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Abstract

We present a comprehensive toolkit for post-processing, visualization and advanced analysis of GWAS results. In the spirit of
comparable tools for gene-expression analysis, we attempt to unify and simplify several procedures that are essential for the
interpretation of GWAS results. This includes the generation of advanced Manhattan and regional association plots
including rare variant display as well as novel interaction network analysis tools for the investigation of systems-biology
aspects. Our package supports virtually all model organisms and represents the first cohesive implementation of such tools
for the popular language R. Previous software of that range is dispersed over a wide range of platforms and mostly not
adaptable for custom work pipelines. We demonstrate the utility of this package by providing an example workflow on a
publicly available dataset.
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Introduction

With the implementation of high-density microarray technolo-

gies for SNP detection, genome-wide association studies (GWAS)

have become a standard method for the identification of

susceptibility loci underlying common complex diseases. Despite

the wealth of SNPs associated with complex traits, they collectively

explain only a small proportion of the phenotypic variance

attributable to genetic factors [1]. The remaining missing

heritability may be explained by various factors including allelic

heterogeneity, independent association of common SNPs or

cumulative effects of rare variants in single loci [2,3] not previously

captured on microarrays. In addition, many complex traits exhibit

a high degree of locus heterogeneity, with numerous susceptibility

loci of moderate effect being scattered over the genome [4–7].

This locus heterogeneity may result in related (sub)phenotypes

which may or may not share a genomic architecture e.g. as

observed for the 5q31 genomic region in chronic inflammatory

disorders such as inflammatory bowel disease, atopic dermatitis,

rheumatoid arthritis etc [8–11]. Therefore, the investigation of

related subphenotypes in the context of GWAS is of particular

interest in the quest to understand the common genetic

architecture underlying complex diseases [12].

In recent years, computational and laboratory techniques have

been developed to tackle these obstacles. First, next generation

sequencing (NGS) enables the detection of rare variants contrib-

uting to the association signals observed in GWAS. Second, the

analysis of GWAS results in the context of interaction networks

[13,14] facilitates the prioritization of weaker association signals

within biological systems. Such approaches mostly rely on the

network guilt by association (GBA) principle [15] and have been

implemented recently by DAPPLE [16] and dmGWAS [17].

Related, conventional gene set and pathway enrichment based

approaches are summarized in [18]. Additional recently developed

methodology encompasses subphenotype comparison and (com-

parative) rare variant analysis for complex diseases [19–21] or

systems biology analysis [22]. However, thus far, none of the above

mentioned features have been implemented in a single bioinfor-

matics pipeline. The postgwas software package presented here

contributes innovative features that support such an analysis of

complex traits. In particular, subphenotype comparison and

visualization of rare variant data in regional association plots

and a flexible interaction network analysis toolset for systems

biology analysis have been integrated into the package. At the

same time we further simplify, improve and extend the default

data processing and visualization methods for GWAS.

Basal statistical analysis of GWAS datasets is well established by

software suites like Plink [23] or GenABEL [24], but usually

further post-processing steps are required to carry out advanced

data analysis, which requires development of additional custom

methodology. The presented package aims to avoid repeated

implementation of standard data processing procedures by

providing appropriate component functions. Commonly per-

formed subsequent steps in GWAS analysis comprise annotation

of genes to SNPs, generation of Manhattan plots, regional

association plots, derivation of gene-based p-values, GO term

enrichment and interaction network analysis. Specific software for

application of these tasks exists but is usually scattered over a wide

range of web platforms representing individual tools. Hence, data

often needs to be reorganized to include all standard features in

one comprehensive analysis. Furthermore, the availability of

certain data sources is not always guaranteed. Another obstacle

posed by web-based tools is a lack of customizability, so that

specific adaptations matching the needs of a custom analysis are

sometimes hard to achieve. Finally, a number of tools only support

a restricted set of model organisms. Since GWAS are more
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frequently applied to non-human organisms and traits [25], and

reference genotype data with recombination and linkage disequi-

librium information is available [26], the necessity for universal

applicability increases.

