
International  Journal  of

Environmental Research

and Public Health

Article

Risky Driver Recognition with Class Imbalance Data
and Automated Machine Learning Framework

Ke Wang , Qingwen Xue and Jian John Lu *

����������
�������

Citation: Wang, K.; Xue, Q.; Lu, J.J.

Risky Driver Recognition with Class

Imbalance Data and Automated

Machine Learning Framework. Int. J.

Environ. Res. Public Health 2021, 18,

7534. https://doi.org/10.3390/

ijerph18147534

Academic Editors: Ediriweera

Desapriya and Kazuko Okamura

Received: 12 May 2021

Accepted: 3 July 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, College of Transportation
Engineering, Tongji University, Shanghai 201804, China; kew@tongji.edu.cn (K.W.); 1710517@tongji.edu.cn (Q.X.)
* Correspondence: jianjohnlu@tongji.edu.cn

Abstract: Identifying high-risk drivers before an accident happens is necessary for traffic accident
control and prevention. Due to the class-imbalance nature of driving data, high-risk samples as
the minority class are usually ill-treated by standard classification algorithms. Instead of applying
preset sampling or cost-sensitive learning, this paper proposes a novel automated machine learning
framework that simultaneously and automatically searches for the optimal sampling, cost-sensitive
loss function, and probability calibration to handle class-imbalance problem in recognition of risky
drivers. The hyperparameters that control sampling ratio and class weight, along with other hy-
perparameters, are optimized by Bayesian optimization. To demonstrate the performance of the
proposed automated learning framework, we establish a risky driver recognition model as a case
study, using video-extracted vehicle trajectory data of 2427 private cars on a German highway. Based
on rear-end collision risk evaluation, only 4.29% of all drivers are labeled as risky drivers. The
inputs of the recognition model are the discrete Fourier transform coefficients of target vehicle’s
longitudinal speed, lateral speed, and the gap between the target vehicle and its preceding vehicle.
Among 12 sampling methods, 2 cost-sensitive loss functions, and 2 probability calibration meth-
ods, the result of automated machine learning is consistent with manual searching but much more
computation-efficient. We find that the combination of Support Vector Machine-based Synthetic
Minority Oversampling TEchnique (SVMSMOTE) sampling, cost-sensitive cross-entropy loss func-
tion, and isotonic regression can significantly improve the recognition ability and reduce the error of
predicted probability.

Keywords: risky driving; automated machine learning; imbalanced data; sampling; cost-sensitive
learning; probability calibration

1. Introduction

According to the statistics of historical accidents in road traffic, risky driving behavior
is the leading cause of traffic insecurity [1]. Risky driving behavior refers to a series of
irregular traffic behaviors and violations of traffic rules to realize the driver’s driving
intention in driving on the road. The quantification and identification of risky driving
behaviors and risky drivers are crucial for road traffic safety.

Most research on risky driving and risky driver recognition algorithms focuses on risky
driving state recognition, including aggressive driving, distracted driving, fatigue driving,
etc. For example, Wang et al. [2] used discrete Fourier coefficients of vehicle trajectory
data, such as distance between vehicles and speed, as input and used imbalanced class
boosting algorithms to identify aggressive car-following drivers. Sun et al. [3] combined
background features such as driving time and sleep time to establish a dual-layer fusion
fatigue driving recognition model based on the driver’s facial features and operating
characteristics. Liu et al. [4] conducted a natural driving experiment and used the driver’s
eye movement and hand movement data to establish a semi-supervised learning model for
distracted driving. Chandrasiri et al. [5] used a driving simulator to observe the driver’s

Int. J. Environ. Res. Public Health 2021, 18, 7534. https://doi.org/10.3390/ijerph18147534 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-8941-723X
https://doi.org/10.3390/ijerph18147534
https://doi.org/10.3390/ijerph18147534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18147534
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18147534?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 7534 2 of 18

vehicle manipulation data on various turning radius roads and established a classification
model of driving skill level [5]. The primary data used by the risky driving recognition
model include driver facial data [3], hand data [6], posture data [7], physiological data [8],
steering wheel angle [5], pedal data [9], vehicle driving trajectory data [10], etc. Naturalistic
driving data collection mainly relies on experiment vehicles with equipment collecting
vehicle operation data from Controller Area Network (CAN) [11] or onboard motion
sensors [12]. Some studies also use a driving simulator to observe the driving behavior
of experimenters in a pre-designed driving environment [13,14]. In addition, cameras
deployed on the roadside or unmanned aerial vehicles (UAV) can record traffic video,
from which advanced computer vision algorithms can extract vehicle trajectory data at a
lower cost compared to naturalistic driving experiment and driving simulator [2,10]. A
smartphone is equipped with multiple sensors, including an accelerometer, gyroscope,
magnetometer, microphone, cameras, thermometer, and Global Positioning System (GPS).
Thus, the smartphone has the ability to track a vehicle’s motion and location and has been
applied to detect abnormal driving behaviors [15,16].

There is no such thing as a free lunch. Although vehicle trajectory data can be
easily extracted from traffic video, the challenge of using this type of data in a risky driving
recognition study is data labeling. The data labeling of naturalistic driving data and driving
simulator experiment data is straightforward. Some studies distinguish between normal
driving samples and risky driving samples by observing illegal driving behavior [17] or
accident [18] in naturalistic driving data. Subjective data labeling methods include experts
scoring [19] and quantitative questionnaires on risky driving behavior [20]. None of these
methods are suitable for a large sample size video-extracted vehicle trajectory. Xue [10]
met the challenge by using collision surrogate measurements such as Time to Collision
(TTC) and Margin to Collision (MTC) to distinguish between drivers in risky car-following
states and drivers in normal car-following states. Besides, clustering algorithms [21] or
semi-supervised learning [4,22] do not require or only partially require data labeling, but
the results often lack reliable verification standards.

In driving behavior research, data is often imbalanced. For example, the incidence
of risky driving behaviors is much less than normal driving behaviors in real traffic. Su-
pervised learning algorithms pay more attention to normal driving behavior, which is
the majority, and have a poor predictive performance for the minority class. It is a prob-
lem since usually recognizing the minority class is the goal. Existing studies generally
pre-sample imbalanced data to reduce imbalance before using supervised learning algo-
rithms [23]. There are also studies using cost-sensitive learning to increase the classification
error cost for the minority class to compensate for the bias in the class distribution [24].
Ensemble learning algorithms that combine sampling with bagging or boosting, such as
Synthetic Minority Oversampling TEchnique Boosting (SMOTEBoost), Random UnderSam-
pling Boosting (RUSBoost), and EasyEnsemble, perform better than traditional ensemble
learning without sampling [25]. Cost-sensitive learning, including example weighting and
threshold moving, was compared to sampling methods in some studies, and there is no
clear winner [26,27]. Every method has strengths and weaknesses. There is no universal
primary choice since imbalanced data structure varies, let alone state-of-art classifiers like
eXtreme Gradient Boosting (XGBoost) may differ from traditional ones, such as decision
trees, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM).

Some studies combine sampling and cost-sensitivity to solve the imbalance problem,
but none are in the field of risky driving recognition. For example, Le et al. [28] combined
sampling with Cluster-based Boosting (CBoost) algorithm, which is based on the cost-
sensitive learning framework, to predict bankruptcy. Peng et al. [29] applied sampling
and cost-sensitive MLP to predict traffic accidents. The limitation of these studies is preset
of sampling method, sampling ratio, and example weights in cost-sensitive classifiers.
Applying a fixed combination of sampling method, sampling ratio, and example weights,
the machine learning algorithm may end at suboptimal solutions and perform even worse
than using sampling or cost-sensitive learning alone.



Int. J. Environ. Res. Public Health 2021, 18, 7534 3 of 18

Automated machine learning (AutoML) refers to the automated process of machine
learning model development, including but not limited to data cleaning and processing,
feature extraction and selection, model selection, and parameter selection. AutoML reduces
the human effort necessary for applying machine learning. Given a dataset, AutoML
automatically and simultaneously chooses algorithms and sets their hyperparameters to
optimize empirical performance. This paper aims to build an AutoML framework that
can automatically select the best sampling method, cost-sensitive loss function, probability
calibration method, and the corresponding hyperparameters to establish a risky driver
recognition model. A UAV video-extracted vehicle trajectory dataset collected from a
German highway is used to train the model. The performance of 12 sampling methods,
2 cost-sensitive loss functions, and 2 probability calibration methods are included in the
automated machine learning, and their performance is compared.

This paper’s remainder is organized as follows: Section 2 describes the vehicle tra-
jectory data used for modeling; Section 3 introduces the framework of the risky driver
recognition modeling process and the methodology of each part in the framework; Section 4
presents and discusses the results; Section 5 concludes.

2. Data

To demonstrate the proposed automated machine learning framework, we use the
vehicle trajectory data from the Highway Drone Dataset (highD) [30] to establish a risky
driver recognition model as a case study. Traffic was recorded at six German highways
using UAV, from which 110,500 vehicle trajectories were extracted using state-of-the-art
Computer Vision algorithms. The UAV camera can cover a 420-m length of highway with a
typical vehicle positioning error of less than 10 cm. The recorded traffic video has 25 frames
per second. The vehicle’s position was detected and tracked every 0.04 s and smoothed
using Bayesian smoothing. Other driving information, including speed, acceleration, lane-
changing, and car-following, can be derived from vehicle position. The data used in this
paper were recorded on a 6-lane highway during the morning traffic peak period. The
trajectory of 2850 vehicles was recorded over 19 min 38 s. Among all vehicles, 2427 private
cars with recorded trajectories longer than 10 s were kept in the following studies.

