) yield (kg/plot) and (B) GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala;
ENV4, and ENV8 = Bathinda).
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characterizing the genotype and its further interaction with the

environment. Figures 4A,B describe the which-won-where

structure of biplot analysis for yield and GPC of 13 wheat

genotypes distributed over all the 6 sectors/sections, while the

8 tested environments are distributed over 4 sectors for yield and

3 sectors for GPC. In terms of yield, sector 1 consists of

ENV1 and ENV5 along with wheat genotypes BWL7497,

BWL7506, and BWL7511; sector 2 contains ENV2 and

ENV6 with BWL6964 and BWL7493; sector 5 carries

ENV4 and ENV7 with BWL7508 and PBW726; and sector 6

consists of ENV3 and ENV8 with BWL6228 (Figure 4A). The

genotypes are more suitable and confer a high level of

performance and stability in the environment within the same

sector. The elite variety PBW725 is observed to be the most away

from the biplot origin and also the polygon vertex line, indicating

that PBW725 confers a high level of adaptability and yield

performance specific to ENV4 and ENV7, but shows poor

stability across all other tested environments. In case of GPC,

sector 2 carries ENV1 with BWL7509, sector 3 contains ENV2,

ENV3, ENV4, ENV5, ENV6, and ENV7 along with wheat

genotype BWL7511, and sector 4 carries ENV8 with

BWL6964, BWL7504, BWL7506, and, BWL7508 confirming

that these genotypes are more suitable and confer a high level

of performance and stability in the environment within the same

sector, but less stable and poor performance across environments

in different sectors. In case of GPC, the genotype

BWL7506 showed the longest distance from the biplot center

and the polygon vertex line which indicates that

BWL7506 confers high stability and has good performance as

well as good adaptation specifically to ENV8, but poor adaptation

to other environments (Figure 4B). Furthermore, the genotype

with close contact to the vertex line of the polygon in a section

where the environments are also observed in that section showed

that the observed genotype conferred higher performance and

adaptation in that particular environment. In case of GPC, for

instance, the genotype BWL7497 was in close contact with vertex

line, therefore, had high-GPC performance and adaptability

specifically to ENV1. A genotype connected to a polygon

vertex line where no environment is observed indicates that

the genotype is providing lower yield or performance over all the

environments. Even more, the genotypes inside the polygon are

less affected by the environment than the genotypes at the

corners are.

Means versus stabilitymodel of GGE biplot
and evaluation of wheat genotypes

After the which–won–where model of GGE biplot

recommended the dominating wheat genotypes under certain

FIGURE 4
The polygon view of “Which-won-where” model of GGE biplot representing the performance of 13 bread wheat genotypes and their
interactions with environment across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20, and
2020–21) based on (A) yield (kg/plot and (B)GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and
ENV8 = Bathinda).
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environments, it became essential to evaluate the average stability

and performance of all wheat NILs before making a selection

choice. The performance and stability of the genotypes are

graphically represented by the GGE biplot using average

environmental coordinates (AEC). If single value portioning

(SVP) is equal to 1, the AEC line crosses through the origin

of the biplot. This biplot graph is made up of two lines which are

perpendicular to each other: 1) the AEC abscissa and 2) the AEC

ordinate. The arrowhead in Figures 5A,B represents the AEC,

which is the average of the first and second PCA values of the

evaluated environments. The AEC abscissa is the line crossing

through the origin and arrowhead, pointing to higher mean

performance of certain traits, and its length indicates the

magnitude of the genotype’s performance for a particular trait,

which is either above or below the average performance of the

genotype with respect to the right or left side of the origin point,

respectively. The ordinate is the line perpendicular to the abscissa

at the origin point, and its length determines the GE interaction

associated with the genotype, where a longer ordinate is

associated with greater variability and poor stability.

Figure 5A indicates that the wheat genotypes BWL7497,

BWL7508, and BWL7511 have above-average yield and

greater stability, while BWL6228, BWL7506, and

PBW725 also have above-average yield, but show poor

stability. On the other hand, genotypes BWL7495, BWL7504,

BWL7509, and BPW761 are stable but show yield below the

average and BWL6964, BWL7493 and HD3086 have yield below-

average and show less stability. The Figure 5B shows that the.