The postgwas package aims at a simplified yet customizable

workflow that overcomes the obstacles mentioned above. With a

single function call, default actions like SNP to gene mapping by

LD, construction of regional- and Manhattan plots and basic

interaction network research are executed in a pipeline allowing

an accelerated interpretation of GWAS results. The major

strengths of the package are the applicability for a wide range of

organisms, automatic handling of base position and ID translation,

usage of linkage disequilibrium data that is directly computed from

the study cohort and parallelization features for time-intensive

computations. Further, most data sources can be customized or

replaced for offline usage.

Besides the unique features, our software adds substantial

improvement to the universe of GWAS-affiliated tools by being

customizable and open-source, thus giving scientists the best

control and transparency on their analysis workflow, especially

those working preferentially in R.

Results

The package is structured into several component functions,

each responsible for a certain type of analysis. For the swift use, a

superordinate function named postgwas() exists, which runs all

component functions sequentially without further effort, producing

a set of standard plots and interaction network analyses. The input

can be GenABEL objects or Plink, GEMMA or FAsT-LMM

formatted GWAS result files.

For a sophisticated analysis, each function can be used

independently and customized with a wide range of parameters.

The full capabilities of the software can be best explored by

executing the examples coming with the individual functions, e.g.

by stating example(snp2gene) in an R session. In addition, a

comprehensive tutorial is delivered with the package as a self-

executing vignette. In the following paragraphs, we describe the

features of each individual tool and its potential for an extended

interpretation of GWAS datasets.

Snp2gene
Snp2gene() is a simple to use function that takes a (potentially

large) number of SNPs and finds associated genes by proximity or

linkage disequilibrium. Although SNP chip vendors often provide

gene annotation for their products, these are often incomplete or

insufficient with regard to biological reality. Interaction network

[14] or pathway analysis [27–29] rely heavily on automatic

annotation of candidate genes to SNPs and benefit from an

accurate annotation. Sometimes it is difficult to assign a single

gene to a certain SNP, because several genes may reside in

proximity to the SNP in either direction and it is not granted that

an observed association signal just refers to the closest gene.

Inclusion of multiple genes related to a SNP, i.e. allowing more

false positive and reducing false negative annotations, bears the

potential to improve findings in computational systems-biology

analysis, because these algorithms are usually designed to prioritize

from a large number of false positively included genes [30]. Thus,

it is reasonable to assume that addition of a small fraction of falsely

annotated genes has a less severe impact on the outcome than

missing a true causative gene. Annotation by LD as offered by

snp2gene() allows annotation of multiple genes to a single SNP,

however such multi-annotations need to be treated with care

because proximate genes tend to share a function and thus cluster

together in gene set based analyses, contributing the same

association signal multiple times to functional clusters. Neverthe-

less, it has been shown that for Crohn’s disease, proximate as well

as distant effects account for associated SNPs, thus extended

annotation can be reasonable [31]. With freedom to adopt multi-

annotations, snp2gene() allows conventional annotation by proxim-

ity as well as reporting the amount of LD between SNPs of interest

and its surrounding genes, enabling prospective users to annotate

genes based on different measures. Although comparable anno-

tation methods are already available [32], this is to our knowledge

the first implementation in R, allowing the use in automated

pipelines in this environment.

Besides the assignment of SNPs to genes, mapping of p-values to

genes based on SNP associations is another complex task, because

the number of statistical tests performed per gene varies with the

number of annotated SNPs. We re-implemented two methods for

the calculation of gene-wise p-values proposed by Dale Nyholt

[33] and Miao-Xin Li et.al. [34] in a function named gene2p().

These methods correct for the number of independent tests per

gene under consideration of the linkage disequilibrium pattern

between annotated SNPs, deriving an effective number of tests per

gene together with an appropriately corrected gene-wise p-value.

For all functions, parallelization for multicore architectures has

been added to accelerate LD based calculations, however this

feature is restricted to UNIX-based machines. Further, our

implementation supports a large range of model organisms, can

use custom genotype files and, with some effort, even custom

background gene sets.

Gwas2network
Gwas2network() is a flexible systems-biology analysis tool that

visualizes and decomposes biological interaction data in relation to

GWAS results. It aims at detecting ‘cumulative significance’ for

GWAS-associated loci i.e. loci that do not reach significance

individually but contribute to a common functional mechanism

relating to the phenotype at study. When a network module of

interactions, which represents such a functional mechanism,

contains several moderately associated loci, this can be interpreted

as increased evidence for causality.

