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Abstract
Background: Spiroketals and the corresponding aza-spiroketals are the structural features found
in a number of bioactive natural products, and in compounds possessing photochromic properties
for use in the area of photochemical erasable memory, self-development photography,
actinometry, displays, filters, lenses of variable optical density, and photomechanical biomaterials
etc. And (1R,8aS)-1-hydroxyindolizidine (3) has been postulated to be a biosynthetic precursor of
hydroxylated indolizidines such as (+)-lentiginosine 1, (-)-2-epilentiginosine 2 and (-)-swainsonine,
which are potentially useful antimetastasis drugs for the treatment of cancer. In continuation of a
project aimed at the development of enantiomeric malimide-based synthetic methodology, we now
report a divergent, concise and highly diastereoselective approach for the asymmetric syntheses of
an aza-spiropyran derivative 7 and (1S,8aR)-1-hydroxyindolizidine (ent-3).

Results: The synthesis of aza-spiropyran 7 started from the Grignard addition of malimide 4.
Treatment of the THP-protected 4-hydroxybutyl magnesium bromide with malimide 4 at -20°C
afforded N,O-acetal 5a as an epimeric mixture in a combined yield of 89%. Subjection of the
diastereomeric mixture of N,O-acetal 5a to acidic conditions for 0.5 h resulted in the formation of
the desired functionalized aza-spiropyran 7 as a single diastereomer in quantitative yield. The
stereochemistry of the aza-spiropyran 7 was determined by NOESY experiment. For the synthesis
of ent-3, aza-spiropyran 7, or more conveniently, N,O-acetal 5a, was converted to lactam 6a under
standard reductive dehydroxylation conditions in 78% or 77% yield. Reduction of lactam 6a with
borane-dimethylsulfide provided pyrrolidine 8 in 95% yield. Compound 8 was then converted to
1-hydroxyindolizidine ent-3 via a four-step procedure, namely, N-debenzylation/O-mesylation/Boc-
cleavage/cyclization, and O-debenzylation. Alternatively, amino alcohol 8 was mesylated and the
resultant mesylate 12 was subjected to hydrogenolytic conditions, which gave (1S,8aR)-1-
hydroxyindolizidine (ent-3) in 60% overall yield from 8.

Conclusion: By the reaction of functionalized Grignard reagent with protected (S)-malimide,
either aza-spiropyran or (1S,8aR)-1-hydroxyindolizidine skeleton could be constructed in a concise
and selective manner. The results presented herein constitute an important extension of our
malimide-based synthetic methodology.
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Background
Spiroketals of general structure A (Scheme 1) constitute
key structural features of a number of bioactive natural
products isolated from insects, microbes, fungi, plants or
marine organisms. [1-3] The corresponding aza-spiroketal
(cf: general structure B) containing natural products,
while less common, are also found in plants, shellfish and
microbes.[4,5] For example, pandamarilactone-1 and
pandamarine were isolated from the leaves of Pandanus
amaryllifolius;[6] solasodine and its derivatives were iso-
lated from Solanum umbelliferum, which exhibited signifi-
cant activity toward DNA repair-deficient yeast
mutants;[7] azaspiracids are marine phycotoxins isolated
from cultivated mussels in Killary harbor, Ireland;[8] and
chlorofusin A is a novel fungal metabolite showing the
potential as a lead in cancer therapy.[9] In addition, aza-
spiropyrans C, being able to equilibrate with the corre-
sponding non-spiro analogue D, is a well known class of
compounds possessing photochromic properties for use
in the area of photochemical erasable memory,[10] and
also found applications as self-development photogra-
phy, actinometry, displays, filters, lenses of variable opti-
cal density,[11] and photomechanical biomaterials
etc.[12]

Scheme 1: The skeletons of useful aza-spiroketals and some nat-
urally occurring hydroxylated indolizidines.

On the other hand, hydroxylated indolizidines [13-20]
such as castanospermine, (-)-swainsonine, (+)-lentiginos-
ine [21-23] (1) and (-)-2-epilentiginosine [21-26] (2)
constitute a class of azasugars showing potent and selec-
tive glycosidase inhibitory activities. [13-20] (1R,8aS)-1-
Hydroxyindolizidine 3 has been postulated as a biosyn-
thetic precursor [21-26] of (+)-lentiginosine (1), (-)-2-epi-
lentiginosine (2) and (-)-swainsonine, a potentially useful
antimetastasis drug for the treatment of cancer.[15] In
addition, these molecules serve as platforms for testing
synthetic strategies, and several asymmetric syntheses of

both enantiomers of 1-hydroxyindolizidine (3) have been
reported. [27-34]In continuation of our efforts in the
development of enantiomeric malimide-based synthetic
methodologies, [35-38] we now report concise and highly
diastereoselective syntheses of an aza-spiropyran deriva-
tive 7 and (1S,8aR)-1-hydroxyindolizidine (ent-3).

Results and discussion
Previously, we have shown that the addition of Grignard
reagents to N,O-dibenzyl malimide 4 leads to N,O-acetals
5 in high regioselectivity (Scheme 2), and the subsequent
reductive dehydroxylation gives 6 in high trans-diastereo-
selectivity.[35] On the other hand, treatment of N,O-acte-
als 5 with an acid furnished enamides E, which can be
transformed stereoselectively to either hydroxylactams F
or G under appropriate conditions. [36-38] It was envi-
sioned that if a C4-bifunctional Grignard reagent was
used, both aza-spiroketal H (such as aza-spiropyran, n =
1, path a) and indolizidine ring systems I (path b) could
be obtained.

