
����������
�������

Citation: Doyon-Laliberté, K.;

Aranguren, M.; Poudrier, J.; Roger, M.

Marginal Zone B-Cell Populations

and Their Regulatory Potential in the

Context of HIV and Other Chronic

Inflammatory Conditions. Int. J. Mol.

Sci. 2022, 23, 3372. https://doi.org/

10.3390/ijms23063372

Academic Editors: Patricia Price,

Silvia Deaglio, Marcos López Hoyos

and Ramón Merino

Received: 4 February 2022

Accepted: 17 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Marginal Zone B-Cell Populations and Their Regulatory
Potential in the Context of HIV and Other Chronic
Inflammatory Conditions
Kim Doyon-Laliberté 1,2,†, Matheus Aranguren 1,2,†, Johanne Poudrier 1,2,* and Michel Roger 1,2,*

1 Centre de Recherche du Centre, Hospitalier de l’Université de Montréal (CRCHUM), Tour Viger 900 rue
St-Denis, Montréal, QC H2X 0A9, Canada; kim.doyon-laliberte@umontreal.ca (K.D.-L.);
mat.aranguren@gmail.com (M.A.)

2 Département de Microbiologie, Infectiologie et Immunologie de l’Université de Montréal,
Montréal, QC H2X 0A9, Canada

* Correspondence: johanne.poudrier@umontreal.ca (J.P.); michel.roger.chum@ssss.gouv.qc.ca (M.R.)
† These authors contributed equally to this work.

Abstract: Inflammation in the context of Human Immunodeficiency Virus (HIV) establishes early
and persists beyond antiretroviral therapy (ART). As such, we have shown excess B-cell activating
factor (BAFF) in the blood of HIV-infected progressors, as soon as in the acute phase, and despite
successful ART. Excess BAFF was associated with deregulation of the B-cell compartment; notably,
with increased frequencies of a population sharing features of both transitional immature (TI) and
marginal zone (MZ) B-cells, we termed Marginal Zone precursor-like (MZp). We have reported similar
observations with HIV-transgenic mice, Simian Immunodeficiency Virus (SIV)-infected macaques,
and more recently, with HIV-infected Beninese commercial sex workers, which suggests that excess
BAFF and increased frequencies of MZp B-cells are reliable markers of inflammation in the context of
HIV. Importantly, we have recently shown that in healthy individuals, MZps present an important
regulatory B-cell (Breg) profile and function. Herein, we wish to review our current knowledge
on MZ B-cell populations, especially their Breg status, and that of other B-cell populations sharing
similar features. BAFF and its analog A Proliferation-Inducing Ligand (APRIL) are important in
shaping the MZ B-cell pool; moreover, the impact that excess BAFF—encountered in the context of
HIV and several chronic inflammatory conditions—may exert on MZ B-cell populations, Breg and
antibody producing capacities is a threat to the self-integrity of their antibody responses and immune
surveillance functions. As such, deregulations of MZ B-cell populations contribute to autoimmune
manifestations and the development of MZ lymphomas (MZLs) in the context of HIV and other
inflammatory diseases. Therefore, further comprehending the mechanisms regulating MZ B-cell
populations and their functions could be beneficial to innovative therapeutic avenues that could be
deployed to restore MZ B-cell immune competence in the context of chronic inflammation involving
excess BAFF.

Keywords: Bregs; marginal zone (MZ) B-cells; B-cell activating factor (BAFF); HIV

1. Introduction

Marginal zone (MZ) B-cells are innate-like, and possess a polyreactive B-cell receptor
(BCR) and several pattern recognition receptors (PRR) [1,2]. They are known to generate
low-affinity first-line antibody responses against invading pathogens such as encapsulated
bacteria [3]. Important to this Special Issue is the fact that we and others have shown that
MZ B-cell populations also possess strong regulatory B-cell (Breg) potential [4]. Unfortu-
nately, deregulations affecting MZ B-cell populations have been reported in the context of
Human Immunodeficiency Virus (HIV) and other chronic inflammatory conditions [2,5,6].
In this review, we will only briefly discuss MZ B-cell ontogeny and antibody responses, as
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these topics have been reviewed elsewhere and are beyond the scope of this work [1–3,7].
We will concentrate our efforts on examining the regulatory capacities of MZ and other
B-cell populations sharing similar features. The importance of the B-cell activating factor
(BAFF) and its analog A Proliferation-Inducing Ligand (APRIL) in shaping the MZ B-cell
pool and Breg profile will be discussed. The deregulation of MZ B-cell populations and
development of MZ lymphomas (MZL) in the context of HIV and other inflammatory
diseases will also be addressed. Lastly, we will talk about possible therapeutic avenues that
could be deployed to restore MZ B-cell immune competence.

2. Ontogeny of MZ B-Cells

The first B-cell progenitors can be found as early as 7 weeks post conception in the
fetal liver [8]. However, the B lymphoid progenitor compartment differs between fetal and
postnatal life, and herein, we will only briefly focus on postnatal ontogeny, as these topics
are beyond the scope of this article and have been thoroughly reviewed elsewhere [8]. As
depicted in Figure 1, post-natal B-cell development originates in the bone marrow, first,
with pluripotent hematopoietic stem cells and their differentiation into common lymphoid
progenitors (CLP) [9]. During their development, B-cells will undergo rearrangement of
their BCR heavy chains (during the pro-B stage) and their light chains (during the pre-B
stage) via the action of the Recombination-activating genes 1 and 2 (RAG1, RAG2) [10].
Overall, during these recombination steps, positive and negative selection ensures that the
new BCR is functional, yet not autoreactive [11]. After these selection processes, immature
B-cells, which express the newly rearranged BCR of the IgM isotype on their surface, exit
the bone marrow and migrate to the spleen or other secondary lymphoid organs, where
they complete their maturation and differentiation [11]. At this point, the immature B-cell is
called transitional immature (TI); it will follow maturation steps comprising stages TI-1 to
TI-2 and TI-3, and will commit to either the follicular (FO) or the MZ B-cell fates, depending
on the signals it receives (see below) [12–14]. Although this generalized sequence of events
appears to be similar for the murine and human systems, several distinctions prevail [15].
One major difference is the fact that in the murine system, MZ B-cells are believed to
arise mainly from TI-2 progenitors, which complete their maturation in the spleen, where
they appear to be restricted in contrast to those observed in the human system where
MZ B-cells recirculate [16]. Interestingly, recent studies in humans have demonstrated
the existence of bone-marrow-derived TI-2 IgMlo and IgMhi progenitors, the latter of
which share transcriptional features with MZ B-cells, express α4β7 and migrate to the gut-
associated lymphoid tissue (GALT) [14]. This suggests that the GALT may be an important
site for human MZ B-cell differentiation [15].
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FO and MZ B-cells are known as conventional B-cells or B2 cells [17]. Another sub-
population with innate-like properties has been identified in mice, and its cells are dubbed
B1 cells. B1 and B2 cells differ in their ontogeny, as B1 cells come from a distinct lineage
in the fetal liver and B2 cells originate from the bone marrow; moreover, B1 and B2 cells
differ in their location, as B1 cells are most commonly found in the pleural cavity, unlike
B2 cells [17,18]. Despite the fact that B1 cells are acknowledged in mice, their presence in
humans, to date, remains controversial [18].