Gwas2network() applies a graph partitioning method [35] to a

network of biologically related genes as shown in Figure 1– A. The

kind of network can be either defined as custom two-column

argument or selected from public data on protein-protein

interaction, REACTOME pathway membership, domain similar-

ity or GO term similarity networks [36], which are automatically

downloaded via the biomart interface. The weight of edges

between gene vertices is set to their combined association strength

from the GWAS. By default, this is the product of the vertices -

log(p), but can be extended with additional measures like

biological interaction strength or vertex degree to penalize ‘hub’

vertices. The graph partitioning algorithm then decomposes the

entire network into modules by concentrating high-weight edges

within modules and minimizing the total weights of between-

module edges during the clustering process. This leads to the

conclusion that (i) genes with biological relatedness and (ii)

reasonable association strengths are combined in each module.

An automated functional classification of the resulting modules

can be obtained by enabling an option for GO term overrepre-

sentation analysis within each module. The overrepresentation

analysis is performed using Fisher’s exact test as implemented in

the topGO package [37]. This automatically extracts a universe of

all annotated genes (~n) from the gene ontology database, the set

of genes related to a GO term (~g), genes within a module (~m)

and the overlap between genes associated to the GO term and a
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Figure 1. Interaction network analysis in postgwas. Part (A) shows the complete network of genes derived from the human height GWAS
dataset [38] using a p-value cutoff at 161026, generated by application of the postgwas() summary function to the dataset without further
customization parameters. Appearance of the network can be modified by using a custom (drag and drop) vertex layout or deactivated edge labels.
The edges of this network are formed based on common REACTOME pathway membership, (optionally) labeled by the type of interaction (here:
shared pathway name) and weighted by the combined association strength of participating genes. Vertex sizes (and optionally transparency)
correspond to the GWAS association p-value. Under consideration of these weights, application of a minimum cut-edge graph partitioning algorithm

Postgwas: Advanced GWAS Interpretation in R
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module (~x). The hypergeometric distribution
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is then used to assess whether x

represents an occurrence of that GO term in the module that is

higher than expected by chance. This is done for all GO terms. In

addition, GO term decorrelation from the same package is used to

consider only the best fitted term within each GO term branch,

removing redundancy between reported terms [37]. The resulting

p-values are not corrected for multiple testing following the

explanations from the topGO package. The top three overrepre-

sented GO terms (after decorrelation) are displayed in the legend

of each network (see figure 1) and gene vertices within the module

are colorized according to the membership within these GO

terms.

Secondly, the excess of evidence for association with the

phenotype (GWAS p-values) within modules is assessed by a

module score. This score is based on the Wilcoxon (Mann-

Whitney U) rank sum test, which tests for the hypothesis

P XwYð Þw0:5. Here, the observed p-values in the entire network

are interpreted as a random variable X, and Y corresponds to p-

value observations from the module. By applying the U test, a

decision can be made on whether p-values in the module are

generally smaller than seen in the entire network and whether this

difference is due to chance.

The defined module score, which is set to be equal to the p-

value of the U test, serves as a means to rank the obtained modules

among each other for their evidence on phenotypic association. By

this, this network analysis approach aims at unveiling interactions

and biological relatedness between loci at considerable but sub-

significant GWAS association levels to allow a reasonable

prioritization for further research.

An example application of the presented method is shown in

figure 1 building on the human height GWAS meta-analysis

dataset [38]. The module with the most reasonable evidence for an

accumulation of low GWAS p-values is displayed in the subfigure

1 - B and comprises mainly genes connected by the cell cycle

pathway. Correspondingly, overrepresented GO terms comprise

cell division and mitotic processes. The investigation of such a

module allows the observation of genome wide significant loci in a

context with additional, close-to significant genes that could be of

additional interest with regard to the ‘guilt by association’ principle

(e.g. in figure 1– B the non-significant gene PDS5B (rs17516171)

at p = 6.13e-7 might be of additional interest). Furthermore, genes

that are not found in the cell cycle pathway but being highly

connected to its members are also part of the module (e.g.

HIST1H3A). These belong to related (meiotic recombination) or

not directly related (disease) pathways and would not have been

observed in this context by an analysis focusing on discrete

pathways only. Research focusing on pleiotropic genes or yet

undiscovered promiscuous functions of genes could potentially

benefit from such observations.