3. Methodology

The research framework of this paper is present in Figure 1. First, vehicle trajectory
is analyzed to label each driver as a risky driver or normal driver based on its collision
risk. The collision risk evaluation method is introduced in Section 3.1. Once risky drivers
are labeled based on ACR, we try to establish a risky driver recognition model using
less trajectory information. Section 3.2 describes how to extract and select features from
the trajectory. Since the number of risky drivers and the number of normal drivers is
imbalanced, we apply three class-imbalance techniques: sampling, cost-sensitive learning,
and probability calibration. These three techniques are introduced in Sections 3.3–3.5,
respectively. Section 3.6 covers automated machine learning. Section 3.7 explains how we
evaluate model performance.



Int. J. Environ. Res. Public Health 2021, 18, 7534 4 of 18
Int. J. Environ. Res. Public Health 2021, 18, x  4 of 19 
 

 

 

Figure 1. Methodology framework. 

3.1. Collision Risk Evaluation 

Rear-end crashes are the most frequently occurring type of collision and account for 

approximately 29% of all crashes, according to U.S. Department of Transportation traffic 

crash statistics [31]. Based on the target vehicle’s moving state, we calculate the collision 

risk following the rules below: 

1. Car-following: if the target vehicle has a leading vehicle within 50 m, calculate the 

rear-end collision risk between the target vehicle and the leading vehicle (shown in 

Figure 2a).  

2. Lane-changing: if the target vehicle’s center crosses a lane line (shown in Figure 2b), 

we start calculating the rear-end collision between the target vehicle and its leading 

vehicle and between the target vehicle and its following vehicle until the target vehi-

cle’s land-changing is completed, when the target vehicle’s distance to the lane line is 

greater than 0.5 m (shown in Figure 2c). 

For each vehicle, rear-end collision at time t is calculated based on its Difference of 

Space distance and Stopping distance (DSS):  
2 2( ) ( )

( ) ( ) ( )
2

l f

f

v t v t
DSS t d t v t

g





    (1) 

where vl and vf are the longitudinal speed of the leading and following vehicles, respec-

tively; μ is the fraction rate, set to 0.7; g is the acceleration of gravity, 9.8 m/s2; d is the 

longitudinal gap between the leading and following vehicles; τ is the reaction time of 

drivers. When the following vehicle is accelerating, τ is set to 1.5 s. When the following 

vehicle is decelerating or idling, τ is set to 0.7 s. 

Figure 1. Methodology framework.

3.1. Collision Risk Evaluation

Rear-end crashes are the most frequently occurring type of collision and account for
approximately 29% of all crashes, according to U.S. Department of Transportation traffic
crash statistics [31]. Based on the target vehicle’s moving state, we calculate the collision
risk following the rules below:

1. Car-following: if the target vehicle has a leading vehicle within 50 m, calculate the
rear-end collision risk between the target vehicle and the leading vehicle (shown in
Figure 2a).

2. Lane-changing: if the target vehicle’s center crosses a lane line (shown in Figure 2b),
we start calculating the rear-end collision between the target vehicle and its leading
vehicle and between the target vehicle and its following vehicle until the target
vehicle’s land-changing is completed, when the target vehicle’s distance to the lane
line is greater than 0.5 m (shown in Figure 2c).

For each vehicle, rear-end collision at time t is calculated based on its Difference of
Space distance and Stopping distance (DSS):

DSS(t) =
v2

l (t)− v2
f (t)

2µg
+ d(t)− τv f (t) (1)

where vl and vf are the longitudinal speed of the leading and following vehicles, respec-
tively; µ is the fraction rate, set to 0.7; g is the acceleration of gravity, 9.8 m/s2; d is the
longitudinal gap between the leading and following vehicles; τ is the reaction time of
drivers. When the following vehicle is accelerating, τ is set to 1.5 s. When the following
vehicle is decelerating or idling, τ is set to 0.7 s.



Int. J. Environ. Res. Public Health 2021, 18, 7534 5 of 18

Int. J. Environ. Res. Public Health 2021, 18, x  5 of 19 
 

 

When DSS ≥ 0, it means the following vehicle has enough time to decelerate and 

avoid a collision. When DSS < 0, the following vehicle has a collision risk. Wang [2] pro-

posed measurement of Collision Risk (CR) as the absolute value of DSS divided by the 

following vehicle’s speed.  
0  if ( ) 0 

( )
( ) / ( ) if ( ) < 0f

DSS t
CR t

DSS t v t DSS t


 


 (2) 

When CR(t) > 0, the following vehicle does not have enough time to react to the lead-

ing vehicle’s abrupt deceleration at time t. CR(t) reflects the extra time the following vehi-

cle needs to avoid a collision. To measure the overall collision risk exposed to the target 

vehicle over the whole trajectory, we calculate the average collision risk (ACR) as follows: 

 L F

0

1
ACR ( )+ ( )

T

t

CR t CR t t
T 

   (3) 

where T is the observation duration of the target vehicle; Δt is the sampling interval, 0.04 

s; CRL(t) is the rear-end collision risk between the target vehicle and its leading vehicle; 

CRF(t) is the rear-end collision risk between the target vehicle and its following vehicle in 

the target lane if the target vehicle is in the lane-changing process; otherwise, CRF(t) = 0. 

 
(a) (b) (c) 

Figure 2. Rear-end collision evaluation for the target vehicle. 

ACR is a metric of collision risk for individual vehicles. Certainly, drivers with ACR 

=0 are safe since they have no collision risk during observation period. How to label driv-

ers with a positive ACR value? Drivers with ACR larger than a threshold are labeled as 

risky drivers. We determine the threshold using the Interquartile Range (IQR) method, 

which was proposed by Laurikkala et al. [32]. It is a common method in outlier detection 

and can be used to calculate the threshold of abnormal data under various distribution 

[33]. The threshold can be calculated as follows. 

 3 3 1Threshold  = +1.5Q Q Q  (4) 

where Q3 is the upper quartile of the non-zero ACR distribution; Q1 is the lower quartile 

of the non-zero ACR distribution. 

  

Figure 2. Rear-end collision evaluation for the target vehicle.

When DSS ≥ 0, it means the following vehicle has enough time to decelerate and
avoid a collision. When DSS < 0, the following vehicle has a collision risk. Wang [2]
proposed measurement of Collision Risk (CR) as the absolute value of DSS divided by the
following vehicle’s speed.

CR(t) =
{

0 if DSS(t) ≥ 0
|DSS(t)|/v f (t) if DSS(t) < 0 (2)

When CR(t) > 0, the following vehicle does not have enough time to react to the
leading vehicle’s abrupt deceleration at time t. CR(t) reflects the extra time the following
vehicle needs to avoid a collision. To measure the overall collision risk exposed to the target
vehicle over the whole trajectory, we calculate the average collision risk (ACR) as follows:

ACR =
1
T

T

∑
t=0

[CRL(t) + CRF(t)]∆t (3)

where T is the observation duration of the target vehicle; ∆t is the sampling interval, 0.04 s;
CRL(t) is the rear-end collision risk between the target vehicle and its leading vehicle; CRF(t)
is the rear-end collision risk between the target vehicle and its following vehicle in the
target lane if the target vehicle is in the lane-changing process; otherwise, CRF(t) = 0.

ACR is a metric of collision risk for individual vehicles. Certainly, drivers with
ACR = 0 are safe since they have no collision risk during observation period. How to label
drivers with a positive ACR value? Drivers with ACR larger than a threshold are labeled
as risky drivers. We determine the threshold using the Interquartile Range (IQR) method,
which was proposed by Laurikkala et al. [32]. It is a common method in outlier detection
and can be used to calculate the threshold of abnormal data under various distribution [33].
The threshold can be calculated as follows.

Threshold = Q3 + 1.5(Q3 −Q1) (4)

where Q3 is the upper quartile of the non-zero ACR distribution; Q1 is the lower quartile of
the non-zero ACR distribution.



Int. J. Environ. Res. Public Health 2021, 18, 7534 6 of 18

3.2. Feature Extraction and Selection

Longitudinal speed, lateral speed, and gap are chosen to recognize risky drivers.
Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT) has been applied in
many driving behavior studies [16,34–36] to convert the time series of driving features
to signal amplitude in the frequency domain. Xue et al. [10] found that DFT is a better
feature extraction method than statistical parameters, such as mean, standard deviation,
maximum, and minimum.

The DFT of a given time series (x1, x2, . . . , xN) is defined as a sequence of N complex
numbers (DFT0, DFT1, . . . , DFTN−1):

DFTk =
N−1

∑
n=0

xne(−
2πi
N kn) (5)

where i is the imaginary unit.
For longitudinal speed, lateral speed, and gap, each time series is converted to 20 DFT

coefficients. The mean, standard deviation, and coefficient of variation of longitudinal
speed, lateral speed, and gap are also included as features. Therefore, each driver has
72 features in total. Figure 3 shows two numerical examples of longitudinal speed and
processed DFT coefficients. Figure 3a,c shows the longitudinal speed data of two vehicles
(ID: 25-300 and 25-591) in the time domain, and Figure 3b,d shows the corresponding DFT
coefficients. The longitudinal speed of vehicle 25-300 is more volatile than that of vehicle
25-591. Therefore, vehicle 25-300 should have higher amplitudes in high frequency than
vehicle 25-591, while vehicle 25-591 has higher amplitudes in low frequency than vehicle
25-300. In the frequency domain, we can observe that vehicle 25-300 has lower amplitude in
frequency between 0.04 and 0.08 Hz and higher amplitude in frequency between 0.12 and
0.32 Hz, compared to vehicle 25-591. Figure 3 shows that DFT can reveal signal amplitudes
at each frequency hidden in time series data regardless of the length of time series.