To date, at least three signals are involved in the FO versus MZ B-cell fate: 1. via the
receptor for BAFF (BAFF-R), fundamental for sending survival signals to TI B-cells and for
activating the canonical nuclear factor kappa B (NF-κB) signaling path; 2. signals resulting
from the engagement of the newly expressed BCR; and 3. Notch Receptor 2 (NOTCH 2)
signals, the latter two being responsible for cell fate commitment [13]. When NOTCH2
binds to its ligand, delta-like 1 (DLL1) (expressed by a variety of cells in the spleen such as
endothelial cells of the red pulp venule), in the context of weak BCR signaling, the former
is internalized and translocated into the nucleus; there, it binds to DNA and allows the
expression of genes involved in MZ differentiation [19]. However, strong BCR signaling will
induce Bruton’s tyrosine kinase (BTK) signals, which will inhibit the NOTCH2 signaling
pathway, allowing for the expression of genes involved in FO differentiation [20]. It is
important to note that the level of BCR signaling required for MZ differentiation induces
the expression of a disintegrin and metalloproteinase-containing protein 10 (ADAM10);
this is required for the cleavage of NOTCH2, necessary for its nuclear translocation [21],
implying that a complete absence of BCR stimulation will impede MZ B-cell differentiation.
While BAFF itself is not a direct player in MZ differentiation, it can skew the TI B-cells into
differentiating into MZ by upregulating NOTCH2 expression [13,22,23].

To recapitulate, MZ B-cells originate from the bone marrow, where they will undergo
BCR rearrangement. After expressing the newly arranged BCR and BAFF-R, they will
migrate to the secondary lymphoid organs where they will complete their differentiation
based on three signals: BAFF-R, BCR and NOTCH2. Weaker BCR signals coupled with
NOTCH2 signals will dictate the differentiation towards an MZ profile, whereas strong
BCR signals and a lack of NOTCH2 signaling will dictate the differentiation towards an
FO profile.

In humans, MZ B-cells are usually found in the marginal zone, a strategic region
surrounding germinal centers (GC). As such, MZ B-cells have been observed in the spleen
and other secondary lymphoid organs such as tonsils, lymph nodes and the GALT, in
areas such as in the sub-endothelial dome of the Peyer’s patches [16,24]. Interestingly, as
mentioned above, human MZs have the capacity to recirculate in blood, a trait that has not
been identified in their murine counterparts. As such, in mice, MZ B-cells appear to be
restricted to the splenic marginal zone, which is at the interface between the red and white
pulps, and surrounding the follicular area of the spleen [25]. This difference contributes to
fueling the controversy about the MZ’s existence in humans, given that most studies on
MZ B-cell biology were conducted in mice and restricted to the spleen. The spleen is one of
the most irrigated organs, at any given time receiving around 5 to 10% of the total blood
volume, which is huge considering its size and oxygen consumption under steady-state
conditions [26]. One of the reasons for this lies in the fact that the spleen is involved in the
“screening” of the circulatory system for bloodborne antigens [1]. Indeed, the marginal
zone is placed strategically next to the blood entries in the spleen, allowing for MZ B-cells
and other innate cells such as neutrophils, dendritic cells (DCs) and macrophages to act as
first-line defenders, quickly responding to antigens found in the circulation [1,2].

The B-cell composition of the marginal zone area is heterogeneous, as populations
such as B1, memory and MZ B-cells transit to, or reside within, that zone; this renders
the characterization of such populations difficult, as they often share several markers. In
humans, MZ B-cells are characterized by their high expression levels of the atypical major
histocompatibility complex (MHC) class I molecule CD1c; the surface immunoglobulin
(Ig)M and the complement receptor CD21; and the low and transient expression of CD23,
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a C-type lectin which is also the Fc receptor for IgE and is highly expressed by FO B-
cells [1]. Interestingly, human MZ B-cells express the memory B-cell marker CD27, and
their Igs present signs of somatic hypermutations (SHMs), even though these B-cells mostly
produce extra-follicular T-independent Ig responses and, therefore, are not generated from
typical T-dependent GC reactions, where Ig SHM and affinity maturation usually take place
(discussed below) [27]. As such, MZ B-cells are often referred to as “antigen-experienced”
cells [3,25,28]. However, there is some evidence of “memory-like” MZ B-cells that possess a
more specific affinity for some bacterial antigens [27]. The fact that MZ B-cells express CD27,
together with certain differences between human and mice, makes the classification of MZ
B-cells in humans controversial, where some authors consider these cells to be unswitched
IgM memory B-cells [3,25,29]; although, several key differences between unswitched IgM
memory and MZ B-cells have been documented [25]. The current tendency to track human
B-cell populations—especially in blood in the context of inflammation, based on CD27
and CD21 expression levels—makes it difficult to identify innate-like populations such
as MZs, as they are of low frequencies and fall into larger groups characterized in bulk.
This is likely to preclude any contribution from such rarer populations. To this end, our
experience is that the usage of several markers should be more widely applied in order to
identify such B-cell populations, whose contribution to inflammation is non negligible, as
discussed further below.

