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Dear Editor, 19 

The APOBEC protein family are host antiviral enzymes known for catalyzing cytosine to uracil 20 

deamination in foreign single-stranded DNA (ssDNA) and RNA (ssRNA) (Blanc and Davidson 21 

2010; Salter and Smith 2018). Enzymatic target motifs for most of the APOBEC enzymes have 22 

been experimentally identified, among which the most common were 5'-[T/U]C-3' and 5'-CC-3' 23 

for DNA/RNA substrates (Salter and Smith 2018; McDaniel et al. 2020). It was recently 24 

suggested that the SARS-CoV-2 undergoes genome editing by host-dependent RNA-editing 25 

proteins such as APOBEC (Di Giorgio et al. 2020; Simmonds 2020; Rice et al. 2020; Schmidt et 26 

al. 2020). 27 

 28 

Given the large amount of available data and the relatively low mutation rate of the SARS-CoV-29 

2 virus (Rambaut et al. 2020), we aimed to monitor its genomic evolution on a very brief time 30 

scale during the COVID-19 pandemic. Here we demonstrate progressive C>U substitutions in 31 

SARS-CoV-2 genome within the timeframe of five months. We highlight the role of C>U 32 

substitutions in the reduction of 5'-UCG-3' motifs and hypothesize that this progressive decrease 33 

is driven by host APOBEC activity. 34 
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Figure 1. (A) SNV events observed between individual SARS-CoV-2 sample sequences 36 

(n=22,164) and the reference genome. (B) The number of C>U substitutions across sample dates. 37 

The average number of substitutions for each sampling day is plotted (blue line, left y-axis) with 38 

plus/minus one standard deviations as error bars. The number of samples for each day is shown 39 

as red bars (right y-axis). (C) Folding potential of positions with C>U changes (Supplementary 40 

Text). P-values from Fisher's exact test are shown above bars. (D) The fraction of [A/C/G/U]CG 41 

triplets that are changed to [A/C/G/U]UG over time. The average fractions, relative to the 42 

reference genome, are shown as circles for each sampling day (x-axis). Error bars denote 43 

plus/minus one standard deviation. Only dates with at least 20 samples are plotted. (E) A model 44 

for the consequences of host-driven evolution by APOBEC enzymes on viral CpG dinucleotide 45 

composition. 46 

 47 

We aligned 22,164 SARS-CoV-2 genomes from GISAID to the reference genome and observed 48 

a total of 9,210 single nucleotide changes with C>U being the most abundant (Figure 1A) 49 

(Figure S1 & S2; Table S1; Supplementary Text). Over a period of five months, we find a steady 50 

and substantial increase in C>U substitutions (Figure 1B), with almost half of them being 51 

synonymous (Supplementary Text, Figure S3), and not observed for other changes (Figure S4). 52 

One potential driver behind the increase in C>U changes could be the recently proposed 53 

APOBEC-mediated viral RNA editing (Di Giorgio et al. 2020; Simmonds 2020) (Supplementary 54 

Text). Since APOBEC3 family members display a preference for RNA in open conformation as 55 

opposed to forming secondary structures (McDaniel et al. 2020), we calculated the folding 56 

potential of all genomic sites that include C>U substitutions (Figure 1C). Positions with C>U 57 

changes are more often located in regions with low potential for forming secondary RNA 58 
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structures. These observations are in agreement with the notion that members of the APOBEC 59 

family are the main drivers of cytosine deamination in SARS-CoV-2 (Di Giorgio et al. 2020; 60 

Simmonds 2020). 61 

 62 

We searched for possible APOBEC genetic footprints (5'-UC-3' > 5'-UU-3') in viral dinucleotide 63 

frequencies (Figure S5). Among all dinucleotides, UpC showed the highest degree of decrease, 64 

while UpU exerted the highest rates of increase, which is consistent with APOBEC activity 65 

(Supplementary Text).  66 

 67 

When analyzing the context of genomic sites undergoing C>U changes, we noticed an 68 

enrichment for 5'-UCG-3' motifs (Table S2). To assess the contribution of C>U changes in CpG 69 

loss, we examined the dynamics of [A/C/G/U]CG trinucleotides over time (Figure 1D). The 70 

progressive change (~1% over a 5-month period) of 5'-UCG-3' to 5'-UUG-3' is most striking 71 

when supported by a larger number of genomes (days 70 to 115), whereas no such pattern is 72 

observed for the other trinucleotides (Figure 1D). The association between cytosine deamination 73 

and CpG loss is further underlined by the rapid, progressive increase in 5'-UCG-3' > 5'-UUG-3' 74 

changes compared to other 5'-UC[A/C/U]-3' motifs (Figure S7). No apparent progression of 5'-75 

UCG-3' over time is observed on the negative strand, suggesting that the action of APOBEC on 76 

the negative strand of SARS-CoV-2 is limited compared to the positive strand (Figure S8). 77 

 78 

The zinc-finger antiviral protein (ZAP) selectively binds viral CpG regions that results in viral 79 

RNA degradation (Takata et al. 2017). Previous studies reported that the reduced number of CpG 80 

motifs in HIV and other viruses played an important role in the viral replication inside the host 81 
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cell, allowing the virus to escape ZAP protein activity (Takata et al. 2017). Similarly, a strong 82 

suppression of CpGs is observed in SARS-CoV-2 compared to other coronaviruses (Digard et al. 83 

2020). Given the high expression levels of APOBEC and ZAP genes in COVID-19 patients 84 

(Blanco-Melo et al. 2020), the direct interaction of APOBEC with viral RNA (Schmidt et al. 85 

2020), and our observations, we hypothesize that as a consequence of APOBEC-mediated RNA 86 

editing, SARS-CoV-2 genome may escape host cell ZAP activity. Both APOBEC and ZAP are 87 

interferon-induced genes that act preferentially on ssRNA in open conformation (Luo et al. 2020; 88 

McDaniel et al. 2020). Initially, APOBEC and ZAP enzymes may have overlapping preferred 89 

target motifs for their enzymatic functions (Figure 1E). The catalytic activity of APOBEC on 5'-90 

UC-3' leads to cytosine deamination, which destroys ZAP’s specific acting site (5'-CG-3'). The 91 

conversion of C>U allows viral RNA to escape from ZAP-mediated RNA destruction. Therefore, 92 

uracil editing is more likely to become fixed at UCG positions due to the selective advantage this 93 

conveys to subvert ZAP-mediated degradation.  94 

 95 

Our study of sequence dynamics across the SARS-CoV-2 pandemic supplements previous 96 

studies that by comparing the SARS-CoV-2 reference genome to other viral genomes address the 97 

evolutionary events prior to the Wuhan SARS-CoV-2 sequence. In contrast, our approach sheds 98 

light on the evolutionary events happening during the spread of SARS-CoV-2 among the human 99 

population.  100 

 101 

A recent study hypothesized that both ZAP and APOBEC provide selective pressure that drives 102 

the adaptation of SARS-CoV-2 to its host (Wei et al. 2020). Here we provided one of the 103 

potential mechanisms that contribute to CpG reduction in SARS-CoV-2.  104 
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 105 

In summary, our phylogeny-free approach together with other recent studies strongly support the 106 

proposed model, and it merits future experimental validation. To our knowledge, this is the first 107 

study linking the dynamics of viral genome mutation to two known host molecular defense 108 

mechanisms, the APOBEC and ZAP proteins.   109 
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