Int. J. Environ. Res. Public Health 2021, 18, x  6 of 19 
 

 

3.2. Feature Extraction and Selection 

Longitudinal speed, lateral speed, and gap are chosen to recognize risky drivers. Dis-

crete Fourier Transform (DFT) or Fast Fourier Transform (FFT) has been applied in many 

driving behavior studies [16,34–36] to convert the time series of driving features to signal 

amplitude in the frequency domain. Xue et al. [10] found that DFT is a better feature ex-

traction method than statistical parameters, such as mean, standard deviation, maximum, 

and minimum.  

The DFT of a given time series (x1, x2, …, xN) is defined as a sequence of N complex 

numbers 0 1 1(DFT ,  DFT ,...,  DFT )N : 
21

0

DFT

iN kn
N

k n

n

x e

   
 



  (5) 

where i is the imaginary unit. 

For longitudinal speed, lateral speed, and gap, each time series is converted to 20 

DFT coefficients. The mean, standard deviation, and coefficient of variation of longitudi-

nal speed, lateral speed, and gap are also included as features. Therefore, each driver has 

72 features in total. Figure 3 shows two numerical examples of longitudinal speed and 

processed DFT coefficients. Figure 3a,c shows the longitudinal speed data of two vehicles 

(ID: 25-300 and 25-591) in the time domain, and Figure 3b,d shows the corresponding DFT 

coefficients. The longitudinal speed of vehicle 25-300 is more volatile than that of vehicle 

25-591. Therefore, vehicle 25-300 should have higher amplitudes in high frequency than 

vehicle 25-591, while vehicle 25-591 has higher amplitudes in low frequency than vehicle 

25-300. In the frequency domain, we can observe that vehicle 25-300 has lower amplitude 

in frequency between 0.04 and 0.08 Hz and higher amplitude in frequency between 0.12 

and 0.32 Hz, compared to vehicle 25-591. Figure 3 shows that DFT can reveal signal am-

plitudes at each frequency hidden in time series data regardless of the length of time se-

ries. 

  
(a) Time domain (ID:25-300) (b) Frequency domain (ID:25-300) 

  
(c) Time domain (ID:25-591) (d) Frequency domain (ID:25-591) 

Figure 3. Rear-end collision evaluation for the target vehicle. Figure 3. Rear-end collision evaluation for the target vehicle.



Int. J. Environ. Res. Public Health 2021, 18, 7534 7 of 18

Recursive Feature Elimination (RFE) is a feature selection algorithm. First, a full risky
driver recognition model using all 72 features is created. Second, features are ranked
from most important to least based on their feature importance. Once at a time, the least
important feature is iteratively eliminated prior to retraining the model. The iteration
continues until the model’s performance cannot improve or no features are left in the pool.

3.3. Sampling Methods

We consider five undersampling methods: Random UnderSampling (RUS), Tomek
links, Edited Nearest-Neighbors (ENN), Repeated Edited Nearest-Neighbors (RENN), and
All-K-Nearest-Neighbors (AllKNN). RUS randomly removes instances from the majority
class until the imbalance class ratio reaches the desired level. Tomek links are pairs of very
close instances but of opposite classes. Removing the instances of the majority class of each
pair increases the space between the two classes, facilitating the classification process. ENN
requires a sample (usually from the majority class) to have an opposite class instance as its
nearest neighbor in order to remove it. By contrast, Tomek Links requires both samples
to be each other’s nearest neighbors. In summary, Tomek Links uses a more restrictive
condition resulting in fewer samples being removed. RENN repeats ENN several times.
AllKNN increases the k value in k-nearest neighbors while repeating ENN. Except for
RUS, all the other under-sampling methods cannot control the number of samples in the
minority class over the number of samples in the majority class after resampling. Generally,
the data is still imbalanced after sampling by Tomek links, ENN, RENN, or AllKNN.

We consider five oversampling methods: Random Over Sampling (ROS), Synthetic
Minority Oversampling Technique (SMOTE), SVMSMOTE, Borderline-SMOTE, and Adap-
tive Synthetic Sampling (ADASYN). ROS randomly replicates the minority class examples
until the imbalance class ratio reaches the desired level. SMOTE generates a new syn-
thetic example by linear interpolation between a randomly selected sample and one of
its neighbors in the feature space. There are variants of SMOTE sampling which have
different rules to choose samples and neighbors. SVMSMOTE uses an SVM algorithm to
establish a boundary between classes and generate new synthetic samples near borderlines.
Borderline-SMOTE uses K-nearest neighbors instead of SVM, to identify the misclassified
samples around the decision boundary. Adaptive Synthetic Sampling (ADASYN) gener-
ates more samples around “harder-to-learn” minority samples that have more majority
neighbors. All these oversampling methods have the option to set a sampling rate and
reach the desired class ratio.

Oversampling and undersampling have their drawbacks. Oversampling may introduce
noises to the data. Undersampling removes useful information from the majority class. The
hybrid sampling method combines oversampling with undersampling to overcome their
drawbacks. SMOTEENN generates new synthetic examples first using SMOTE and then
conduct undersampling using ENN. The difference between SMOTETomek and SMOTEENN
is that SMOTETomek uses Tomek Links as the undersampling method instead of ENN.

We propose a comprehensive automated machine learning framework that combines
cost-sensitive learning and sampling. The sampling method partially balances data before
classifier training, and cost-sensitive XGBoost is trained with minority examples’ weight
increased. With hyperparameter optimization, we can optimize the sampling rate and
example weights and create a more flexible way to handle imbalanced data.

3.4. Cost-Sensitive XGBoost Loss Functions

XGBoost, which stands for eXtreme Gradient Boosting, is a Gradient Tree Boosting-
based algorithm [37] that is superior in performance, fast in training time, and has an
easy-to-use interface. XGBoost uses the cross-entropy loss (log loss) function, which is a
probability-based metric, to measure the performance of classification. A generalized cross-



Int. J. Environ. Res. Public Health 2021, 18, 7534 8 of 18

entropy loss function for binary classification problem with example weight, weighted
binary cross-entropy loss, can be expressed as:

Lw = −
N

∑
i=1

[wyi log( p̂i) + (1− yi) log(1− p̂i)] (6)

where yi is the true class of sample i, yi = 1 for positive (minority) instances, and 0 for
negative (majority) instances. w is the weight of the minority class. If w is greater than
1, an extra loss is added on positive (minority) instances. N is the sample size. p̂i is the
estimated probability of being positive for sample i.

Focal loss function was proposed by Lin [38] to solve the imbalanced foreground-
background class problem encountered in dense objective detection. The focal loss gives
more weight to “hard examples” whose estimated probability is far away from the true
class (for binary classification, p̂i is close to 0 when yi = 1, and p̂i is close to 1 when yi = 0).
In the case of class imbalance, the number of positive instances is much less than the
number of negative instances. Since the machine learning algorithms may overcompensate
and give too much focus to the negative (majority) class, the “hard examples” are mainly
positive instances misclassified as negative instances.

Wang [39] proposed Imbalance-XGBoost, which combines XGBoost with the weighted
focal loss for the class-imbalanced problem. Weighted binary focal loss can be denoted as:

L f = −
N

∑
i=1

[
wyi(1− p̂i)

γ log( p̂i) + (1− yi) p̂i
γ log(1− p̂i)

]
(7)

where γ is the focusing parameter, γ ≥ 0. If γ = 0, then Equation (7) will be the same as
Equation (6).

3.5. Probability Calibration

Many machine learning algorithms not only predict class but also can predict a
probability or a probability-like score for each class. The predicted probability as a measure
of uncertainty can be used to evaluate models when only predicting class is not sufficient
to calculate Receiver Operating Characteristic (ROC) curve and Precision-Recall curve.

There are two main reasons that probability calibration is needed for imbalanced data.
First, algorithms like SVM, boosted trees are not trained using a probabilistic framework
and do not provide calibrated probabilities [40]. Second, supervised learning trained
with imbalanced data systematically underestimates the probabilities for minority class
instances [41].

There are two common probability calibration methods: Platt scaling and isotonic
regression. Platt [42] introduced the calibration method Platt scaling, which can train
a logistic regression to map the original classifier’s output to the true class probability.
Isotonic regression is a non-parametric approach introduced by Zadrozny and Elkan [43,44].
Isotonic regression fits a piecewise constant non-decreasing function, where predicted
probabilities or scores in each bin are assigned the same calibrated probability that is
monotonically increasing over bins.

Platt scaling is preferable when the distortion in the predicted probabilities is sigmoid-
shaped. Isotonic regression is a more powerful calibration method that can correct any
monotonic distortion. However, isotonic regression may perform worse than Platt scaling
when calibration data has a small sample size.

3.6. Automated Machine Learning

We propose an AutoML framework that automatically and simultaneously selects
the sampling method, sampling ratio, cost-sensitive loss function, minority class weight,
and probability calibration method to maximize the evaluation metrics of risky driving
recognition model. These five elements are shown in Figure 4, with the candidates available
in each element. Since the imbalance ratio of the dataset used in this paper is 1:22.3, the



Int. J. Environ. Res. Public Health 2021, 18, 7534 9 of 18

sampling ratio is set to be from 1 to 22.3. Sampling_ratio does not apply to TomekLinks,
ENN, RENN, and AllKNN since these sampling methods cannot control the sampling
rate. Sampling ratio is determined by dividing the number of majority examples by the
number of minority examples after sampling. When sampling ratio is 1, the dataset is
exactly balanced; when sampling ratio is 22.3, the dataset is not sampled since its imbalance
ratio is unchanged. Therefore, by choosing the optimal sampling ratio, the AutoML can
control the degree of imbalance. If the optimal sampling ratio is 22.3, it indicates that it is
better not to alleviate data imbalance by sampling. The higher the minority class weight is,
the more important the minority examples are. The majority class weight is always 1. If the
AutoML suggests the minority class weight equals 1, the loss function in XGBoost is not
cost-sensitive since the weights of majority class and minority class are the same.