3. MZ B-Cells and Their Antibody Responses

As first-line defenders, MZ B-cells possess several PRRs such as Toll-like receptors
(TLRs) and C-type lectins. Given the polyreactive nature of their BCR, MZ B-cells bear a
strong autoreactive potential [7,30,31]. They are known for their quick response against
bloodborne pathogens, notably towards encapsulated bacteria [32]. Following their activa-
tion, mostly in a T-independent manner (discussed below), they differentiate into short-lived
plasma cells that will mostly produce antibodies of the IgM isotype, providing a first level of
defense while awaiting a more refined adaptive response from FO B-cells [33–35]. To this end,
MZ B-cells have the potential to capture bloodborne antigens and then migrate from the
marginal zone to the follicles (in a process known as shuttling); from there, they deliver
immune-complexed antigens via antibodies through Fc receptors such as CD32, or via the
complement system through complement receptors such as CD21 and CD35, to follicular
dendritic cells (FDCs) [36]. This process has been found to be fundamental to the generation
of GCs.

Briefly, GC reactions are sites of antigen-specific T-dependent—notably via CD40-
CD40L signaling—FO B-cell differentiation and Ig affinity maturation [37]. Overall, there
are two detectable phases in GC reactions: the dark phase where B-cells, having received
signals for class switch recombination (CSR), stop expressing surface Ig and change their
isotype into either of IgG, IgE or IgA, in order to gain effector functions (though CSR is not
restricted to GC reactions) [38–40]. During this stage, B-cells (or centroblasts) proliferate
and undertake SHM to increase antibody affinity for the antigen. Following the dark phase,
the light phase allows for B-cells, or centrocytes, to express somatically mutated class-
switched Ig on their surface with a view to being selected [40]. Notably, this differentiation
scheme is not restricted to one round. The selection process is based on Ig affinity for the
antigen presented at the surface of FDC, and on signals received by follicular helper T-cells
(Tfh) [40]. B-cells with poor affinity will undergo apoptosis by neglect. This GC process is
essential to assure the maturation and selection of memory B-cells and long-lived plasma
cells, which guarantee the generation of high affinity antibodies endowed with refined
effector potential [36].

As mentioned earlier, while MZ B-cells do not generate such high-affinity antibody
responses, Ig produced by these cells have been shown (in humans) to bear low levels of
SHM [25,41–43]. MZ B-cells also have the potential to undergo CSR from IgM to IgG or
IgA following the binding of BAFF to the receptor transmembrane activator and calcium
modulator and cytophilin ligand interactor (TACI), which is highly expressed at the surface



Int. J. Mol. Sci. 2022, 23, 3372 5 of 22

of MZ B-cells [44,45]. However, these antibodies are considered of low-affinity and of
a polyreactive nature, in contrast to those produced through GC reactions. Neverthe-
less, antibodies produced by first-line populations such as MZ B-cells may be relevant in
circumstances of microbial control and mucosal homeostasis, as will be discussed.

Interestingly, MZ B-cells have also been shown to migrate to T-cell zones of secondary
lymphoid organs and activate CD4+ T-cells [46]. Additionally, MZ B-cells are able to present
antigens to invariant natural killer T-cells (iNKT), a type of NKT-cell with a restricted TCR
repertoire that can recognize lipidic molecules in the context of atypical MHC class I-like
molecules of the CD1 family, widely expressed by MZ B-cells [47,48]. These MZ: iNKT
cellular interactions confer activation, notably via the CD40-CD40L pathway [48].

4. MZ B-Cell Populations and Their Regulatory Potential

Bregs are involved in the maintenance of tolerance and homeostasis of the immune
system. Bregs were originally defined as IL-10 producing B-cells (or B10) in mice [49]. Many
groups have since identified different murine Breg subsets that possess anti-inflammatory
suppressive mechanisms, mostly mediated by IL-10, such as T2-MZP-B-cells, MZ B-cells
and B1a B-cells, amongst others (see Table 1). As in mice, human Breg subsets have been
mostly identified based on their IL-10 production capacities [49]. Although IL-10 is an
important regulatory cytokine, its production alone is not sufficient to qualify a B-cell
population as Breg, since several human B-cell populations are capable of IL-10 production
in the context of inflammation and upon stimulation [6,50]. However, in these populations,
IL-10 production does not persist in time; therefore, these populations could be falsely
identified as true Bregs. Unlike the expression of Forkhead Box P3 (FoxP3), which is a shared
feature of regulatory T-cell populations, there is no single marker reported to identify Breg
populations to date [51]. As such, several immunoregulatory markers—such as IL-10,
Programmed Death Ligand 1 (PD-L1), CD39 or CD73—have been associated with Breg
potential and can help identify true Breg populations (see Table 1). Notably, the overlap
of several markers used by different groups could imply that different Breg populations
might in fact be more similar than expected.

Table 1. Characteristics of several Breg populations in mice and humans.

Species Population Phenotype Mechanism of
Suppression References

Mouse B10 CD19 + CD5 + CD1dhi IL-10 [52,53]
MZ B-cells IgMhi IgDlo CD21hi CD23-CD1dhi IL-10 [54]

T2-MZP B220 + CD21hi CD1dhi IgMhi CD23+ IL-10 [55]
B1a CD90-CD5+ IL-10 [56]

Plasma cells CD19 + CD138 + IgM+ IL10, IL-35 [57]
Plasmablasts CD138 + CD44hi IL-10 [58]

Tim-1 + B-cells CD19 + Tim-1+ IL-10 [59]
IL-35-Bregs CD5 + CD1dhi FcγIibhi IL-35 [60]

GITRL + B-cells - GITRL [61]
Killer B-cells CD19 + CD5 + FasL+ FasL, TGF-β [62,63]

PD-L1hi B-cells CD19 + PD-L1hi PD-L1 [64]

- B220 + CD39 + CD73+ ADO, CD39 + CD73 +
Extracellular vesicules [65,66]

GIFT-15 B-cells B220 + CD21 + CD22 + CD23 + CD24 + CD1d +
CD138 + IgM + IgD+ IL-10 [67]
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Table 1. Cont.

