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The conversion and transmission of misfolded proteins established the basis

for the prion concept. Neurodegenerative diseases are considered “prion-like”

disorders that lack infectivity. Among them, tauopathies are characterized by

the conversion of native tau protein into an abnormally folded aggregate.

During the progression of the disease, misfolded tau polymerizes into

oligomers and intracellular neurofibrillary tangles (NFTs). While the toxicity

of NFTs is an ongoing debate, the contribution of tau oligomers to early

onset neurodegenerative pathogenesis is accepted. Tau oligomers are readily

transferred from neuron to neuron propagating through the brain inducing

neurodegeneration. Recently, transmission of tau oligomers via exosomes is

now proposed. There is still too much to uncover about tau misfolding and

propagation. Here we summarize novel findings of tau oligomers transmission

and propagation via exosomes.
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Introduction

Tauopathies, such as Alzheimer’s disease (AD) and Parkinson’s disease dementia
(PDD), are neurodegenerative disorders involving the spread of toxic forms of tau
protein, resulting in characteristic aggregates and cytoplasmic inclusions that impair
normal neuronal functioning (Irwin et al., 2013; Shi et al., 2016; Orr et al., 2017; Polanco
et al., 2018b). In normal states, tau’s primary function is to stabilize microtubules and
is mainly found in neuronal axons (Binder et al., 1985; Shi et al., 2016) and the nuclear
compartment (Bukar Maina et al., 2016). Through dynamic interactions with tubulin,
tau promotes polymerization and stability of axons, neurite polarity, axonal sprouting
and neuroplasticity (Samsonov et al., 2004). These functions are impaired in tauopathies
(Lee et al., 2001; Binder et al., 2005; Goedert and Jakes, 2005).

In pathological states, native, unfolded tau isoforms are hyperphosphorylated
and abnormally aggregate into a variety of soluble and insoluble conformations,
such oligomers (multimers of tau) and neurofibrillary tangles (NFTs), respectively.
Misfolding and aggregation of tau into oligomers is a major event in the pathogenesis

Frontiers in Aging Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.974414
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.974414&domain=pdf&date_stamp=2022-08-18
https://doi.org/10.3389/fnagi.2022.974414
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2022.974414/full
https://orcid.org/0000-0002-0076-1577
https://orcid.org/0000-0003-2511-949X
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-974414 August 12, 2022 Time: 18:41 # 2

Jackson et al. 10.3389/fnagi.2022.974414

of tauopathies. Studies have shown that oligomeric forms
of tau are toxic to neurons (Lasagna-Reeves et al., 2012b;
Usenovic et al., 2015; Ozcelik et al., 2016) and capable of
spreading from neuron to neuron (Liu et al., 2012; Dujardin
et al., 2014b; Jiang et al., 2020). While hyperphosphorylated
NFTs are referred to as the pathological hallmark that define
neurodegenerative tauopathies, the toxic properties of insoluble
NFTs is questionable (Gomez-Isla et al., 1997; Terry, 2000;
Wittmann et al., 2001; Spires-Jones et al., 2011). For instance,
the aggregation and subsequent uptake of pre-fibrillar tau is
associated with neuronal dysfunction before NFT formation.
Contrary to NFTs, tau oligomers have been found in the
extracellular space (Hyman, 2014; Puangmalai et al., 2020),
cerebrospinal fluid (CSF) (Sengupta et al., 2017), and serum
of AD patients (Kolarova et al., 2017). These extracellular
tau oligomers are capable of seeding tau aggregation and
propagation to neighboring cells affecting various neuronal
functions including axonal transport, synaptic transmission,
mitochondrial and endoplasmic reticulum function (Gerakis
and Hetz, 2018; Polanco et al., 2018a), and chromatin opening
within the nucleus (Frost et al., 2014). Although the role of tau
oligomers into the mechanism of the disease and cell-to-cell
transmission is not understood, recent studies have suggested
that tau transmission may occur via exosomes (Polanco et al.,
2016, 2018b, 2021; Miyoshi et al., 2021). These are vesicles that
seemingly provide the condition for protein aggregation and a
vehicle to transfer tau oligomers between cells. Delivered tau
oligomers may act as seeds, inducing the misfolding of native tau
into a toxic conformation in recipient cells. Tau’s conversion and
further propagation resembles the mechanism of prions. The
basis of the prion-like concept are the seeded aggregation and
propagation of misfolded proteins through the brain. Similar to
prions, tau oligomers self-propagate, and spread from neuron-
to-neuron and through the CNS (Bellingham et al., 2012a). Like
prions, tau is transferred between cells via exosomes (Fevrier
et al., 2004; Wang et al., 2017). Nevertheless, the mechanisms
governing the transfer of tau have yet to be determined. In this
review article we summarize recent findings of the prion-like
transmission of tau oligomers via exosomes.