BWL6964, BWL7497, BWL7504, BWL7506, BWL7508,

BWL7509, and BWL7511 have above-average GPC and higher

stability whereas BWL7493, and BWL7495 also have above-

average GPC, but show less stability. Furthermore, the

BWL6228, PBW761, PBW725, and HD3086 have GPC below-

average and show more stability. Based on mean versus stability

model, ideal genotypes line on the arrowhead, conferring the best

performance and maximum stability while the distance between

arrowhead and other genotypes determines their specific trait

potential. Figures 5A,B indicate that BWL7508, and

BWL7511 are the most desirable genotypes for yield and

GPC, respectively, which are greatly close to the arrowhead,

followed by BWL7497 for yield and BWL7504 for GPC.

Ranking the ideal wheat genotypes

The arrowhead contains the best performing genotypes, but

it is not always possible to be the ideal one. Two coordinate axes

are sketched to rank the genotypes (Figures 6A,B): a straight line

connecting the arrowhead with the origin of the graph (first axis)

and a line exactly perpendicular to the first axis at the origin

(second axis). The genotypes may then be ranked based on

involvement in the circles and position located away from the

FIGURE 5
The “mean versus stability” model describing the interaction effect of 13 bread wheat genotypes evaluated across four locations (Ludhiana,
Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20, and 2020–21) for (A) yield (kg/plot) and (B)GPC (%). (ENV1, and ENV5 =
Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and ENV8 = Bathinda).
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arrowhead in the ordinate by viewing circles anywhere along the

arrowhead. Using the ranking graph of biplot, the best and ideal

genotype could be detected. The PBW725 variety is close to the

arrowhead, which is considered the ideal genotype for grain yield

(Figure 6A), followed by BWL7506 and so on. In the case of GPC

(Figure 6B), BWL7511 is noted as the best genotype due to its

closeness to the arrowhead, followed by BWL7509 and

BWL7504. If we rank all the genotypes for yield based on

biplot ranking decisions, it would be as follows: PBW725 >
BWL7506 > BWL7508 > BWL7511 > BWL7497 >

FIGURE 6
The “ranking genotypes” model of biplot assess other genotypes against the ideal genotype conferring genotype interaction and GEI for
13 bread wheat genotypes evaluated across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years (2019–20,
and 2020–21) for (A) yield (kg/plot), and (B)GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala; ENV4, and
ENV8 = Bathinda).

TABLE 6 Ranking of 13 bread wheat genotypes based on yield and GPC mean and biplot decision.

Rank Mean yield
based ranking

Biplot based
ranking

Rank Mean GPC
based ranking

Biplot based
ranking

1 PBW725 PBW725 1 BWL7508 BWL7511

2 PBW761 BWL7506 2 BWL7504 BWL7509

3 BWL7497 BWL7508 3 BWL6964 BWL7504

4 BWL7509 BWL7511 4 BWL7509 BWL6964

5 BWL6964 BWL7497 5 BWL7511 BWL7508

6 BWL7508 BWL6228 6 BWL7493 BWL7497

7 BWL7511 BWL7509 7 BWL7495 BWL6228

8 BWL7493 PBW761 8 BWL7506 BWL7493

9 HD3086 BWL6964 9 BWL7497 BWL7495

10 BWL7506 BWL7493 10 BWL6228 BWL7506

11 BWL6228 BWL7504 11 PBW761 PBW761

12 BWL7504 HD3086 12 HD3086 HD3086

13 BWL7495 BWL7495 13 PBW725 PBW725

GPC, grain protein content.
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BWL6228 > BWL7509 > PBW761 > BWL6964 > BWL7493 >
BWL7504 > HD3086 > BWL7495 (Table 6). Furthermore, the

ranking of genotypes for yield and GPC based on biplot decision

is consistent with the average performance of the genotypes for

these two and other concerning traits over all the 8 environments

(Supplementary Table S2).

Discriminativeness vs. representativeness
of the environments

Identifying the ideal environment for testing of genotypes is

more challenging for a successful breeding project aimed to select

the best genotypes. Discriminativeness (an environment’s

capacity to discriminate among the genotypes) and

representativeness (an environment’s potential to represent all

other environments evaluated) are two characteristics that

indicate how perfect the tested environments are. The Figures

7A,B describes the “descriminitiveness vs. representativeness”

model of biplot. The GGE biplot tests discriminativeness using

the environmental vectors; the longer the environment vector,

the larger the standard deviation within the environment,

suggesting more discriminative ability. The selection of better

genotypes is ideal in an environment with a long vector that

makes a narrower angle with the AEC abscissa line.