Species Population Phenotype Mechanism of
Suppression References

Human MZp CD19 + CD1c + CD21lo IgMhi CD27 + CD10+ CD83, PD-L1, IL-10 [4,6]
Transitional B-cells CD19 + CD24hi CD38hi IL-10 [68]

Memory B-cells CD19 + CD24hi CD27+ IL-10 [69]
Br1 CD25hi CD71hi CD73lo IL-10 [70]

TIM1 + B-cells CD19 + TIM1+ IL-10 [71]
Plasmablast CD19lo CD27hi CD38hi IL-10 [72,73]
IgA + B-cells CD19 + IgA+ IL-10, PD-L1 [74]

Exhausted B-cells CD19 + CD95+ CD95 [75]
Killer B-cells CD19 + CD38 + IgM + FasL+ FasL [76]
PD-L1 B-cells CD19 + PD-L1+ PD-L1 [63]

CD39high CD19 + CD39highCD73+ ADO [77]
iBreg - TGF-β, IDO [78]

The phenotype and mechanism of suppression of different Breg subsets in mice and humans are
summarized herein.

As mentioned earlier, we have previously characterized a B-cell population sharing
characteristics of both MZ and TI B-cells, which we termed “precursor-like MZ B-cells”
(MZp) and which bears a CD19+IgMhighCD27+CD1c+CD21lowCD10+ phenotype [5,6,79].
Our recent work has shown that MZps possess strong regulatory potential due to the
Breg molecules that they express (see Table 2). Indeed, besides their strong ex vivo IL-
10 expression profile, MZps highly express the nuclear receptors (NR)4A1, NR4A2 and
NR4A3, as well as the immunoregulatory molecule CD83 (see below) [4,6]. Furthermore,
MZps also express the ectonucleotidases CD39 and CD73, as well as several molecules
associated with Breg functions, such as Transform Growth Factor Beta (TGF-β), IL-35,
TLR10, Human Leukocyte Antigen G (HLA-G) and PD-L1 [4]. Strikingly, we have found
that the Breg function of MZp was directly linked with signals involving CD83, and more
recently with the PD-1/PD-L1 signaling path, as discussed below [4].

Table 2. The regulatory molecules expressed by human blood and tonsillar MZps.

mRNA Expression Confirmed Protein Expression

NR4A1, NR4A2, NR4A3, CD83 CD39, CD73,
TGF-β, IL-10, PD-L1, IL-10R, IL-27β, IL-12 p35,

HLA-G

NR4A1, NR4A3, CD83, CD39, CD73, PD-L1,
IL-10

Human blood MZps express high levels of mRNA transcripts of genes associated with a regulatory potential. A
certain number of these regulatory transcripts had their protein expression confirmed, both in blood and tonsillar
MZps [4,6].

4.1. Importance of NR4As

The NR4As are a family of orphan nuclear receptors, meaning that their endogenous
ligand is unknown. There are three known transcription factors in this family: NR4A1 (or
Nur77), NR4A2 (or Nurr1) and NR4A3 (or NOR-1), all of which possess a certain degree
of homology and redundant functions [80]. Normally, a nuclear receptor must bind to its
ligand in order to undergo a conformational change that allows for their DNA binding
and subsequent gene transcription. However, it has been shown that the transcription
factors of the NR4A family may not need such a ligand, since their natural conformation is
constitutively active [80].

Members of the NR4A family are known for their regulatory, anti-inflammatory and
pro-apoptotic actions. As a matter of fact, expression of all three known members of the
NR4A family is essential for the maintenance of FoxP3 expression by Tregs; moreover,
their deficiency converts Treg precursors into autoreactive T-cells, possibly due to the
nature of Treg selection [81,82]. The expression of NR4As is quickly upregulated (they
are “early induced genes”) following several stimulatory engagements (such as after BCR
and TCR stimulation, and even TLR signaling) to control unhindered immune responses,
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notably in the absence of co-stimulation. Moreover, they participate in the contraction
of the immunological response by inducing clonally expanded lymphocytes to undergo
apoptosis [83,84]. NR4As have been shown to be upregulated in exhausted T-cells in the
context of cancer and chronic infection in mice, suggesting a contribution to the control of
immune responses in the context of prolonged and/or excessive immune activation [85,86].
The NR4As are also important for monocyte differentiation, since NR4A1 is essential for the
differentiation of intermediate and non-classical monocyte subsets, and monocyte derived
dendritic cells (MoDC) are absent in NR4A3 knock-out (KO) mice [87–90]. Lastly, the
NR4As are involved in the expression of immune checkpoint molecules such as PD-L1,
further illustrating the immune regulatory function of these molecules [91]. Importantly,
NR4As are a part of the cyclic AMP (cAMP) response elements (CREs), the expression of
which is modulated by the cAMP binding protein (CREB) [92]. The CREB is involved in the
expression of several immunoregulatory proteins and anti-inflammatory molecules such as
IL-10, and it is activated by the accumulation of cAMP in the cytosol [93].

One of the molecules whose expression is directly controlled by the NR4A family
is the immunoregulatory protein CD83 [94]. Accordingly, we have shown that MZp
express high levels of CD83 ex vivo, and their Breg function is related to this molecule,
as the administration of a CD83 blocking antibody impedes MZp control of CD4+ T-cell
proliferation in vitro [4]. CD83 is a protein of the immunoglobulin-like superfamily, whose
ligand is unknown. It can be found in a membrane-bound or a soluble manner, both
of which seem to play different roles in immunity, with soluble CD83 (sCD83) being
involved in immunoregulatory roles [95–97]. It has been suggested that, similarly to other
B7 family members, it can interact with other CD83 molecules in a homotypic manner,
a feat that was demonstrated in DCs [98–100]. CD83’s expression and role has been
shown in a wide variety of regulatory cell populations. Indeed, it has been shown that
sCD83 inhibits monocyte differentiation into DC, DC maturation, and DC-mediated T-cell
activation [97,98,101]. Tolerogenic DCs have also been shown to express CD83 in order
to maintain mucosal homeostasis and the self- versus non-self-immunity control [95,100].
Furthermore, Treg generation seems to rely on sCD83 and indoleamine 2-3 dioxygenase
1 (IDO-1) production by DCs. Lastly, as is the case for NR4As, CD83 is essential for the
maintenance of the Treg phenotype [102,103].