Int. J. Environ. Res. Public Health 2021, 18, x  9 of 19 
 

 

TomekLinks, ENN, RENN, and AllKNN since these sampling methods cannot control the 

sampling rate. Sampling ratio is determined by dividing the number of majority examples 

by the number of minority examples after sampling. When sampling ratio is 1, the dataset 

is exactly balanced; when sampling ratio is 22.3, the dataset is not sampled since its im-

balance ratio is unchanged. Therefore, by choosing the optimal sampling ratio, the Au-

toML can control the degree of imbalance. If the optimal sampling ratio is 22.3, it indicates 

that it is better not to alleviate data imbalance by sampling. The higher the minority class 

weight is, the more important the minority examples are. The majority class weight is 

always 1. If the AutoML suggests the minority class weight equals 1, the loss function in 

XGBoost is not cost-sensitive since the weights of majority class and minority class are the 

same. 

 

Figure 4. Five elements in the automated machine learning framework. 

Besides the five elements mentioned above, there are hyperparameters to be deter-

mined, shown in Table 1. Manual tuning and grid search are usually enough for tradi-

tional classifiers with a small number of hyperparameters. However, for supervised learn-

ing algorithms with numerous hyperparameters, automated machine learning is more 

powerful because of its speediness, stability, and accuracy. We consider six hyperparam-

eters in this paper: five hyperparameters for XGBoost classifier and one hyperparameter 

for focal loss. XGBoost has dozens of configurable hyperparameters, and we only consider 

the most important ones.  

HyperOpt [45] is a software project that provides automated algorithm configuration 

of the Scikit-learn machine learning library. Using Bayesian optimization, HyperOpt al-

lows for the automatic search of the optimal value of the five elements shown in Figure 4 

and hyperparameters listed in Table 1. 

Table 1. Hyperparameters to optimize. 

No. Hyperparameter Definition Parameter Range 

1 n_estimators Number of boosting rounds (10,350), must be an integer 

2 max_depth Maximum tree depth for base learners (3,10), must be an integer 

3 learning_rate Boosting learning rate (0.1, 1) 

4 subsample Subsample ratio of the training instance (0.5, 1) 

5 colsample_bytree 
Subsample ratio of columns when  

constructing each tree 
(0.5, 1) 

6 focal_gamma 1 Focal loss focusing parameter (0, 4) 
1 focal_gamma is only applicable when XGBoost uses focal loss as its loss function. 

Figure 4. Five elements in the automated machine learning framework.

Besides the five elements mentioned above, there are hyperparameters to be deter-
mined, shown in Table 1. Manual tuning and grid search are usually enough for traditional
classifiers with a small number of hyperparameters. However, for supervised learning
algorithms with numerous hyperparameters, automated machine learning is more power-
ful because of its speediness, stability, and accuracy. We consider six hyperparameters in
this paper: five hyperparameters for XGBoost classifier and one hyperparameter for focal
loss. XGBoost has dozens of configurable hyperparameters, and we only consider the most
important ones.

Table 1. Hyperparameters to optimize.

No. Hyperparameter Definition Parameter Range

1 n_estimators Number of boosting rounds (10,350), must be an integer
2 max_depth Maximum tree depth for base learners (3,10), must be an integer
3 learning_rate Boosting learning rate (0.1, 1)

4 subsample Subsample ratio of the training
instance (0.5, 1)

5 colsample_bytree Subsample ratio of columns when
constructing each tree (0.5, 1)

6 focal_gamma 1 Focal loss focusing parameter (0, 4)
1 focal_gamma is only applicable when XGBoost uses focal loss as its loss function.

HyperOpt [45] is a software project that provides automated algorithm configuration
of the Scikit-learn machine learning library. Using Bayesian optimization, HyperOpt allows



Int. J. Environ. Res. Public Health 2021, 18, 7534 10 of 18

for the automatic search of the optimal value of the five elements shown in Figure 4 and
hyperparameters listed in Table 1.

3.7. Cross-Validation and Evaluation Metrics

We use stratified 5-fold cross-validation to evaluate the classification algorithm’s
performance. Stratified 5-fold cross-validation divides the 2427 vehicles randomly into
five equal-sized subsets. Each subset has the same imbalance class ratio as the total
dataset. At each time, three subsets are used for sampling and then training, one subset
is used for probability calibration, and the last subset is used to test the performance of
the trained model. This process rotates through each subset, and the average AUPRC, F1
score, precision rate, and recall rate represent the performance of the algorithm. To find the
optimal automated machine learning result, we iterate the optimization process 500 times.
The sampling method, loss function, probability calibration, and hyperparameter values
that reach the highest average AUPRC after 500 iterations are the final result. As the optimal
sampling method, loss function, probability calibration, and hyperparameters are chosen
based on test data, we use a different stratified 5-fold cross-validation with the optimal
results in the final evaluation to avoid overfitting. As the optimal results determined by the
Bayesian optimization could end up at a local optimum, the whole procedure described
above is repeated five times to get four different sets of optimal results and five different
final evaluations. The average of five final evaluations will be presented in Section 4.

The performance of the recognition model depends on its power to identify risky drivers.
This paper uses five important performance indices: precision rate, recall rate, f1 score, Area
under the Precision-Recall Curve (AUPRC), and Expected Calibration Error (ECE).

Precision rate is defined as follows:

Precision =
TP

TP + FP
(8)

where TP is the number of risky drivers correctly identified; FP is the number of normal
drivers wrongly identified as risky drivers.

Recall rate is defined as follows:

Recall =
TP

TP + FN
(9)

where FN is the number of risky drivers wrongly identified as normal drivers.
The F1 score is the harmonic average of precision rate and recall rate. A high F1 score

represents high values in both precision rate and recall rate.

F1 = 2
Precision× Recall
Precision + Recall

(10)

The precision-recall curve is a plot of the precision rate and the recall rate for different
probability thresholds. When there is a class-imbalance problem, it is more appropriate to
use Area Under Precision-Recall Curve (AUPRC) instead of Area Under Receiver Operating
Characteristic curve (AUROC) to measure the model’s performance because AUROC with
an imbalanced dataset might be deceptive and lead to over-optimistic evaluation of the
model [46].

Expected Calibration Error (ECE) [47] is used to measure the miscalibration degree to
which a model’s predicted probability departs from the true value.

ECE =
M

∑
k=1

P(k) · |ok − ek| (11)

where ok is the true fraction of positive instances in bin k, ek is the mean of the post-calibrated
probabilities for the instances in bin k, and P(k) is the fraction of all instances that fall into
bin k. The lower the values of ECE, the better is the calibration of a model.



Int. J. Environ. Res. Public Health 2021, 18, 7534 11 of 18

4. Results and Discussion
4.1. Collision Risk and Risky Drivers

Using the method introduced in Section 3.1, we calculate the Average Collison Risk
for 2427 private cars and plot them in Figure 5. The average of all ACRs is 0.036. Most
vehicles have a zero or close-to-zero ACR value indicating they are driving at a safe state.
Based on the IQR method, we find ACR = 0.5 as the risky driver threshold. We label drivers
with ACR greater than 0.5 as risky drivers, accounting for 4.29% of all private car drivers.
Therefore, the data is imbalanced, with 95.71% normal drivers and 4.29% risky drivers. The
imbalance ratio is 1:22.3.

Int. J. Environ. Res. Public Health 2021, 18, x  11 of 19 
 

 

4. Results and Discussion 

4.1. Collision Risk and Risky Drivers 

Using the method introduced in Section 3.1, we calculate the Average Collison Risk 

for 2427 private cars and plot them in Figure 5. The average of all ACRs is 0.036. Most 

vehicles have a zero or close-to-zero ACR value indicating they are driving at a safe state. 

Based on the IQR method, we find ACR = 0.5 as the risky driver threshold. We label driv-

ers with ACR greater than 0.5 as risky drivers, accounting for 4.29% of all private car driv-

ers. Therefore, the data is imbalanced, with 95.71% normal drivers and 4.29% risky driv-

ers. The imbalance ratio is 1:22.3. 

 

Figure 5. Histogram of all vehicles’ ACR. 

4.2. Automated Machine Learning Result 

The risky driver recognition model was trained on a computer with an AMD Ryzen 

1700X 8-core processor (3.40 GHz). A 500-iteration training takes about 30 min. After train-

ing, we found the best combination of sampling method, loss function, probability cali-

bration method, and related hyperparameters. Two 5-fold cross-validations are involved. 

The first 5-fold cross-validation (denoted as CV1) was repetitively applied in the training 

process. We set the maximum number of automated learning iteration to 500, and the CV1 

was repeated 500 times. The final learning results are determined based on their perfor-

mance on CV1. The second 5-fold cross-validation (denoted as CV2) was used to generate 

the final evaluation results presented in this paper to avoid the overfitting problem. The 

difference between CV1 and CV2 is the random seed that impacts how samples are shuf-

fled and split. 