Beyond this example based on pathway data, it is, for example,

possible to search for modules encapsulating gene families by

running the described approach on a gene network linked by

shared protein domains. Furthermore, it is possible to merge

different kinds of network data, e.g. to investigate protein family

membership and protein interaction simultaneously. In compar-

ison to classical gene set enrichment methods, a network-based

analysis is able to extend the scope of single biological units and

include genes of e.g. related pathways or pathways with

overlapping functions, thus providing an extended tool for set-

based analyses that, however, requires more consideration during

interpretation by the investigator.

As mentioned before, it might be desirable to allow multi-

annotations that relate a single SNP to several genes. Because this

introduces a potential bias, vertices that receive their p-value from

a multi-annotated SNP are tagged by a cross in our visualization.

Another indicator for emergence of the module by a single SNP

association (or at least fewer associations than total genes in the

module) are identical vertex sizes between genes in a module as

exemplarily shown in figure 1– C, where three green vertices are

tagged and have the same vertex size (synthetic data). Such

modules have to be treated with care. The gwas2network() function

produces a subsidiary multi-annotation file for the lookup and

confirmation of such cases. Recommended usage of gene-based p-

values improves the accuracy of p-value assignments, however

does not fully circumvent the problem that multiple functionally

related genes may be associated through LD. Thus a single

associated locus may contribute several times (via multiple genes

from the same block) to a pathway or network module.

The applicability to diverse species and subphenotype compa-

rability as an important general feature of the package is also

included in this function. For subphenotype comparison, multiple

GWAS datasets can be merged and appear with different vertex

shapes in the network as shown in figure 1– C. Ideally, shared and

discriminating functional mechanisms between phenotypes can be

identified either by spotting boldface genes or identification of

clusters comprising different vertex shapes. Since the statistical

power of a GWAS impacts the expected strength of association, it

is recommended to use the subphenotype comparison only on

equally powered studies to ensure comparability of p-values.

Regionalplot and Manhattanplot
The regionalplot() and manhattanplot() functions comprise common

state-of the art characteristics as comparable tools, as shown in

exemplary plots in figure 2. Nevertheless, we also provide several

novel features.

First, it is possible to plot a large number of loci in a single

searchable pdf file. Having the genomic context of the top

associated loci always at hand, literature research and interpre-

tation of GWAS results were substantially simplified in our own

studies [39]. In later stages, when the original GWAS dataset has

been retired, the existence of a comprehensive summary file

encompassing all loci of suggestive or moderate significance can be

very useful, e.g. to check for the presence of a novel published

candidate gene in the own dataset.

leads to a decomposition of the global graph into functional subunits with preferential accumulation of well-associated genes within modules. Part
(B) shows the first extracted module, exhibiting the strongest evidence for accumulation of low GWAS p-values. This accumulation is reflected by a
module score listed in the legend (right box, a lower score corresponds to higher evidence). The major biological functions are identified for each
module by GO-term over-representation analysis. The top three over-represented terms are listed in a colorized legend together with the module
score. Vertices within the module are colorized according to their membership in over-represented GO terms. Part (C) demonstrates a network
analysis for multiple datasets. The module shown has been extracted from a network of GO term similarity between genes from two distinct
synthetically generated GWAS datasets. Each dataset corresponds to a vertex shape (squares and circles). For genes occurring in both datasets, vertex
shapes are plotted on top of each other in order of their p-value (e.g. SLC38A4). Their label is printed boldface and italic. When a single SNP is
annotated to multiple genes (e.g. residing in a larger LD block), these genes are labeled with a cross as shown for three solute carrier genes residing
in the same block and having similar molecular functions. Such modules need careful interpretation.
doi:10.1371/journal.pone.0071775.g001
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Figure 2. Manhattan and regional plots of random datasets. Part (A) shows a conventional manhattan plot as produced with the default
options on an artificial GWAS dataset. Peak SNPs that exceed genomewide significance are colored in red and are annotated with the closest genes
(covering genes are placed above for intragenic SNPs, up- and downstream gene left and right). A second threshold is set by default for suggestive

Postgwas: Advanced GWAS Interpretation in R
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Second, we included the ability to plot a data track with

resequencing results from a variant call format (.vcf) file. This track

consists of a histogram with allele frequencies and optionally

position and predicted effect information for selected variants.