4.2. Importance of CD39 and CD73

We have previously shown that MZps express high levels of the ectonucleotidases
CD39 and CD73, molecules involved in the adenosine (ADO) pathway [4]. As such,
CD39 converts the extracellular ATP (highly inflammatory, and notably generated by cell
death) into ADP and AMP, and CD73 converts the latter into ADO, an anti-inflammatory
molecule [77,104]. Thus, CD39 and CD73 expression allows for the conversion of a pro-
inflammatory milieu into an anti-inflammatory one. ADO production has been shown to
induce a wide variety of anti-inflammatory responses [105]. For instance, the binding of
ADO to the A2A receptor in FO B-cells impedes GC formation, BCR signaling and TLR
responses [106]. In T-cells, ADO can promote Treg generation, which will express CD39 and
CD73 [107]. Furthermore, A2A signaling (possibly autocrine or paracrine) in Tregs increases
IL-10 and TGF-β production by these cells, further nourishing the anti-inflammatory
environment generated by the ADO production [108]. As such, CD39 and CD73 expression
was evaluated in a wide variety of contexts, including cancer, where these molecules and
ADO have been found to contribute to the maintenance of the “cold”, anti-inflammatory
tumoral microenvironment [108]. CD39 and CD73 have previously been identified as
regulatory molecules on T-cells and B-cells by different groups [105,107]. Indeed, some
Breg populations were associated with CD39 and/or CD73 expression [77]. The binding of
ADO to the A2A receptor activates adenylate cyclase, allowing for intracellular cyclic AMP
(cAMP) production and accumulation, which will then inhibit the NK-κB response and
the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway,
important for inflammatory responses [108]. ADO binding to the A2A receptor has been
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shown to upregulate NR4A expression in monocytes [84]. Given the importance of cAMP
to CREB activation, and thus, to NR4A expression, a link between the adenosine pathway
and NR4A expression is to be expected.

5. The BAFF/APRIL System

We cannot present MZ B-cell populations without discussing the BAFF/APRIL system.
Without a doubt, one of the most important molecules for the survival and differentiation
of B-cells is BAFF. BAFF, also known as B lymphocyte stimulator (BLyS), is part of the
tumor necrosis factor (TNF) family and is encoded by the TNFSF13B gene [109]. BAFF
possesses three receptors found across all B-cell populations; they are BAFF-R, TACI and B-
cell maturation antigen (BCMA) [110]. The latter two are also shared with the BAFF analog
APRIL, encoded by the TNFSF13 gene, with which it shares a strong homology [110].

BAFF is a transmembrane protein that can be expressed as trimers at the surface of
DCs, monocytes, macrophages, activated T-cells and B-cells, neutrophils, and the stroma
of secondary lymphoid organs; alternatively, BAFF can be cleaved by a furin protease
and released in a soluble form [109]. Interestingly, BAFF in its soluble form can associate
with 20 other BAFF trimers and form a 60-mer, a giant virus capsid-like structure that
confers different signals when compared to its trimer form [111–113]. APRIL can only be
found in a soluble form, also in trimers, since its membrane domain is cleaved in the Golgi
apparatus as part of its maturation process. Interestingly, APRIL can also complex itself with
heparan sulfate proteoglycans (HSPG) such as perlecan, and then bind to its receptors [114].
Furthermore, BAFF and APRIL can form heterotrimers that possess different affinities with
receptors of the BAFF/APRIL system [115]. However, the precise involvement of these
heterotrimers in immune responsiveness remains to be elucidated.

As previously described, BAFF-R signaling is important for MZ cell fate decision
by activating the NF-kB pathway and delivering survival signals [12], and possibly by
upregulating NOTCH2 expression [12,21,22]. TACI signaling, on the other hand, is mainly
involved in MZ antibody production and CSR (see below) [43]. Lastly, BCMA signals play
an important role in plasma cell survival and differentiation [110]. TACI signaling has
been shown to reduce the activation threshold of MZ by cross-linking between the TLR
pathway and the phosphatidylinositol 3-kinase (PI3K)- protein kinase B (AKT)- mechanistic
target of rapamycin (mTOR), PI3K-AKT-mTOR pathway [109,116]. Furthermore, following
the binding of BAFF/APRIL to TACI, recruitment of the TNF receptor associated factor
(TRAF) ensues, involving TRAF2 and TRAF6, while BAFF-R signaling involves TRAF2
and TRAF3 [109]. Interestingly, TRAF3 has been shown to negatively regulate CREB,
possibly modifying the transcriptional program of the B-cell to a more activated state,
as the expression of CREB-induced molecules, such as NR4As, are generally related to
anti-inflammatory and activation control roles [92,117]. Thus, the BAFF/APRIL system is
involved in the shaping of MZ pools and their effector functions. The fact that these factors
are often found to be in excess in the context of inflammation is likely to perturb MZ B-cell
populations’ homeostasis.

6. HIV Infection and the Dysregulation of the B-Cell Compartment

Even if HIV does not infect B-cells directly, the early and persistent inflammation
associated with this infection—despite highly active antiretroviral therapy (HAART)—
affects virtually all arms of the immune system, including the B-cell compartment [118].

It has been shown that BAFF levels in the blood of HIV infected individuals are in
excess when compared to healthy individuals, which correlates with hyperglobulinemia
and breakage of tolerance [119]. We and others have shown that excess BAFF persists
despite HAART in several different cohorts, as well as in simian immunodeficiency virus
(SIV)-infected macaques and HIV-transgenic (Tg) mice [5,120–124]. As such, BAFF is one
of several reliable markers of inflammation that correlates with the chronic inflammation
associated with HIV infection. There are several reasons that can explain this increase in
BAFF levels in HIV-infected individuals, some of which are viral factors and others of which
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are non-viral factors. First of all, some viral proteins detected despite HAART, such as
negative regulating factor (Nef)—an accessory protein that has a key role in HIV infection—
or gp120 of the HIV envelope (Env), are capable of directly up-regulating BAFF expression
by MoDCs and monocytes, respectively [120,125]. Furthermore, TLR ligands and/or type
I interferons (IFNs) such as interferon alpha (IFNα), abundantly produced during viral
infections, lead to the production of BAFF [125–127]. Excess BAFF can also be caused
by non-viral factors such as elements of microbial translocation, e.g., lipopolysaccharides
(LPS), shown to promote BAFF expression by MoDCs [120].