Scheme 2: Synthetic strategy based on N,O-dibenzylmalimide 
(4).

The synthesis of aza-spiropyran 7 started from the Grig-
nard addition of malimide 4. Treatment of the THP-pro-
tected 4-hydroxybutyl magnesium bromide with
malimide 4 at -20°C for 2.5 h afforded N,O-acetal 5a as
an epimeric mixture in 7:1 ratio and with a combined
yield of 89% (Scheme 3). If the reaction was allowed to
stir at room temperature overnight, the diastereomeric
ratio was inversed to 1: 1.8. Subjection of the diastereo-
meric mixture of the N,O-acetal 5a to acidic conditions
[TsOH (cat.)/CH2Cl2, r.t.] for 0.5 h resulted in the forma-
tion of the desired functionalized aza-spiropyran deriva-
tive 7 as a single diastereomer in quantitative yield. The
result means that a tandem dehydration-THP cleavage-
intramolecular nucleophilic addition occurred. When the
stirring was prolonged to 2 h, about 5% of another epimer
(no shown) was also formed according to the 1H NMR
analysis.
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Scheme 3: Stereoselectivity synthesis of aza-spiropyran 7.

The stereochemistry of the aza-spiropyran 7 was deter-
mined on the basis of the NMR analysis. This was done
firstly by a 1H-1H COSY experiment to confirm the proton
assignments, and then by NOESY experiment. As shown
in Figure 1, the strong NOE correlation of H-9a (δH 3.59)
and H-4 (δH 4.22) indicates clearly O4/O5-trans relation-
ship in compound 7.

These findings are surprising comparing with our recent
observations. In our previous investigations, it was
observed that the treatment of N,O-acetals 5 with an acid
leads to the dehydration products E (Scheme 1), and the
two diastereomers of 5 shows different reactivities
towards the acid-promoted dehydration. [36-38] The
trans-diastereomer reacts much more slower than the cis-
diastereomer, and some un-reacted trans-epimer was
always recovered even starting with a pure cis-diastere-
omer. In the present study, not only both two diastereom-

ers have been completely converted to the aza-spiropyran
7, what is equally surprising is that no dehydration prod-
uct was observed under acidic conditions!

For the synthesis of ent-3, aza-spiropyran 7, a cyclic N,O-
acetal, was converted to lactam 6a under standard reduc-
tive dehydroxylation conditions (Et3SiH, BF3·OEt2, -
78°C, 6 h; warm-up, yield: 78%) (Scheme 4). Under the
same conditions, N,O-acetal 5a was converted to lactam
6a in 77% yield. It was observed that during the reaction
of 5a, 7 was first formed as an intermediate after the addi-
tion of Et3SiH and BF3·OEt2, and stirring for 1 hour.

Scheme 4: Stereoselective synthesis of (1S,8aR)-1-hydroxyin-
dolizidine (ent-3).

Reduction of lactam 6a with borane-dimethylsulfide pro-
vided pyrrolidine derivative 8 in 95% yield. Compound 8
was then converted to (1S,8aR)-1-hydroxyindolizidine
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(ent-3) {[α]D 
27 +50 (c 0.90, EtOH); lit.[29] [α]D +51.0 (c

0.54, EtOH); lit.[32] -49.7 (c 0.95, EtOH) for the anti-
pode} via a four-step procedure, namely, one-pot N-
debenzylation-N-Boc formation/O-mesylation/Boc-cleav-
age/cyclication, and O-debenzylation.

In searching for a more concise method, amino alcohol 8
was mesylated (MsCl, NEt3, 0°C) and the resultant labile
mesylate 12 was subjected to catalytic hydrogenolysis (H2,
l atm, 10% Pd/C, r.t.), which gave (1S,8aR)-1-hydroxyin-
dolizidine (ent-3) in 60% overall yield from 8 (Scheme
5).[39,40] The one-pot N,O-bis-debenzylation and cycli-
zation of mesylate 12 deserves comment. Because the N-
debenzylation generally required longer reaction
time,[41] or using of Pearlman's catalyst (cf. Scheme 4).
The easy debenzylation of 12 allows assuming that an
intramolecular substitution occurred firstly, and the for-
mation of the quaternary ammonium salt K [40] then
favors the reductive debenzylation. This mechanism is
supported by the following observations. First, in a simi-
lar case, Thompson et al observed that the formation of a
mesylate resulted in spontaneous quarternization leading
to the bicyclic indolizidine.[40] Second, we have also
observed that the tosylate of 8 is too labile to be isolated,
and mesylate 12 decomposed upon flash column chro-
matography on silica gel, which are due to the spontane-
ous formation of a polar quaternary ammonium salt. In
addition, the presence of the O-benzyl group in K is an
assumption based on our previous observation on a sim-
ilar case.[42]

Scheme 5: One-pot synthesis of ent-3 from amino alcohol 8.

Conclusion
In summary, we have demonstrated that by the reaction of
functionalized Grignard reagent with the protected (S)-
malimide 4, either aza-spiropyran derivative 7 or
(1S,8aR)-1-hydroxyindolizidine skeleton (ent-3) can be
constructed in a concise and selective manner. It is worthy
of mention that in addition to the reductive dehydroxyla-
tion leading to 2-pyrrolidinones 6, and the acid-promoted
dehydration leading to (E)-enamides E (and then F, G),
acid treatment of the N,O-acetal 5a could provide, chem-
oselectively and quantitatively, the aza-spiropyran ring
system 7. The results presented herein constitute a valua-
ble extension of our malimides-based synthetic method-
ology.

See Additional File 1 for full experimental procedures and
characterization data of the synthesized compounds.
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