Consequently as illustrated in Figures 7A,B, ENV1 for yield

and ENV3 for GPC have relatively longer vectors and

narrower angles with AEC abscissa lines indicating that these

environments have a better discriminating and representing

capacities for yield and GPC. However, the average of grain

yield and GPC were higher in ENV1 and ENV5 as compared to

other environments (Supplementary Tables S3, S4). The cosine of

the angle between the AEC line, and the environment vector is

almost equal to the correlation coefficient between the mean

performance of genotype over the environment and the genotype

values in that environment. The narrower the angle between the

AEC line and the environment vector (used to test the genotype),

the better the environment in comparison to those that confer

larger angles. The direction of the AEC abscissa line is shown by

an arrow, whereas the environment mean is indicated by a tiny

circle, and the length of the test environment vector reflects the

discriminating accuracy level. The length of each environment

vector indicates how good (discriminating capacity) it is for

distinguishing genotypes in the environment.

Discussion

India is considered one of the major countries in terms of

wheat production and consumption in the world. In the present

study, the AMMI and pooled-based analysis of variance showed a

high and significant amount of variation among 13 wheat

FIGURE 7
The “Discrimitiveness vs. Representativeness” model of biplot evaluate the genotypes anianst the ideal genotypes conferring genotype
interaction and GEI for 13 bread wheat genotypes across four locations (Ludhiana, Ballowal, Patiala, and Bathinda) of Punjab in two consecutive years
(2019–20, and 2020–21) for (A) yield (kg/plot) and (B)GPC (%). (ENV1, and ENV5 = Ludhiana; ENV2, and ENV6 = Ballowal; ENV3, and ENV7 = Patiala;
ENV4, and ENV8 = Bathinda).

Frontiers in Genetics frontiersin.org15

Tanin et al. 10.3389/fgene.2022.1001904

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1001904


genotypes based on eight different traits. The high level of genetic

variation, which is significantly observed in the present as well as

in previously published studies, using near-isogenic lines

confirmed the availability of a golden opportunity to employ

the near-isogenic population for wheat improvement

programmes with a special focus on GPC and yield (Bányai

et al., 2017; Kokhmetova et al., 2017). In this study, we

particularly focused on yield and GPC for the following

reasons: 1) wheat grain yield is very important since it is a

stable source of food for the world’s population 2) GPC is an

important determinant of food quality 3) combining higher grain

yield and higher GPC in an individual wheat variety is considered

as an important determinant of food and nutritional security in

the world.

The yield had a strong positive correlation with 1000-grian

weight (0.66). This finding is consistent with results previously

reported in wheat (Mecha et al., 2017; Baye et al., 2020). The

positive association of yield with 1000-grian weight suggests that

it could be possible to effectively select for both the traits

concurrently. Yield also showed a positive correlation with

SPS (0.33), DTF (0.45), PH (0.13), and DTM (0.57). Ojha

et al. (2018) reported a positive correlation between yield and

plant height. A similar positive correlation between yield and

spikelet per spike and the number of days to maturity was

reported by Dutamo et al. (2015). Similarly, the positive

correlation between yield and the number of DTF was

previously reported in wheat (Gelalcha and Hanchinal, 2013).

On the other hand, the significantly negative correlation between

yield and GPC is in agreement with the results previously

reported by some other studies (Brevis and Dubcovsky, 2010;

Blanco et al., 2012). This is mostly due to a shorter grain filling

period and early senescence which comes as a linked trait when

introgressing Gpc-B1 gene.