Hyperglobulinemia, especially hypergammaglobulinemia (high polyclonal IgG titers
in blood) is one of the main characteristics of HIV-associated B-cell deregulation, and is even
one of the first ever described in people living with HIV [118,128]. Hyperglobulinemia is
caused by the non-specific polyclonal activation of the B-cell compartment as a result of the
excessive inflammation associated with the HIV infection context [118]. This state is fueled
by the excess of pro-inflammatory cytokines such as IFN-α and TNF-α, which are produced
in response to the viral infection itself [120,129]. Microbial translocation associated with
massive HIV replication in the GALT also participates in the hyperactivation of the B-cell
compartment via PRRs [130,131]. As mentioned above, excessive BAFF signals also favor
polyclonal B-cell activation, notably that of innate-like B-cells such as MZ and MZp.

Notably, hyperglobulinemia is also associated with the presence of autoreactive anti-
bodies. Interestingly, excess BAFF has been associated with the production of autoreactive
antibodies in autoimmune diseases such as systematic lupus erythematous (SLE), rheuma-
toid arthritis (RA) and Sjögren syndrome (SS) [132]. This is suggested to be mainly due to
the BAFF delivery of survival signals having the capacity to bypass apoptotic signals that
would otherwise eliminate autoreactive B-cells during their selection in the periphery [132].

HIV infection is also characterized by the loss of circulating memory B cells, despite
HAART [133–135]. This phenomenon could be partly explained by the downregulation
of expression of BAFF-R by memory B-cells, which is essential for delivering the survival
signals needed to keep these cells alive. Furthermore, in the HIV context, memory B-cells
also express apoptosis markers such as CD95 (Fas), forkhead box o3 (FOXO3a) and TNF-
related apoptosis inducing ligand (TRAIL), which are involved in cell death [136–138]. This
loss of memory B-cells also affects memory generated in response to childhood vaccination
antigens, further nourishing the immune incompetence observed in people living with HIV
(PLHIV) [139,140].

Another important factor is the loss of CD4+ T-cells, the main targets for HIV. As
previously described, memory B cells result from a long process that takes place in the GC,
one that requires the implication of CD4+ T-cells, notably Tfh. Without these cells, efficient
T-dependent responses cannot take place. In fact, in HIV-Tg mice and BAFF-Tg mice,
the formation of GC is impaired and FDC networks reduced, with lowered expression of
CD40L by activated CD4+ T-cells [141–144]. Similar observations were seen in the context
of human HIV infection [145–148].

7. MZp in the Context of HIV

Our initial work with HIV-Tg mice showed an expanded marginal zone in the spleen
of these animals, as well as B-cell hyperactivity and hyperglobulinemia with elevated
anti-nuclear auto-antibodies [141]. Interestingly, we found numerous extra-follicular IgM
bright plasma-cells in the spleen of these HIV-Tg mice [141]. Notably, BAFF levels were
found to be in excess in the serum of these animals [124]. Similar observations have been
made with BAFF-Tg mice [144]. In agreement with our findings with HIV-Tg mice, we
have shown that frequencies of MZp are increased in the blood of HIV-infected individuals
from the Montreal primary HIV infection (PHI) cohort, as soon as in the acute phase, and
despite HAART; they are concomitant with excessive BAFF levels which persist throughout,
suggesting that deregulations of MZ population frequencies in the HIV context could
involve excess BAFF [5,6]. As such, and as mentioned above, BAFF signals are important
for the selection of the MZ B-cell pool [13]. The fact that BAFF has been shown to increase
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the expression of NOTCH2, whose signal is essential to MZ cell-fate decision, suggests that
in excessive BAFF contexts, increased NOTCH2 may skew differentiation towards the MZ
type, contributing to their increased frequencies [13,23].

Chemokines such as CCL20 and CCL25 were found in excess in the blood of HIV-
infected individuals from the Montreal PHI cohort, and MZp from these individuals
strongly migrated in response to these chemokines in vitro [149]. CCL20 and CCL25 are
important chemokines that allow B-cell migration to peripheral sites such as the mucosal
associated lymphoid tissues (MALT) [150,151]. This modulation in MZp migratory ca-
pacities could also help explain the increased frequencies of MZp in the blood, as these
cells are being actively recruited to peripheral sites; where they are possibly solicited in an
attempt to control HIV inflammation in places where the active battle against the virus is
held. Notably, populations such as MZ accumulated in lymphoid organs of SIV-infected
macaques [152]. Importantly, MZps from the blood of HIV-infected individuals from the
Montreal PHI cohort express α4β7, shown to bind to gp120 and be important for mucosal
migration (data not published). It is possible that some MZps be naturally recruited to
the MALT, where they perform Breg- and antibody-producing activities [152]. As such,
the fact that MZ populations are capable of CSR could suggest their being related to the
recently reported α4β7 IgA-expressing Bregs, promoted by APRIL via TACI [74,153]. Any
disturbance in the activities of such populations is likely to have a deleterious outcome.

Importantly, our recent work shows that the Breg potential of blood MZps from HIV-
infected individuals of the Montreal PHI cohort is severely altered despite therapy, and
suggests that BAFF may directly contribute to this altered profile. Given the association
of excess BAFF with hyperglobulinemia and autoimmune manifestations, it is reasonable
to think that in such circumstances, MZps are rather driven to antibody production, the
desirability of which is questionable.

Interestingly, MZ B-cells were shown to bind to glycoproteins of the HIV Env, such as
gp120, via C-type lectins—such as dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN)—and the mannose receptor, or via their polyreactive
BCR; and a fraction of IgG and IgA produced following gp120 stimulation in the presence of
BAFF was shown to recognize gp120 [38]. Additionally, the stimulating effect of gp120 on
MZ populations is enhanced in the presence of BAFF [38]. MZ B-cell populations can also
recognise HIV Env proteins such as gp41 through TLR10 and CD21 via the complement
system [154,155] (see Figure 2). However, the exact contribution of MZ and MZp to anti-Env
Abs and/or to hyperglobulinemia and auto-antibodies needs further assessment.