Variant selection is currently based on regular expression filtering

in the INFO and ID columns of the supplied vcf file for the sake of

generality. This allows to selectively display e.g. only de novo

variants or those with specific predicted functional effects listed in

the INFO column, e.g. as generated by SnpEff [40]. Another filter

can be set on the allele frequency field, limiting the display to

variants of a certain rarity (figure 2– C). In addition, we have

implemented an experimental feature to display comparative

histograms between two vcf files, e.g. cases and controls, but

currently this works for datasets with identical minor alleles only.

To our knowledge this rare variant track is the first visualization

utility that allows the comparison of common versus rare variant

association. The comparison of signals derived from common and

rare SNPs is interesting under the assumption that multiple

causative rare variants are in cumulative LD with a common

marker SNP or reside on the same haplotype, respectively (allelic

heterogeneity). Several statistical algorithms that analyze such

accumulation of rare variants have been proposed [41] and the

visualization of such regions is now feasible with the presented

regionalplot() function.

Third, by using a line graph for association p-values, it is

possible to include multiple datasets in a single regional plot, each

displayed in a different color (figure 2– B). This features the inter-

phenotype comparison of association signals from distinct GWAS

and enables the comparative display of discovery and replication

sets of multi-staged GWAS. In a broader sense, it is also possible to

discover pleiotropic genes by searching for overlapping association

peaks for distinct phenotypes. This feature may be simultaneously

analyzed within networks as outlined in figure 1– C.

Finally, the investigation of long range LD block structures is

possible by varying the region window sizes. For very large regions

at megabase scale, there is an option to restrict the LD calculation

to a user defined number of SNPs that are selected evenly

distributed over the region. The original block structure is very

well preserved in our experimental plots at moderate interleaving

settings (data not shown).

With our implementation of regional plots in R, we try to offer

the well-established strengths of R plotting functions to the user,

e.g. by providing scaling parameters. Further improvements are

customizable data sources, e.g. using custom genotype files for LD

calculation or HapMap genotype retrieval, access to internal data

via buffer variables, etc. We aim to increase the flexibility of our

regional plots in comparison to web-based tools by using a tracks

concept. Beside activation or deactivation of default tracks, it is

possible to reserve empty space for drawing custom data which

offers potential for custom extensions.

Implementation Details
From a design perspective, the major advantage of our package

in comparison to similar (web-based) software is the availability of

source code and the possibility to concatenate customizable

functions in a custom analysis pipeline. The degree of customiz-

ability is further enhanced by a flexible control over data sources

using custom biomart configurations and the possibility to view,

supply and manipulate annotation buffer data. The overall

package structure is listed in figure 3, and implementation details

for critical items are discussed in the following paragraphs.

Genomic Positions and Data Sources
A major challenge in the design of annotation tools is the correct

mapping of genomic positions. For the whole package, we use as

reference genome and base positions the current contents of

biomart databases (default is ENSEMBL but can principally be

any other biomart). Thus, all data e.g. from GWAS output is

automatically mapped and corresponds to the current biomart

release. By selecing preconfigured or supplying custom biomart

configuration lists, various model organisms and different kinds of

IDs can be annotated (e.g. entrez or ensembl gene IDs for genes,

protein accession etc).

Technically, all SNPs are mapped to biomart positions by their

reference SNP ID (dbSNP), and genes are retrieved from the same

data source. SNPs that cannot be mapped to a new position (e.g.

rare or de novo variants) get an imputed position assigned by using

the offset of the nearest mapped SNP.

Custom Data and Buffer Variables
Throughout the package, there is the possibility to store

downloaded or calculated data in local buffer variables. Re-

running the function will use the buffer data if existent, which

saves time and bandwidth for repeated calls with slightly changed

parameters (e.g. tuning graphical appearances). Further, all source

data can be viewed by the user if needed, and even modified or

extended when it is incomplete or wrong (which can sometimes

happen with newly discovered genes, inclusion of specific splice

variants, inconsistent positions etc). The probably largest benefit of

using buffer data is that it can completely replace the automated

usage of web data sources if needed. This is of special interest for

bioinformatics applications in general due to the high variability of

data sources used and turnover of data contained, which often

decreases the lifetime of developed algorithms and software. By

storing the R session together with the buffer variables to file, it is

always possible to reproduce the obtained results of an analysis

even when the web data sources changed within time. Also, when

source data for specific cases is not available by automatic

retrieval, it can be obtained manually and supplied as buffer

variable without use of the web access options.