In comparison to the effects of environment (29.52%) and

GEI (17.84%), the effect of genotype (52.64%) highly contributed

to the total variation in GPC. As a result, the genotypic

component of variation explained a significant portion of the

total variation for the GPC, implying that genotypes differed

more than environments. However, for the remaining traits

except yield, the contribution of environmental effects was

higher than the effect of both the genotype and GEI to the

total variances for DTF (71.37%), PH (41.54%), SPS (54%), GPS

(81.21%), DTM (78.56%), and TGW (63.87%). The effect of GEI

(51.83%) was higher than the effect of both the environment

(43.78%) and genotype (4.4%) for yield. The greater contribution

of GEI and environment to the total variation in grain yield was

also observed in several earlier studies in wheat (e.g., Amare et al.,

2015; Verma et al., 2015; Singh et al., 2019) and in some other

crops (e.g., Rakshit et al., 2012; Mukuze et al., 2020). The highly

significant contribution of the GEI effect to the total differences

in yield indicates that the response of various wheat genotypes to

variation in environmental factors was entirely different,

implying that selection of environment-specific genotypes is

required. Furthermore, the greater contribution of GEI to

variation in yield over genotype suggests that there may be

some different mega-environments available across the

examined environments (Enyew et al., 2021). On the other

hand, much larger environmental effect shows that a MET

needs to be done to find stable, and high-yielding genotypes

that are more adaptable and can be used in specific agro-climatic

conditions.

Previously, Finlay and Wilkinson (1963) used a number of

stability metrics, such as linear regression analysis, as a stability

indicator. In GEI, Eberhart and Russell (1966) underlined the

significance of incorporating both linear and nonlinear variables

when determining the stability of a genotype. Based on this

approach, the term “stable genotype” refers to a genotype that

behaves uniformly under all studied conditions/environments.

Consequently, the stable genotype has a high mean performance

(bi = 1.0) and the lowest deviations from regression (S2di = 0).

The regression value explains the adaptability of the evaluated

genotypes across the assessed environments. The desirable

stability required for a genotype is considered as a regression

value approaching 1, and a higher mean performance is superior.

A genotype having a lower mean performance, a regression value

of less than one, and non-significant S2di does not adapt

effectively to favorable environments, and therefore might be

marked as a genotype with adaptability to low-yielding

environments (Shrestha et al., 2021). On the other hand,

genotypes having a higher mean performance, a regression

value greater than one, and a non-significant S2di are

considered as low-stable genotype. These groups of genotypes

effectively perform across high-yielding conditions but not so

well in low-yielding environments. Consequently, they are able to

effectively adapt across different conditions (Shrestha et al.,

2021). In the case of yield, the genotypes BWL6964,

BWL7493, BWL7497, BWL7504, BWL7506, and

BWL7511 possess regression values greater than 1, which

indicates that they are suited to high-yielding environments,

while the genotypes BWL6228, BWL7495, BWL7509, PBW761,

PBW725, and HD3086 possess regression values less than 1,

which implies that they are suited to low-yielding environments

(Table 4). Similar results were also obtained by (Tanin and

Gupta, 2018) in Indian mustard and by Shrestha et al. (2021)

in maize. For GPC, the genotypes BWL 7493, BWL7495,

BWL7504, BWL7508, BWL7509, and BWL7511 had

regression values greater than 1, which implied that they

adapted to favorable environments, while the genotypes

BWL6228, BWL6964, BWL7497, BWL7508, PBW761,

PBW725, and HD3086 had regression values less than 1,

which confirmed that they are more desirable for unfavorable

environments (Table 4).

In this case, the observed variation related to genotype and

GEI facilitated the selection process of the ideal genotypes for

desired characters, and in such cases, reducing the possible

influence of environmental component effects is important
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(Singh et al., 2019). In this case, the AMMI2 model was

considered the most effective analysis pattern to explain the

genotypic stability of yield, genomic based variance available

among the genotypes, and further provide interesting knowledge

regarding the GEI (Oliveira et al., 2014). In addition, if the

environments possess smaller IPCA1 and IPCA2 values (near

to the origin of biplot), they provide a larger contribution to

genotypic stability but contribute a smaller proportion to the GEI

(Hilmarsson and Rio, 2021). As a result, ENV2 and ENV4 were

the major players in the genotypic stability of grain yield and

GPC, respectively. In the AMMI2 biplot, genotypes with the

longest distance from the centre of the biplot located near to an

evaluated environment are recorded as high-yielding genotypes

with great adaptability in such a tested environment (Enyew

et al., 2021). In the case of grain yield, the genotypes

BWL7495 and BWL7504 were located close to ENV2 in the

present study, implying their strong yield potential and greater

adaptability specific to this environment as compared to other

environments. Similarly, the genotypes BWL6964, BWL7493,

and BWL7497 had better performance in ENV6. For GPC,

the genotypes BWL7506, and PBW725 were placed close to

ENV8, indicating their high GPC potential and better

adaptability specific to this environment over other

environments. Also, the genotype BWL7493 was observed to

have greater GPC performance in ENV3. Whenever different

genotypes respond differently to different environments, it

strongly suggests the presence of GEI and the existence of

variation among environmental components such as soil

fertility, precipitation, and temperature. As a result, the

selection of wheat genotypes specific to each environment

across various agro-climatic conditions is suggested.