Figure 6 shows that AUPRC increases rapidly within the first 100 iterations and then 

slows down. As the searching continues, the AUPRC on test data in CV1 is still rising, 

even at a much slower pace. However, the AUPRC on test data in CV2 stays almost the 

same after 150 iterations. The gap between AUPRC of CV1 and CV2 is an indicator of the 

overfitting problem, and the gap grows after 1000 iterations. Therefore, setting the maxi-

mum number of searching iteration to 500 is enough for AutoML, and the model tends to 

overfit after 1000 iterations. 

Figure 5. Histogram of all vehicles’ ACR.

4.2. Automated Machine Learning Result

The risky driver recognition model was trained on a computer with an AMD Ryzen
1700X 8-core processor (3.40 GHz). A 500-iteration training takes about 30 min. After
training, we found the best combination of sampling method, loss function, probability
calibration method, and related hyperparameters. Two 5-fold cross-validations are in-
volved. The first 5-fold cross-validation (denoted as CV1) was repetitively applied in the
training process. We set the maximum number of automated learning iteration to 500,
and the CV1 was repeated 500 times. The final learning results are determined based on
their performance on CV1. The second 5-fold cross-validation (denoted as CV2) was used
to generate the final evaluation results presented in this paper to avoid the overfitting
problem. The difference between CV1 and CV2 is the random seed that impacts how
samples are shuffled and split.

Figure 6 shows that AUPRC increases rapidly within the first 100 iterations and then
slows down. As the searching continues, the AUPRC on test data in CV1 is still rising,
even at a much slower pace. However, the AUPRC on test data in CV2 stays almost the
same after 150 iterations. The gap between AUPRC of CV1 and CV2 is an indicator of
the overfitting problem, and the gap grows after 1000 iterations. Therefore, setting the
maximum number of searching iteration to 500 is enough for AutoML, and the model
tends to overfit after 1000 iterations.

The AutoML results by HyperOpt depends on the initial values and may stop at
a local optimum. We list the results of five independent rounds (each round contains
500 iterations of searching) of AutoML in Table 2. The optimal value of hyperparameters is
not stable over each round. For example, the optimal number of estimators in XGBoost
varies from 135 to 323; the weight of minority examples in loss function varies from 4.08
to 22.01. However, the variation of AUPRC in CV1 is small, ranging from 0.794 to 0.805.
Unsurprisingly, AUPRCs in CV2 are lower than AUPRCs in CV1 and have a relatively
wider but acceptable variation, ranging from 0.747 to 0.774.



Int. J. Environ. Res. Public Health 2021, 18, 7534 12 of 18Int. J. Environ. Res. Public Health 2021, 18, x  12 of 19 
 

 

 

Figure 6. AUPRC of CV1 and CV2 over iterations. 

The AutoML results by HyperOpt depends on the initial values and may stop at a 

local optimum. We list the results of five independent rounds (each round contains 500 

iterations of searching) of AutoML in Table 2. The optimal value of hyperparameters is 

not stable over each round. For example, the optimal number of estimators in XGBoost 

varies from 135 to 323; the weight of minority examples in loss function varies from 4.08 

to 22.01. However, the variation of AUPRC in CV1 is small, ranging from 0.794 to 0.805. 

Unsurprisingly, AUPRCs in CV2 are lower than AUPRCs in CV1 and have a relatively 

wider but acceptable variation, ranging from 0.747 to 0.774.  

For all five rounds of AutoML, the best sampling method and loss function are 

SVMSMOTE and cross-entropy loss, respectively. There is no clear winner in probability 

calibration. In rounds 1 and 4, Platt scaling is the best probability calibration method, 

while in rounds 2 and 3, it is better to use the probability predicted by XGBoost directly 

without calibration. Isotonic regression is chosen by the AutoML in round 5.  

Table 2. Five different sets of AutoML results. 

Round 1 2 3 4 5 

AUPRC (test data in CV1) 0.794 0.802 0.805 0.797 0.799 

AUPRC (test data in CV2) 0.76 0.747 0.774 0.758 0.754 

Sampling method SVMSMOTE SVMSMOTE SVMSMOTE SVMSMOTE SVMSMOTE 

Sampling ratio 0.26 0.49 0.36 0.34 0.57 

Loss function 
Cross-entropy 

loss 

Cross-entropy 

loss 

Cross-entropy 

loss 

Cross-entropy 

loss 

Cross-entropy 

loss 

Minority example weight 14.89 8.72 22.01 4.08 16.02 

Probability calibration Platt scaling No calibration No calibration Platt scaling 
Isotonic regres-

sion 

Focal_gamma - - - - - 

n_estimators 135 163 323  172  226 

max_depth 5 7 6 7 8 

learning_rate 0.33 0.52 0.13 0.40 0.10 

subsample 0.62 0.81 0.53 0.84 0.58 

colsample_bytree 0.63 0.75 0.51 0.58 0.68 

4.3. Manual Search of Class-Imbalance Handling Method 

To prove the validity of AutoML results, we manually tested the performance of 13 

different sampling methods (including no sampling), 2 loss functions, and 3 probability 

calibration methods (including no calibration) applied in the model training process. In 

total, there were 13 × 2 × 3 = 78 combinations, and we trained the risky driver recognition 

Figure 6. AUPRC of CV1 and CV2 over iterations.

Table 2. Five different sets of AutoML results.

Round 1 2 3 4 5

AUPRC (test data in CV1) 0.794 0.802 0.805 0.797 0.799
AUPRC (test data in CV2) 0.76 0.747 0.774 0.758 0.754

Sampling method SVMSMOTE SVMSMOTE SVMSMOTE SVMSMOTE SVMSMOTE
Sampling ratio 0.26 0.49 0.36 0.34 0.57

Loss function Cross-entropy
loss

Cross-entropy
loss

Cross-entropy
loss

Cross-entropy
loss Cross-entropy loss

Minority example weight 14.89 8.72 22.01 4.08 16.02
Probability calibration Platt scaling No calibration No calibration Platt scaling Isotonic regression

Focal_gamma - - - - -
n_estimators 135 163 323 172 226
max_depth 5 7 6 7 8

learning_rate 0.33 0.52 0.13 0.40 0.10
subsample 0.62 0.81 0.53 0.84 0.58

colsample_bytree 0.63 0.75 0.51 0.58 0.68

For all five rounds of AutoML, the best sampling method and loss function are
SVMSMOTE and cross-entropy loss, respectively. There is no clear winner in probability
calibration. In rounds 1 and 4, Platt scaling is the best probability calibration method, while
in rounds 2 and 3, it is better to use the probability predicted by XGBoost directly without
calibration. Isotonic regression is chosen by the AutoML in round 5.

4.3. Manual Search of Class-Imbalance Handling Method

To prove the validity of AutoML results, we manually tested the performance of
13 different sampling methods (including no sampling), 2 loss functions, and 3 probability
calibration methods (including no calibration) applied in the model training process. In
total, there were 13 × 2 × 3 = 78 combinations, and we trained the risky driver recog-
nition model 78 times independently, which took 1250 min. This section compares the
performance of weighted (cost-sensitive) loss functions, and the sampling methods and
probability calibration methods are analyzed in Section 4.4.

Figure 7a–c shows the AUPRC of risky driver recognition model with weighted
focal loss and weighted cross-entropy loss. When no sampling is used, cross-entropy
outperforms focal loss by having a higher AUPRC, regardless of the probability calibration
method, shown in Figure 7a–c. However, there are certain combinations where focal loss is
better than cross-entropy loss. For example, shown in Figure 7c, when using ADASYN,
SMOTEENN, or ENN sampling and applying isotonic regression as the probability cali-
bration method, AUPRC is improved when the cross-entropy loss function is switched to
focal loss.



Int. J. Environ. Res. Public Health 2021, 18, 7534 13 of 18

Int. J. Environ. Res. Public Health 2021, 18, x  13 of 19 
 

 

model 78 times independently, which took 1250 min. This section compares the perfor-

mance of weighted (cost-sensitive) loss functions, and the sampling methods and proba-

bility calibration methods are analyzed in Section 4.4. 

Figure 7a–c shows the AUPRC of risky driver recognition model with weighted focal 

loss and weighted cross-entropy loss. When no sampling is used, cross-entropy outper-

forms focal loss by having a higher AUPRC, regardless of the probability calibration 

method, shown in Figure 7a–c. However, there are certain combinations where focal loss 

is better than cross-entropy loss. For example, shown in Figure 7c, when using ADASYN, 

SMOTEENN, or ENN sampling and applying isotonic regression as the probability cali-

bration method, AUPRC is improved when the cross-entropy loss function is switched to 

focal loss.  

The highest AUPRC of all 78 combinations is 0.763, generated by the combination of 

SVMSMOTE, cross-entropy, and no calibration. The second highest AUPRC is 0.758, gen-

erated by the combination of SVMSMOTE, cross-entropy, and Platt scaling. The result is 

consistent with the AutoML that SVMSMOTE is the best sampling method and cross-en-

tropy loss is the best loss function for the risky driver recognition in this paper. The ad-

vantage of AutoML is its effectiveness and efficiency. AutoML can find the best class-

imbalance handling method with 2.4% computational cost needed for manual search. 

 
(a) No calibration 

 
(b) Platt scaling 

 
(c) Isotonic regression 

Figure 7. AUPRC of XGBoost with weighted focal loss and weighted cross-entropy loss.

The highest AUPRC of all 78 combinations is 0.763, generated by the combination
of SVMSMOTE, cross-entropy, and no calibration. The second highest AUPRC is 0.758,
generated by the combination of SVMSMOTE, cross-entropy, and Platt scaling. The result
is consistent with the AutoML that SVMSMOTE is the best sampling method and cross-
entropy loss is the best loss function for the risky driver recognition in this paper. The
advantage of AutoML is its effectiveness and efficiency. AutoML can find the best class-
imbalance handling method with 2.4% computational cost needed for manual search.