HIV proteins can directly affect MZ and MZp capacity and function. For instance, it
has been shown than soluble Nef, possibly produced and released by the HIV reservoirs,
penetrates B-cells and directly impedes CD40 signaling mediated through the NF-kB and
STAT pathway, and thus, CSR [156]. Moreover, the HIV Viral protein R (Vpr) has been
shown to downregulate CD83 expression in both macrophages and DCs [157,158]. Further-
more, as described above, HIV Env glycoproteins can directly activate MZ populations
(Figure 2).

Lastly, consistent with the notion that they are highly solicited, MZps from the blood of
HIV-infected individuals present an exhausted profile; this is depicted by the upregulation
of the negative regulators CD22 and CD72, as well as the exhaustion markers CD85j
and FCRL5. The expression of T-bet and CD11c were also upregulated by these MZps.
Interestingly, T-bet and CD11c expression are related to extra-follicular B-cell responses and
to a population identified as “age-associated B-cells”; these are also described in the contexts
of chronic inflammation and autoimmunity (discussed below), and are dependent on IL-
21R and TLR7 signalling [159]. Age-associated B-cells are thought to produce antibodies of
poor affinity. Interestingly, MZps express both IL-21R and TLR7, which means that they
have the potential to take part in the age-associated B-cell pool.
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Figure 2. MZp immune functions and how they can be affected in the HIV context. MZps possess a
strong Breg potential, as attested by the expression of several immunoregulatory molecules. Indeed,
MZps express CD39 and CD73, which will convert the extracellular ATP into ADO. This molecule will
then be uptaken by purinergic receptors such as A2A, which will induce cAMP accumulation in the
cytosol and the activation of the CREB pathway. CREB will induce the expression of CREB-induced
elements such as the NR4A molecules and IL-10, which will allow for the maintenance of a regulatory
phenotype. The NR4As will then induce the expression of even more immunoregulatory molecules
such as CD83 and PD-L1, while also impeding unwanted cell activation by the BCR or the TLR.
However, this homeostasis is heavily altered in the HIV context due to the chronic inflammation,
excess BAFF and viral proteins. For instance, MZ B-cells are able to class-switch following CD40
engagement and subsequent NF-kB pathway activation. However, in the HIV context, HIV Nef
could impede this CSR. HIV gp120 could activate B-cells by cross-linking DC-SIGN an action that
is enhanced by BAFF. Excess BAFF could induce TACI-dependent CSR by activating the mTOR
pathway, which intersects with the TLR pathway (also engaged due to HIV-mediated recognition by
TLR7, expressed by MZ B-cells), lowering the MZ activation threshold. HIV proteins such as Vpr
could also directly affect MZp immunoregulatory protein expression such as CD83. Thus, in the HIV
context, MZps could possibly lose their immunoregulatory functions, become easily activated and
produce poor-affinity antibodies, with possible auto-reactivity.

8. MZps and Similar Populations in Other Diseases
8.1. Autoimmune Diseases

As mentioned above, in the HIV context, MZps share some similarities with a heteroge-
neous T-bet+CD11c+ population reported to be increased in the context of chronic infections
and inflammatory conditions; which profile is reminiscent of “age-associated B-cells”, a cell
population first described in mice [160,161]. These T-bet+CD11c+ cells have been associated
with disease progression and clinical manifestations in SLE patients [162,163]. Interestingly,
women are more affected than men by autoimmune diseases [164]. It is known that estro-
gen promotes the activation and expansion of autoreactive MZ B-cells in both mice and
humans [2].

As we have observed for the Breg profile of blood MZp from HIV-infected indi-
viduals, deregulations of different Breg populations are also associated with autoimmu-
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nity, such as those observed in SLE, multiple sclerosis (MS) and RA [165]. For example,
CD19+CD24highCD38high B-cells from the blood of SLE-afflicted individuals lose the ca-
pacity to control TNF-α and IFN-γ production by CD4+ T cells [68]. Similarly to the HIV
context, in all these cases, BAFF was found in excess, and played a role in the development
of autoimmunity [68,132,165,166]. In fact, in SLE and SS, excess BAFF positively correlates
with the level of circulating auto-antibodies [132].

8.2. Atherosclerosis

Chronic inflammation in PLHIV has been associated with the premature development
of age-associated comorbidities such as atherosclerosis, the main risk factor for cardio-
vascular disease (CVD) [167–169]

Atherosclerosis is, by its nature, an inflammatory disease; and the persistent chronic
inflammation that prevails in PLHIV may fuel its early development. As such, when
matched for traditional risk factors, HIV-infected individuals had a higher chance of
developing CVD when compared to HIV-uninfected individuals [167,168,170].

The role of BAFF in atherosclerosis development is complicated and poorly explored
in humans (most of the research was traditionally conducted in mice). For instance,
in the aforementioned research, BAFF neutralization aggravates atherosclerosis, while
BAFF overexpression attenuates this disease [171,172]. This has been attributed to TACI-
expressing cells, such as MZ B-cells, which express high levels of this receptor. Indeed, MZ
B-cells were shown to possess an atheroprotective role due to PD1-PD-L1 interactions with
Tfh cells, allowing for a better control of GC reactions, a role that was attributed to MZ
B-cell NR4A1 expression [173,174]. Moreover, FO B-cells are considered to be atherogenic,
as they generate GC responses and, subsequently, IgG directed against oxidized LDL
(oxLDL) [175]. Thus, in the context of MZ and MZp deregulation, such as the one found
in HIV infection, it is possible to assume that these cells lose their capacity to maintain
their immune surveillance capacities, contributing to the early onset of atherosclerosis in
HIV-infected individuals.

In humans, excess BAFF was also found to correlate with CVD development in au-
toimmune diseases such as SS and SLE. As a matter of fact, CVD was found to be the major
cause of death in individuals afflicted by SLE [176,177]. As such, BAFF, when in excess,
could be related to the premature development of CVD; this can either be directly—through
it being overtly produced by adipocytes and acting as an adipokine linking obesity and
inflammation, and by contributing to the apoptosis of endothelial cell progenitors (a process
known as endothelial dysfunction, a triggering factor for atherosclerosis development)—or
indirectly, by altering the atherosclerosis immune surveillance processes, which are usually
warranted by Breg populations such as MZ B-cell populations [178,179].