Environment-specific genotypes with high-yielding and high-

GPC potential have already been reported in wheat (Groos et al.,

2003; Singh et al., 2019) and other cereal crops (Bantayehu et al.,

2011; Solonechnyi et al., 2018).

The “which-won-where”model of GGE biplot was applied to

select the top-performing genotypes by explaining the GEI,

mega-environment clustering, and environment or genotype

specific adaptation (Bishwas et al., 2021; Khan et al., 2021).

The genotypes with the longest distance from the origin of

biplot are considered the best across all or some of the

evaluated environments, and were classified as environment-

specific genotypes, because they showed more variation in

regards to change in environmental components (Singh et al.,

2020). The “which-won-where” model of biplot grouped all the

evaluated environments into three and two mega-environments

involving different genotypes with high-potential for grain yield

and GPC, respectively. In terms of yield, mega-environments

1 contained ENV1, and ENV5 where BWL7506 was considered

the best high-yielding genotype, mega-environments 2 contained

ENV2, and ENV6 where BWL7493 was recorded as the top

yielding genotype, mega-environments 3 contained ENV3, and

ENV8, where BWL6228 was observed as the most high-yielding

genotype, and mega-environments 4 contained ENV4, and

ENV7 where PBW725 was considered the high-performing

genotype. On the other hand, for GPC, mega-environment

1 contained only ENV1 where BWL 7509 was observed as the

high-GPC genotype, while mega-environment 2 involved ENV2,

ENV3, ENV4, ENV5, ENV6, and ENV7 where BWL7511 were

recorded as the top-performers, and mega-environment

3 involved only ENV8 where BWL7506 and BWL7508 were

observed as top-GPC genotypes. The examined environments

were grouped into mega-environments and further identification

of mega-environment specific genotypes is the sustainable

method to use GEI according to the interests of breeders (Yan

and Tinker, 2005). Investigation of mega-environments has been

previously reported in different cereals, including wheat (Gerrish

et al., 2019), rice (Krishnamurthy et al., 2017), maize (Pererira

et al., 2021), and barley (Hernandez-Segundo et al., 2009).

The rankingmodel of GGE biplot is capable of identifying the

high-ranking genotypes with great stability based on AEC

decisions (Singh et al., 2020). The AEC based ranking model

of biplot recorded the genotypes BWL7497, BWL7506,

BWL7508, BWL7511, and PBW725 as the high-ranking for

yield, and the genotypes BWL6964, BWL7504, and BWL7508,

BWL7509, and BWL7511 as the high-ranking for GPC. However,

in the case of yield, the BWL6228, BWL7497, BWL7509, and

BWL7511 were recorded as poorly stable genotypes because of

the effect of GEI components. Also, for GPC, BWL6228,

BWL6964, BWL7497, and BWL7508 were observed as the

genotypes with lower stability, which is associated with a GEI

effect. Previously published studies on wheat also reported that

top-performing genotypes are not always the stable ones (Bassi

and Sanchez-Garcia, 2017; Popevic et al., 2020). One of the most

useful features of the GGE biplot is the graphical representation

of genotypes with the best mean performance and stability. Based

on the mean vs. stability model of GGE biplot, the genotypes with

the highest AEC prediction (top mean) combined with the

shortest stability vector (greatest stability) are considered the

best genotypes (Farshadfar et al., 2012; Khan et al., 2021).

Accordingly, BWL7508, and BWL7511 were selected as high-

performers and highly stable genotypes for yield and GPC. Based

on all this, it is concluded that the GGE biplot is the best analysis

method as compared with AMMI model for the identification

and selection of top genotypes with the most efficient stabilities

and the highest performing capabilities. This method has already

been used in many studies to identify the top-performing and

well-stable genotypes in wheat (Bishwas et al., 2021) and some

other cereals, including rice (Mostafavi et al., 2011), maize

(Ruswandi et al., 2021) and barley (Ghazvini et al., 2021).