4.4. Comparison of Sampling Methods and Probability Calibrations

Setting cost-sensitive cross-entropy loss function, we plot AUPRC of different sam-
pling methods and probability calibration methods in Figure 8. As shown in Figure 8, the
best oversampling method is SVMSMOTE; the best undersampling method is Tomek Links;
the best hybrid sampling method is SMOTETomek. Using cost-sensitive loss function
alone without sampling is not a bad option, which beats several sampling + cost-sensitive
combinations in terms of AUPRC. SMOTEENN + cost-sensitive has the worst AUPRC
score, along with RENN and AllKNN.



Int. J. Environ. Res. Public Health 2021, 18, 7534 14 of 18

Int. J. Environ. Res. Public Health 2021, 18, x  14 of 19 
 

 

Figure 7. AUPRC of XGBoost with weighted focal loss and weighted cross-entropy loss. 

4.4. Comparison of Sampling Methods and Probability Calibrations 

Setting cost-sensitive cross-entropy loss function, we plot AUPRC of different sam-

pling methods and probability calibration methods in Figure 8. As shown in Figure 8, the 

best oversampling method is SVMSMOTE; the best undersampling method is Tomek 

Links; the best hybrid sampling method is SMOTETomek. Using cost-sensitive loss func-

tion alone without sampling is not a bad option, which beats several sampling + cost-

sensitive combinations in terms of AUPRC. SMOTEENN + cost-sensitive has the worst 

AUPRC score, along with RENN and AllKNN. 

Except for ROS, SVMSMOTE, and RUS, most sampling methods can get a higher 

AUPRC after probability calibration. For no sampling, Borderline-SMOTE, ADASYN, 

SMOTEENN, Tomek Links, and ENN, Platt scaling is the best calibration method in re-

spect of AUPRC, compared to no calibration and isotonic regression. For SVMSMOTE, 

the AUPRC of isotonic regression and Platt scaling are lower but very close to the AUPRC 

of no calibration. 

 

Figure 8. AUPRC of different sampling methods and probability calibration methods. 

To find the best probability calibration method, we need help from another evalua-

tion metric of probability calibration, Expected Calibration Error (ECE), which measures 

the error between predicted probabilities and empirical probabilities. As shown in Figure 

9, Platt scaling and isotonic regression both reduce ECE substantially in most scenarios. 

The lowest ECE is reached by SVMSMOTE with isotonic regression. Therefore, we chose 

isotonic regression as the best probability calibration method. 

 

Figure 9. ECE of different sampling methods and probability calibration methods. 

4.5. Final Result 

Figure 8. AUPRC of different sampling methods and probability calibration methods.

Except for ROS, SVMSMOTE, and RUS, most sampling methods can get a higher
AUPRC after probability calibration. For no sampling, Borderline-SMOTE, ADASYN,
SMOTEENN, Tomek Links, and ENN, Platt scaling is the best calibration method in respect
of AUPRC, compared to no calibration and isotonic regression. For SVMSMOTE, the
AUPRC of isotonic regression and Platt scaling are lower but very close to the AUPRC of
no calibration.

To find the best probability calibration method, we need help from another evaluation
metric of probability calibration, Expected Calibration Error (ECE), which measures the
error between predicted probabilities and empirical probabilities. As shown in Figure 9,
Platt scaling and isotonic regression both reduce ECE substantially in most scenarios. The
lowest ECE is reached by SVMSMOTE with isotonic regression. Therefore, we chose
isotonic regression as the best probability calibration method.

Int. J. Environ. Res. Public Health 2021, 18, x  14 of 19 
 

 

Figure 7. AUPRC of XGBoost with weighted focal loss and weighted cross-entropy loss. 

4.4. Comparison of Sampling Methods and Probability Calibrations 

Setting cost-sensitive cross-entropy loss function, we plot AUPRC of different sam-

pling methods and probability calibration methods in Figure 8. As shown in Figure 8, the 

best oversampling method is SVMSMOTE; the best undersampling method is Tomek 

Links; the best hybrid sampling method is SMOTETomek. Using cost-sensitive loss func-

tion alone without sampling is not a bad option, which beats several sampling + cost-

sensitive combinations in terms of AUPRC. SMOTEENN + cost-sensitive has the worst 

AUPRC score, along with RENN and AllKNN. 

Except for ROS, SVMSMOTE, and RUS, most sampling methods can get a higher 

AUPRC after probability calibration. For no sampling, Borderline-SMOTE, ADASYN, 

SMOTEENN, Tomek Links, and ENN, Platt scaling is the best calibration method in re-

spect of AUPRC, compared to no calibration and isotonic regression. For SVMSMOTE, 

the AUPRC of isotonic regression and Platt scaling are lower but very close to the AUPRC 

of no calibration. 

 

Figure 8. AUPRC of different sampling methods and probability calibration methods. 

To find the best probability calibration method, we need help from another evalua-

tion metric of probability calibration, Expected Calibration Error (ECE), which measures 

the error between predicted probabilities and empirical probabilities. As shown in Figure 

9, Platt scaling and isotonic regression both reduce ECE substantially in most scenarios. 

The lowest ECE is reached by SVMSMOTE with isotonic regression. Therefore, we chose 

isotonic regression as the best probability calibration method. 

 

Figure 9. ECE of different sampling methods and probability calibration methods. 

4.5. Final Result 

Figure 9. ECE of different sampling methods and probability calibration methods.

4.5. Final Result

The weighted cross-entropy loss function and isotonic regression are shown to be the
best loss function and probability calibration method, respectively. Results of different
sampling methods with weighted cross-entropy loss function and isotonic regression are
shown in Table 3. SVMSMOTE has the highest AUPRC, 0.758, and the lowest ECE, 0.015,
among all sampling methods. The precision of SVMSMOTE is 0.797, and the recall rate
is 0.536. Some other sampling methods have higher precision or recall rates, but since
precision, recall, and F1 can be changed by threshold-moving, we chose the SVMSMOTE
as the best sampling method based on AUPRC and ECE score.



Int. J. Environ. Res. Public Health 2021, 18, 7534 15 of 18

Table 3. Results of different sampling methods with weighted cross-entropy loss function and
isotonic regression.

Sampling Method AUPRC Precision Recall F1 ECE

None 0.745 0.785 0.587 0.654 0.019
ROS 0.733 0.787 0.570 0.648 0.020

SMOTE 0.743 0.773 0.585 0.649 0.018
Borderline-SMOTE 0.740 0.763 0.562 0.625 0.017

SVMSMOTE 0.758 0.797 0.536 0.622 0.015
ADASYN 0.718 0.811 0.524 0.623 0.020

SMOTE-ENN 0.673 0.675 0.561 0.597 0.020
SMOTE-Tomek 0.741 0.745 0.608 0.652 0.019

RUS 0.715 0.784 0.527 0.619 0.016
Tomek Links 0.740 0.764 0.557 0.622 0.021

ENN 0.723 0.734 0.586 0.630 0.022
RENN 0.691 0.701 0.532 0.591 0.021

AllKNN 0.711 0.719 0.572 0.613 0.020

Many applications use undersampling or oversampling to create an exact-balanced
dataset before model training. Exact-balanced sampling refers to sampling that generates
data with equal-size minority and majority examples. Theoretically, sampling + cost-
sensitive loss function is more flexible than using exact-balanced sampling alone. The
hyperparameter “scale_pos_weight” in XGBoost controls the minority class weight in the
cost-sensitive loss function. When “scale_pos_weight equals” 1, sampling + cost-sensitive
loss function is equivalent to sampling only. When the sampling ratio equals 1, the data
become exact-balanced after sampling. Figure 10 shows that sampling + cost-sensitive is
better than exact-balanced sampling for oversampling, hybrid sampling, and RUS. As the
minority sample size is minimal, exact-balanced RUS has a much worse AUPRC than other
sampling methods. Tomek Links, ENN, RENN, and AllKNN are not considered in this
section since they cannot create an exact-balanced dataset.

Int. J. Environ. Res. Public Health 2021, 18, x  15 of 19 
 

 

The weighted cross-entropy loss function and isotonic regression are shown to be the 

best loss function and probability calibration method, respectively. Results of different 

sampling methods with weighted cross-entropy loss function and isotonic regression are 

shown in Table 3. SVMSMOTE has the highest AUPRC, 0.758, and the lowest ECE, 0.015, 

among all sampling methods. The precision of SVMSMOTE is 0.797, and the recall rate is 

0.536. Some other sampling methods have higher precision or recall rates, but since preci-

sion, recall, and F1 can be changed by threshold-moving, we chose the SVMSMOTE as the 

best sampling method based on AUPRC and ECE score.  

Table 3. Results of different sampling methods with weighted cross-entropy loss function and 

isotonic regression. 