8.3. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and Other Viral Infections

It was found that individuals who had died of the SARS-CoV-2 infection had a lack
of GC in their lymphoid organs, which was partly explained by the downregulation of
the transcription factor B-cell lymphoma 6 (Bcl-6) by B-cells and T-cells [180]. This loss
of GC was associated with increased frequencies of T-bet+CD11c+ extra-follicular B-cells,
which have been associated with a strong production of auto-antibodies and poor disease
outcome in individuals infected with SARS-CoV-2 [181]. Indeed, auto-antibodies directed
against interferons are one of the key triggering events to critical COVID-19 pneumonia
and death in patients who develop this disease [182]. Unsurprisingly, BAFF was found to
be elevated and to persist in individuals with severe disease [183]. Of interest is the fact
that levels of APRIL were found to be elevated in individuals who had recovered from the
infection [183,184].

Reports of an extra-follicular population sharing similar features with MZp, known as
CD21low MZ-like B-cells, was found to be increased in individuals infected with hepatitis
C virus (HCV) [185]. This population expressed an autoreactive BCR and was correlated
with increased autoimmunity in the HCV context [185].
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Overall, most chronic inflammatory conditions are associated with excessive BAFF
levels and polyclonal B-cell activation, at the expense of functional immune surveillance. If
not addressed therapeutically, these could lead to long term and/or persistent autoimmune
manifestations and life-threatening co-morbidities.

8.4. Malignancies Associated with MZ Deregulations

One complication often associated with deregulations of MZ B-cell populations is
Marginal Zone Lymphoma (MZL), which is the second most common non-Hodgkin’s
lymphoma and which possess varying manifestations (according to the WHO classification),
such as splenic MZL, nodal MZL and extra-nodal MZL of the MALT, depending on the
initiating site [186,187]. Many of these lymphomas appear due to mutations on genes
associated with MZ differentiation, such as NOTCH2, as well as mutations on genes
involved in the BCR signaling and NF-kB pathways [188,189]. The differential diagnosis
between the myriad of different MZL manifestations is complex and requires several
investigations, notably immune profiling and genetic tests [190].

Non-Hodgkin’s lymphomas are highly represented in PLHIV. Even though MZL is not
an AIDS-defining lymphoma, its incidence is indeed higher when compared to healthier
populations [191,192]. In PLHIV, the immune-incompetence caused by the HIV-infection
and chronic inflammatory condition, despite HAART, may be involved in the development
of these types of lymphomas. As such, chronic inflammation and autoimmune manifesta-
tions were found to be related to the development of MZL malignancy in PLHIV as well as
in individuals diagnosed with SLE, SS and RA [193,194]. Additionally, MZL development
has been associated with chronic infection by Helicobacter pylori and Borrelia burgdoferi in the
case of gastric MZL and subcutaneous MZL, for instance [191,195]. Interestingly, certain
types of MZL are also associated with a “biased” usage of Ig heavy chains, implying that
the capacity to respond to certain types of antigens is a predicting risk for the development
of these diseases [196,197]. Moreover, it has been shown that CSR and SHM, mediated by
the upregulation of Activation-induced cytidine deaminase (AID) due to inflammation and
increased NF-κB expression, induce genomic instability, driving carcinogenesis [198]. Thus,
chronic activation of MZ B-cells in the context of autoimmunity or in the HIV context, for
instance, could be a triggering factor for the development of this type of malignancy. As
such, our recent report that NR4As are severely and significantly downregulated in blood
MZp from HIV-infected progressors may constitute prognostic markers for MZL develop-
ment in these individuals, as NR4A1 has been reported to be severely downregulated in
aggressive and indolent human B-cell lymphomas [199].

One of the key phenotypical differences between FO and MZ B-cells is the expression
of IgD, the latter expressing lower levels of this molecule than the former [1]. However, in
certain types of MZL, such as splenic MZL, tumor cells heavily express IgD, which could be
used as a marker to distinguish splenic MZL cells from other types of MZL that happened to
invade the spleen [200]. Notably, it has been shown that in a model of constitutive induction
of NOTCH2, FO B-cells could differentiate into MZ B-cells [19]. As such, mutations
triggering the expression of this molecule or mutations in its master regulator, Kruppel-like
factor 2 (KLF2)—both of which were found in MZL—could be related to the generation of
atypical MZ, leading to the development of this type of cancer [191,201]. Interestingly, the
constitutive induction model of NOTCH2 induced a strong downregulation of KLF2 [19].
Thus, more studies need to be conducted in this field.

9. Possible Therapeutic Avenues

Since HAART is not sufficient to cease chronic inflammation and the associated de-
velopment of co-morbidities and autoimmune manifestations in HIV-infected individuals,
the addition of other drugs could be contemplated as an adjunct to HAART; this might
help to lower the inflammatory burden and restore immune competence, especially given
the fact that, nowadays, those individuals live longer. In this view, lowering BAFF levels
with reagents such as the FDA-approved Belimumab (Benlysta) could be contemplated, as
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this antibody is currently used in the treatment of SLE and shows satisfactory results in
the improvement of disease progression [202]. Other drugs, such as dihydroergotamine
(DHE), that upregulate NR4A expression levels, have potential in treating acute myeloid
lymphoma (AML) through induction of apoptosis of cancerous cells; they could be tested
to try to either restore the Breg function of MZps or to induce their apoptosis [203].

10. Conclusions

In conclusion, MZps are an important Breg subset that participates in immune surveil-
lance and defense of the organism. However, the equilibrium between these functions can
easily be disrupted in chronic inflammatory diseases, as an excess of pro inflammatory
molecules such as BAFF can affect both their Breg function and immune surveillance ca-
pacities, as well as the nature of the antibodies they produce. A better understanding of the
mechanisms regulating MZp functions could benefit to innovative therapeutic strategies
viewed to harness this precious cellular potential, to prevent its deregulation, or restore its
immune competence.
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