However, using buffer data is intended for experienced users

because of the obvious danger to accidentally use outdated buffer

data from a previous run that was generated under different

association at P,1*1025 with gene annotations in blue. Annotation text can be deactivated or replaced with the identifiers of peak SNPs. Part (B) and
(C) display regional plots with different unique capabilities. Both contain tracks showing the association p-value graph, genes with strand and exon
information and a triangle LD plot where the color intensity reflects the r2 correlation between SNPs. Identifiers of queried SNPs are automatically
annotated to the pvalue graph but can take custom annotation text as well. The LD plot uses either custom genotype files or HapMap data and is
available for arbitrary large regions. In (B), r2 values have additionally been annotated to the LD triangles and we compare p-value graphs of two
distinct datasets (color code listed in the legend). In (C), rare variant information from a resequencing study is included in a track at the bottom,
showing allele frequencies in a histogram at the very bottom and identifier, position (original and remapped) and calibration lines for selected
variants above. Only de novo variants are displayed here using filter settings on the histogram. A second filter has been set on the position
information display to include only variants of certain predicted functional effects (determined by SnpEff). The color code for the variant effect is
listed in the plot legend above.
doi:10.1371/journal.pone.0071775.g002
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conditions or in a different analysis. Therefore this feature is

deactivated by default.

SNP to Gene Annotation
For annotation by proximity, we use a sequentialization

technique on chromosomes that allows the annotation of all

queried SNPs at once in a vectorized fashion. For sequentialized

chromosomes, the findInterval() function from the base package

rapidly returns the index of the closest gene for all query SNPs at

once. We also consider overlapping genes in the annotation

process which exist more frequently than expected by us in

advance.

Annotation by LD uses either custom genotype files in ped/map

format, GenABEL genotype objects or automatic retrieval from

HapMap for human data. For each SNP, gene positions are

retrieved within 1 MB distance to determine LD with the query

SNP. When custom genotypes are used as source data, gene

positions are shifted by the offset between positions given in the

source data and biomart positions. Using these gene boundaries,

all intragenic SNPs are determined and downscaled to at most

100 SNPs per gene (evenly distributed). Genotypes for this

selection are then retrieved and used in pairwise LD calculation

with the query SNP.

Network Processing
To allow a simple use of the package, we have pre-implemented

functions for retrieval of pathway, protein-protein interaction,

protein domain similarity and gene ontology term similarity data

[36], but principally, arbitrary interactions can be passed as a data

frame argument to the function. Basically, such network data is

Figure 3. Diagram of functions, parameters and dependencies in the postgwas package. Individual functions are represented by white
boxes divided into an upper part listing the function name and a lower part containing argument names and types. Arguments preceded by a ‘+’ sign
are optional and contain default values. Dashed lines denote a ‘used by’ relation: For example, the superordinate function postgwas calls
removeNeighborSnps, gwas2network, snp2gene, manhattanplot and regionalplot. Only functions that are exported from the package (documented and
visible to the user) are shown. Non-segmented boxes denote variables from a special environment that are used by internal functions (indicated by
solid connectors) and available to the user through publicly visible getter/setter functions.
doi:10.1371/journal.pone.0071775.g003

Postgwas: Advanced GWAS Interpretation in R

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e71775



defined as two-column argument containing either gene IDs or

symbols for interacting genes. Optional columns like edge weight

or labels can be included. Secondly, a list of GWAS-derived genes

has to be defined which can be obtained by running the snp2gene()

and optionally gene2p() functions. Then, loop-edges in the network

are removed and duplicate edges combined, where duplicates with

identical labels are eliminated and different labels collapsed to a

single label. The label collapsing feature enables the use of

different kinds of networks in a single analysis. Afterwards, the

network is truncated to gene vertices from the GWAS-derived list

or, optionally, also preserving ‘shared interactors’ (genes that are

not listed in the GWAS dataset but connected by two such genes).