Sampling Method AUPRC Precision Recall F1 ECE 

None 0.745 0.785 0.587 0.654 0.019 

ROS 0.733 0.787 0.570 0.648 0.020 

SMOTE 0.743 0.773 0.585 0.649 0.018 

Borderline-SMOTE 0.740 0.763 0.562 0.625 0.017 

SVMSMOTE 0.758 0.797 0.536 0.622 0.015 

ADASYN 0.718 0.811 0.524 0.623 0.020 

SMOTE-ENN 0.673 0.675 0.561 0.597 0.020 

SMOTE-Tomek 0.741 0.745 0.608 0.652 0.019 

RUS 0.715 0.784 0.527 0.619 0.016 

Tomek Links 0.740 0.764 0.557 0.622 0.021 

ENN 0.723 0.734 0.586 0.630 0.022 

RENN 0.691 0.701 0.532 0.591 0.021 

AllKNN 0.711 0.719 0.572 0.613 0.020 

Many applications use undersampling or oversampling to create an exact-balanced 

dataset before model training. Exact-balanced sampling refers to sampling that generates 

data with equal-size minority and majority examples. Theoretically, sampling + cost-sen-

sitive loss function is more flexible than using exact-balanced sampling alone. The hy-

perparameter “scale_pos_weight” in XGBoost controls the minority class weight in the 

cost-sensitive loss function. When “scale_pos_weight equals” 1, sampling + cost-sensitive 

loss function is equivalent to sampling only. When the sampling ratio equals 1, the data 

become exact-balanced after sampling. Figure 10 shows that sampling + cost-sensitive is 

better than exact-balanced sampling for oversampling, hybrid sampling, and RUS. As the 

minority sample size is minimal, exact-balanced RUS has a much worse AUPRC than 

other sampling methods. Tomek Links, ENN, RENN, and AllKNN are not considered in 

this section since they cannot create an exact-balanced dataset. 

 

Figure 10. AUPRC of exact-balance sampling and sampling + cost-sensitive. Figure 10. AUPRC of exact-balance sampling and sampling + cost-sensitive.

4.6. Discussion

In this paper, the ACR threshold value is determined using the IQR method. We tested
the impact of different ACR threshold values on model’s evaluation metrics. As shown in
Table 4, when using a smaller ACR threshold, the percentage of risky drivers increases and
the evaluation metrics are improved in general, mainly because the data is less imbalanced.
When the ACR threshold is 0.1, the imbalance ratio is 1:2.33, and the AUPRC is 0.934; when
the ACR threshold is 0.6, the imbalance ratio is 1:64.57, and the AUPRC drops to 0.553.



Int. J. Environ. Res. Public Health 2021, 18, 7534 16 of 18

Table 4. Results of different ACR threshold values.

ACR
Threshold

Percentage of Risky
Drivers AUPRC Precision Recall F1

0.1 30.05% 0.934 0.838 0.893 0.864
0.2 17.77% 0.910 0.825 0.791 0.801
0.3 11.09% 0.807 0.756 0.743 0.741
0.4 6.92% 0.822 0.756 0.678 0.713
0.5 4.29% 0.758 0.797 0.536 0.622
0.6 1.53% 0.553 0.628 0.400 0.447

The proposed automated machine learning framework is not limited to risky driver
recognition but class imbalance problem in general. Other application domains suffer
class imbalance problems, such as disease diagnosis, financial fraud detection, network
intrusion detection, etc. Our future work will test the proposed framework’s performance
on benchmark datasets from various fields.

5. Conclusions

This paper proposed an innovative AutoML framework that integrates sampling, cost-
sensitive learning, and probability calibration with XGBoost to recognize risky drivers and
combat the class imbalance problem. We found this combination more flexible and effective
than using sampling or cost-sensitive learning alone to handle class imbalance problems. The
AutoML framework can search for the best class-imbalance handling method out of 12 sam-
pling methods, 2 cost-sensitive XGBoost loss functions, and 2 probability calibration methods.

We used vehicle trajectory data to train the risky driver recognition model. Risky
drivers were labeled based on their rear-end collision risk with surrounding vehicles. The
inputs of the recognition model were the DFT coefficients of the target vehicle’s longitudinal
speed, lateral speed, and the gap between the target vehicle and its preceding vehicle.

The optimal result learned by the AutoML framework was compared with the manual
search result. Both agree that SVMSMOTE and weighted cross-entropy win the competition,
but there is no clear answer of what probability calibration method is the best. In general,
Platt scaling and isotonic regression can reduce the error between predicted probabilities
and empirical probabilities. However, when combined with SVMSMOTE and weighted
cross-entropy, the difference in AUPRC between probability calibration methods and no
calibration is negligible. Finally, we chose isotonic regression as the probability calibration
method used in model training since it has the lowest ECE.

Compared to manual searching, the AutoML can automatically find the optimal
model pipeline and hyperparameters with significant savings on computational cost. A
500-iteration AutoML task in this paper takes only 30 min, which is 2.4% of the time
needed for manual searching. We also found that the integration of sampling, cost-sensitive
loss function, and probability calibration is more flexible and effective than using any
class-imbalance handling method alone.

Future efforts should focus on the following aspects: (1) a more comprehensive
collision risk evaluation on the target vehicle is needed to establish more reliable ground
truth. (2) The framework proposed in this paper can be extended to other machine learning
algorithms, such as deep neural networks, bagging and stacking of XGBoost classifiers.

Author Contributions: Conceptualization, K.W. and J.J.L.; methodology, K.W.; formal analysis,
K.W. and Q.X.; writing—original draft preparation, K.W. and Q.X.; visualization, Q.X.; supervision,
J.J.L.; funding acquisition, J.J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The study and the APC was funded by the National Key Research and Development Pro-
gram of China (No. 2017YFC0803902), the National Natural Science Foundation of China (71871165),
and the Fundamental Research Funds for the Central Universities (22120210081).

Institutional Review Board Statement: Not applicable.



Int. J. Environ. Res. Public Health 2021, 18, 7534 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: The vehicle trajectory data used in this study is free for non-commercial
use and can be requested to download at https://www.highd-dataset.com (accessed on 1 May 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rolison, J.J.; Regev, S.; Moutari, S.; Feeney, A. What are the factors that contribute to road accidents? An assessment of law

enforcement views, ordinary drivers’ opinions, and road accident records. Accid. Anal. Prev. 2018, 115, 11–24. [CrossRef]
[PubMed]

2. Wang, K.; Xue, Q.; Xing, Y.; Li, C. Improve aggressive driver recognition using collision surrogate Measurement and imbalanced
class boosting. Int. J. Environ. Res. Public Health 2020, 17, 2375. [CrossRef]

3. Sun, W.; Zhang, X.; Peeta, S.; He, X.; Li, Y. A real-time fatigue driving recognition method incorporating contextual features and
two fusion levels. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3408–3420. [CrossRef]

4. Liu, T.; Yang, Y.; Huang, G.-B.; Yeo, Y.K.; Lin, Z. Driver distraction detection using semi-supervised machine learning. IEEE Trans.
Intell. Transp. Syst. 2016, 17, 1108–1120. [CrossRef]

5. Chandrasiri, N.P.; Nawa, K.; Ishii, A. Driving skill classification in curve driving scenes using machine learning. J. Mod. Transp.
2016, 24, 196–206. [CrossRef]

6. Molchanov, P.; Gupta, S.; Kim, K.; Pulli, K. Multi-sensor system for driver’s hand-gesture recognition. In Proceedings of the 11th
IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, Ljubljana, Slovenia, 4–8 May 2015.

7. Yan, C.; Coenen, F.; Yue, Y.; Yang, X.; Zhang, B. Video-based classification of driving behavior using a hierarchical classification
system with multiple features. Int. J. Pattern Recognit. Artif. Intell. 2016, 30, 1650010. [CrossRef]

8. Wang, H.; Zhang, C.; Shi, T.; Wang, F.; Ma, S. Real-time EEG-based detection of fatigue driving danger for accident prediction. Int.
J. Neural Syst. 2015, 25, 1550002. [CrossRef] [PubMed]

9. Deng, C.; Wu, C.; Lyu, N.; Huang, Z. Driving style recognition method using braking characteristics based on hidden Markov
model. PLoS ONE 2017, 12, e0182419. [CrossRef] [PubMed]

10. Xue, Q.; Wang, K.; Lu, J.J.; Liu, Y. Rapid driving style recognition in car-following using machine learning and vehicle trajectory
data. J. Adv. Transp. 2019, 2019, 1–11. [CrossRef]

11. Van Ly, M.; Martin, S.; Trivedi, M.M. Driver classification and driving style recognition using inertial sensors. In Proceedings of
the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast City, Australia, 23–28 June 2013; pp. 1040–1045.

12. Wu, M.; Zhang, S.; Dong, Y. A novel model-based driving behavior recognition system using motion sensors. Sensors 2016, 16,
1746. [CrossRef] [PubMed]

13. Fernandez, S.; Ito, T. Driver classification for intelligent transportation systems using fuzzy logic. In Proceedings of the 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016;
pp. 1212–1216.

14. Wang, W.; Xi, J. A rapid pattern-recognition method for driving styles using clustering-based support vector machines. In
Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 5270–5275.