GGE biplot analysis identified the genotypes BWL7497,

BWL7506, BWL7508, BWL7511, and PBW725 as the high-

yielding and, similarly, BWL6964, BWL7504, BWL7509, and

BWL7508, BWL7511 as the top performing genotypes for GPC

across all environments. Among all the genotypes, BWL7508,

and BWL7511 were selected as ideal genotypes for their great
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stability, top mean yield, and GPC across all the environments. It

is true that these two traits are negatively correlated, but if we deal

with a large number of segregants during development of the

material, a few lines can be identified combining both GPC and

yield. Balancing yield and quality together in a wheat cultivar is a

tedious task and can be achieved through some inter-trait trade-

offs. The reduction in yield is primarily mediated through a

reduction in 1000-grain weight in the Gpc-B1 positive lines. But

in such cases, the number of effective tillers and grins per spike is

adjusted to compensate for the yield. A similar result is observed

in some previously conducted studies in the wheat germaplasm

with Indian origin (Vishwakarma et al., 2014, 2016; Gupta et al.,

2022). The present study remarkably identified that the

acceptable level of stability and top-performing potential in

one genotype for a character are not the same in other

characters. This could be due to the role of different genes in

the regulation of the different characters or may be because of

variation in expression patterns of genes in different genotypes as

a direct effect of different environmental factors, such as different

abiotic stresses. Several earlier studies have reported similar

results in wheat (Du et al., 2020), soybean (Chaves et al.,

2017) and rice (Balakrshnan et al., 2016).

In this study, it was found that different univariate, AMMI,

and GGE biplot analyses showed somewhat consistent results in

terms of the stability potential of the genotypes. The high ranking

genotypes were somewhat different, but we selected the

genotypes based on their stable performance for both the

yield and GPC, and similar results were obtained across all

the univariate and multivariate analyses. The AMMI and GGE

biplot showed different results in terms of the discriminating

potential of environments. As a result, the environments in the

AMMI model were closer to the origin than in the GGE biplot.

Keeping the discriminating potential of the AMMI model in

view, the GGE biplot model is also successfully employed to

examine the multi-location data for stability analysis of wheat

and rice genotypes (Khan et al., 2021). In the present study, the

GGE biplot model observed the genotype and GEI more

efficiently as compared to the AMMI model. The same result

was recently reported by Khan et al. (2021). Furthermore, in this

study, the biplot graph was extremely successful in mega

environment classification, identification of representative and

discriminative environments, and genotype ranking. A similar

result was observed by Oladosu et al. (2017), where the stability

performance of rice genotypes was analyzed. The GGE biplot is

considered an extremely valuable statistical technique to deeply

understand the GEI in a multi-environmental test. However, the

decisions for genotypic stability were similar in both the

univariate and multivariate analyses. These results are

consistent with the results reported in some previously

published studies (e.g., Singh et al., 2019; Bishwas et al.,

2021). This type of dissimilarity is not avoidable due to

different statistical analysis models that were employed in the

present study.

Conclusion

In the present study, a multi-environmental investigation

was conducted to evaluate 13 wheat genotypes across different

environments to select ideal genotypes. We provided detailed

information on the effect of GEI, the stability and adaptability of

genotypes to specific environments, and the ability of

environments to distinguish between DTF, DTM, PH, SPS,

GPS, yield, TGW, and GPC in Punjab State, India. Of these

traits, we focused on grain yield and GPC because of their

importance to food and nutritional security in the world.

These two traits were significantly influenced by

environmental, genotype, and GEI effects. Based on the results

of this study, it is clearly observed that the wheat near-isogenic

lines are the best breeding materials that carry potential variation

to improve yield and GPC in wheat. The GGE biplot and AMMI

were reported to be the best models to show the effects of GEI in a

graph and select the best genotypes with the most adaptability

and the best performance. Among the genotypes, BWL7508, and

BWL7511 were observed to be highly stable and well performed

in terms of yield and GPC across all the environments. In the case

of yield, ENV1 and ENV3 were identified as the most

representative and discriminating environments for yield,

respectively. On the other hand, for GPC, ENV3 and

ENV7 were observed to be the most discriminating and

representative environments, respectively. Thus, these

environments could be further used for the identification of

the best genotypes and the selection of high-performing

genotypes with environment specific adaptability.
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