Lastly, ubiquituously interacting genes (‘superhubs’) can be

removed to increase the specificity. In our experiments, we found

that superhub vertices tend to form modules in the network

regardless of linking only genes with low association strength.

Thus, we established the possibility to remove such hubs, given

they are not annotated in the GWAS list. A second mechanism to

control for over-proportionally interacting genes is to correct for

vertex degree in the edge weight function.

One of the major strength of functional programming in R is

the use of functions as values. In order to allow custom definition

of edge weights, user defined function can be passed as arguments

that calculate weights based on vertex p, degree and fixed weight

from the network data.

This has a direct influence on the clustering results and allows

different ways of interpretation. For example, increasing the

influence of vertex degree on edge weight will emphasize the

aggregation of heavily interconnected genes in favor to strongly

coupled vertices by GWAS association.

Parallelization
Runtime-intensive operations have been parallelized for Linux

architectures. We use the package named parallel that is based on

forking the R process for parallel computation. Therefore,

memory consumption increases with the same rate as computation

speed. Currently, parallelization is offered for data extraction from

large genotype files and for LD calculations. This can be useful for

the generation of a larger set of regional plots with a window size

exceeding 1 MB or calculation of gene-wise p-values, but for

common tasks parallelization will not be necessary.

Regionalplot Tracks Concept
One of the design objectives during the development of the

regionalplot() function was flexibility and extensibility. Beside a rich

parametrization in general, we again provide a function argument

that takes a user defined function as value which is called during

the plotting process. In the spirit of custom panel functions in the

lattice package, this lets the user implicitly draw into the panel area.

Within the body of the self-defined panel function, the user has

access to all relevant internal data so that it is possible to add

content to the panel in dependence of existing data.

Although it is possible to draw anywhere using the custom panel

function (e.g. p-value graph area), there is a data frame that defines

y axis boundaries for each track. By adding a row with additional y

boundary specification, it is possible to reserve blank space in the

panel for adding a separate track with custom data. All relevant

internal variables are passed to the panel function as arguments

and are thus accessible.

An example application would be to draw rectangles into the

gene track at operon positions for bacterial organisms. The user

then has to supply a data frame with correctly mapped operon

bounds and apply the panel.rect() function from lattice package,

using the y positions from the tracks object.

Regionalplot Rare Variant Display
Data extraction for the rare variant track uses the RSamtools [42]

package. This includes the possibility to download genotypes of

selected variants from the 1000 Genomes project for comparison

with the own dataset which might be implemented in a future

version. Unknown positions of rare variants are estimated as

explained in the ‘genomic positions’ paragraph. The histogram

display and frequency pruning functionalities always refer to the

minor allele which is determined after reading the vcf file.

Modular Architecture and Utility Functions
Shared functionality between the main parts of the package has

been decomposed into standalone functions that might be of

interest for the user. There are functions to retrieve genotypes,

genes and SNPs and remap them to current base positions or

different IDs, calculate LD between a larger set of SNPs in

parallel, and select representative SNPs within a window from a

set of larger SNPs. The latter is for example useful to identify the

lead SNP of a region of association.

Examples
All major functions are provided with examples demonstrating

their features. They are called from within R by issuing

example(functionName) after loading the package with library(postgwas),

The placeholder ‘functionName’ has to be replaced by one of the

postgwas functions. A complete list of exported functions is

obtained by stating objects(‘‘package:postgwas’’). Also, a tutorial can be

accessed by stating vignette(‘‘postgwas’’).

Availability and Future Directions
The package has been deposited on CRAN for download or

direct installation using the install.packages() function.

There are several features that are desirable for future

development. For example, the snp2gene assignment could be

improved by inclusion of expression boundary information.

Furthermore, the graph partitioning approach that assigns each

vertex to exactly one module could occasionally be replaced with a

soft clustering method allowing multi-assignments of vertices to

modules. As pleiotropy is a frequent mechanism in biology, genes

will often be found to be connected to several different modules,

each representing a functional mechanism that the gene belongs

to. Such constellations could be more efficiently captured by soft

clustering approaches. Finally, there are many potentially useful

additions imaginable for the regional association plots, for example

an additional optional track displaying methylation site status.
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