15. Dasgupta, A.; Rahman, D.; Routray, A. A smartphone-based drowsiness detection and warning system for automotive drivers.
IEEE Trans. Intell. Transp. Syst. 2018, 20, 4045–4054. [CrossRef]

16. Carlos, M.R.; Gonzalez, L.C.; Wahlstrom, J.; Ramirez, G.; Martinez, F.; Runger, G. How smartphone accelerometers reveal
aggressive Driving Behavior?—The key is the representation. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3377–3387. [CrossRef]

17. Aoude, G.S.; Desaraju, V.R.; Stephens, L.H.; How, J.P. Driver behavior classification at intersections and validation on large
naturalistic data set. IEEE Trans. Intell. Transp. Syst. 2012, 13, 724–736. [CrossRef]

18. Kluger, R.; Smith, B.L.; Park, H.; Dailey, D.J. Identification of safety-critical events using kinematic vehicle data and the discrete
fourier transform. Accid. Anal. Prev. 2016, 96, 162–168. [CrossRef] [PubMed]

19. Bejani, M.M.; Ghatee, M. A context aware system for driving style evaluation by an ensemble learning on smartphone sensors
data. Transp. Res. Part C Emerg. Technol. 2018, 89, 303–320. [CrossRef]

20. Zhao, N.; Mehler, B.; Reimer, B.; D’Ambrosio, L.A.; Mehler, A.; Coughlin, J.F. An investigation of the relationship between the
driving behavior questionnaire and objective measures of highway driving behavior. Transp. Res. Part F Traffic Psychol. Behav.
2012, 15, 676–685. [CrossRef]

21. Wang, F.; Zhang, J.; Wang, S.; Li, S.; Hou, W. Analysis of driving behavior based on dynamic changes of personality states. Int. J.
Environ. Res. Public Health 2020, 17, 430. [CrossRef] [PubMed]

22. Wang, W.; Xi, J.; Chong, A.; Li, L. Driving style classification using a semisupervised support vector machine. IEEE Trans. Hum.
Mach. Syst. 2017, 47, 650–660. [CrossRef]

23. Shi, X.; Wong, Y.D.; Li, M.Z.-F.; Palanisamy, C.; Chai, C. A feature learning approach based on XGBoost for driving assessment
and risk prediction. Accid. Anal. Prev. 2019, 129, 170–179. [CrossRef]

24. Chen, J.; Wu, Z.; Zhang, J. Driving safety risk prediction using cost-sensitive with nonnegativity-constrained autoencoders based
on imbalanced naturalistic driving data. IEEE Trans. Intell. Transp. Syst. 2019, 20, 4450–4465. [CrossRef]

https://www.highd-dataset.com
http://doi.org/10.1016/j.aap.2018.02.025
http://www.ncbi.nlm.nih.gov/pubmed/29529397
http://doi.org/10.3390/ijerph17072375
http://doi.org/10.1109/TITS.2017.2690914
http://doi.org/10.1109/TITS.2015.2496157
http://doi.org/10.1007/s40534-016-0098-2
http://doi.org/10.1142/S0218001416500105
http://doi.org/10.1142/S0129065715500021
http://www.ncbi.nlm.nih.gov/pubmed/25541095
http://doi.org/10.1371/journal.pone.0182419
http://www.ncbi.nlm.nih.gov/pubmed/28837580
http://doi.org/10.1155/2019/9085238
http://doi.org/10.3390/s16101746
http://www.ncbi.nlm.nih.gov/pubmed/27775625
http://doi.org/10.1109/TITS.2018.2879609
http://doi.org/10.1109/TITS.2019.2926639
http://doi.org/10.1109/TITS.2011.2179537
http://doi.org/10.1016/j.aap.2016.08.006
http://www.ncbi.nlm.nih.gov/pubmed/27543893
http://doi.org/10.1016/j.trc.2018.02.009
http://doi.org/10.1016/j.trf.2012.08.001
http://doi.org/10.3390/ijerph17020430
http://www.ncbi.nlm.nih.gov/pubmed/31936406
http://doi.org/10.1109/THMS.2017.2736948
http://doi.org/10.1016/j.aap.2019.05.005
http://doi.org/10.1109/TITS.2018.2886280


Int. J. Environ. Res. Public Health 2021, 18, 7534 18 of 18

25. Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A review on ensembles for the class imbalance problem:
Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2012, 42, 463–484. [CrossRef]

26. McCarthy, K.; Zabar, B.; Weiss, G. Does cost-sensitive learning beat sampling for classifying rare classes? In Proceedings of the 1st
International Workshop on Utility-Based Data Mining, New York, NY, USA, 21 August 2005; pp. 69–77.

27. Zhang, J.W.; Lu, H.J.; Chen, W.T.; Lu, Y. A comparison study of cost-sensitive learning and sampling methods on imbalanced
data sets. Adv. Mater. Res. 2011, 271-273, 1291–1296. [CrossRef]

28. Le, T.; Vo, M.T.; Vo, B.; Lee, M.Y.; Baik, S.W. A hybrid approach using oversampling technique and cost-sensitive learning for
bankruptcy prediction. Complexity 2019, 2019, 1–12. [CrossRef]

29. Peng, Y.; Li, C.; Wang, K.; Gao, Z.; Yu, R. Examining imbalanced classification algorithms in predicting real-time traffic crash risk.
Accid. Anal. Prev. 2020, 144, 105610. [CrossRef] [PubMed]

30. Krajewski, R.; Bock, J.; Kloeker, L.; Eckstein, L. The highD dataset: A drone dataset of naturalistic vehicle trajectories on german
highways for validation of highly automated driving systems. In Proceedings of the 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2118–2125.

31. Lee, S.E.; Llaneras, E.; Klauer, S.; Sudweeks, J. Analyses of Rear-End Crashes and Near-Crashes in the 100-Car Naturalistic Driving
Study to Support Rear-Signaling Countermeasure Development; NHTSA: Washington, DC, USA, 2007.

32. Laurikkala, J.; Juhola, M.; Kentala, E. Informal identification of outliers in medical data. In Proceedings of the Fifth International
Workshop on Intelligent Data Analysis in Medicine and Pharmacology, Berlin, Germany, 22 August 2000; pp. 20–24.

33. Vasconcelos, I.; Vasconcelos, R.O.; Olivieri, B. Smartphone-based outlier detection: A complex event processing approach for
driving behavior detection. J. Internet Serv. Appl. 2017, 8, 1–30. [CrossRef]

34. McGehee, D.V.; Lee, J.D.; Rizzo, M.; Dawson, J.; Bateman, K. Quantitative analysis of steering adaptation on a high performance
fixed-base driving simulator. Transp. Res. Part F Traffic Psychol. Behav. 2004, 7, 181–196. [CrossRef]

35. Bao, S.; Guo, Z.; Flannagan, C.; Sullivan, J.; Sayer, J.R.; LeBlanc, D. Distracted driving performance measures. Transp. Res. Rec. J.
Transp. Res. Board 2015, 2518, 68–72. [CrossRef]

36. Wang, Y.; Bao, S.; Du, W.; Ye, Z.; Sayer, J.R. A spectral power analysis of driving behavior changes during the transition from
nondistraction to distraction. Traffic Inj. Prev. 2017, 18, 826–831. [CrossRef] [PubMed]

37. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining 2016, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]

38. Lin, T.-Y.; Goyal, P.; Girshick, R.B.; He, K.; Dollar, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell.
2020, 42, 318–327. [CrossRef]

39. Wang, C.; Deng, C.; Wang, S. Imbalance-XGBoost: Leveraging weighted and focal losses for binary label-imbalanced classification
with XGBoost. Pattern Recognit. Lett. 2020, 136, 190–197. [CrossRef]

40. Niculescu-Mizil, A.; Caruana, R. Predicting good probabilities with supervised learning. In Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering 2018, Christchurch, New Zealand, 28–29 June 2018; pp. 625–632.

41. Wallace, B.C.; Dahabreh, I.J. Class probability estimates are unreliable for imbalanced data (and how to fix them). In Proceedings
of the 2012 IEEE 12th International Conference on Data, MiningBrussels, Belgium, 10–13 December 2012; pp. 695–704.

42. Platt, J.C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances
in Large Margin Classifiers; Smola, A., Bartlett, P., Scholkopf, B., Schuurmans, D., Eds.; MIT Press: Cambridge, MA, USA, 1999;
pp. 61–74.

43. Zadrozny, B.; Elkan, C. Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In Proceedings
of the 18th International Conference on Machine Learning, Williamstown, MA, USA, 28 June–1 July 2001; pp. 609–616.

44. Zadrozny, B.; Elkan, C. Transforming classifier scores into accurate multiclass probability estimates. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002;
pp. 694–699.

45. Bergstra, J.; Yamins, D.; Cox, D.D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions
for vision architectures. In Proceedings of the 30th International Conference on International Conference on Machine Learning,
Atlanta, GA, USA, 16–21 June 2013; pp. 115–123.

46. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef] [PubMed]

47. Naeini, M.P.; Cooper, G.F.; Hauskrecht, M. Obtaining well calibrated probabilities using bayesian binning. In Proceedings of the
AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 2901–2907.

http://doi.org/10.1109/TSMCC.2011.2161285
http://doi.org/10.4028/www.scientific.net/AMR.271-273.1291
http://doi.org/10.1155/2019/8460934
http://doi.org/10.1016/j.aap.2020.105610
http://www.ncbi.nlm.nih.gov/pubmed/32559659
http://doi.org/10.1186/s13174-017-0065-0
http://doi.org/10.1016/S1369-8478(04)00033-6
http://doi.org/10.3141/2518-09
http://doi.org/10.1080/15389588.2017.1320549
http://www.ncbi.nlm.nih.gov/pubmed/28534644
http://doi.org/10.1145/2939672.2939785
http://doi.org/10.1109/TPAMI.2018.2858826
http://doi.org/10.1016/j.patrec.2020.05.035
http://doi.org/10.1371/journal.pone.0118432
http://www.ncbi.nlm.nih.gov/pubmed/25738806

	Introduction 
	Data 
	Methodology 
	Collision Risk Evaluation 
	Feature Extraction and Selection 
	Sampling Methods 
	Cost-Sensitive XGBoost Loss Functions 
	Probability Calibration 
	Automated Machine Learning 
	Cross-Validation and Evaluation Metrics 

	Results and Discussion 
	Collision Risk and Risky Drivers 
	Automated Machine Learning Result 
	Manual Search of Class-Imbalance Handling Method 
	Comparison of Sampling Methods and Probability Calibrations 
	Final Result 
	Discussion 

	Conclusions 
	References