Protein tau

Tau, an intrinsically disordered protein that lacks a
tertiary structure (Uversky, 2018), can adopt a wide variety
conformations. The gene encoding tau protein produce six
isoforms containing three repeats (3R) or four repeats (4R), by
alternative splicing of exons 2, 3, and 10 (Goedert et al., 1989).
1N4R tau is enriched in the nuclear fraction of brain lysates (Liu
and Gotz, 2013). During disease, the imbalance of tau isoforms
affects microtubule binding affinity. Misfolded tau isoforms
deposit into distinct aggregates such oligomer, paired helical and
straight filaments and NFTs (Fitzpatrick et al., 2017). Although,

FIGURE 1

Schematic illustrating the kinetics of oligomers formation.
Addition of pre-formed oligomers reduced the lag phase.

the differential expression of tau isoforms across tauopathies is
not clear, cross-seeding between tau isoforms seems to be due
to an asymmetric seeding barrier similar to prion transmission
among species (Kumar and Udgaonkar, 2018; Weismiller et al.,
2018).

Tau oligomers

During the pathogenesis of tauopathies, functional tau loses
affinity for microtubules and self-aggregates into a mixture of
soluble and insoluble structures that vary in size. Tau oligomers
are low molecular weight polymers comprised of a small
number of repeating tau protein units. These forms serve as an
intermediate conformation between tau monomers and fibrils
(Figure 1). Although a large body of evidence suggest that tau
oligomers are the toxic species (Lasagna-Reeves et al., 2011,
2012a; Castillo-Carranza et al., 2014a,b, 2018; Gerson et al.,
2016), other studies argue that fibrils display toxic properties
(Guo and Lee, 2011; Iba et al., 2013). NFTs were initially
considered the toxic species responsible for neuronal loss.
Recent studies have provided clear evidence that toxicity of tau
fibrils depends upon its breakdown into small soluble oligomers
and short fibrils. For instance, sonication of tau fibrils enhanced
cell toxicity in vitro (Ghag et al., 2018). Moreover, in vivo and
in vitro studies showed that oligomeric tau, not fibrillar tau, is
physiologically active given the capacity to induce translational
stress response (Jiang et al., 2020). A likely explanation is
that these newly formed oligomers are easily internalized by
neighboring cells to disrupt cellular homeostasis.
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Tau oligomer accumulation has been shown in several
tauopathies. In AD and progressive supra nuclear palsy (PSP),
the presence of tau oligomers is associated with the onset
of clinical symptoms of the disease (Lasagna-Reeves et al.,
2012b). Coincidently, increased levels of tau oligomers in CSF
and serum from AD patients predicts worst clinical outcome
(Wallin et al., 2010; Sengupta et al., 2017). The molecular
changes in AD are reflected in CSF. Altered CSF composition
may lead to vulnerability of neurons. In dominant AD, tau
levels increased before the onset of the disease (Bateman et al.,
2012), suggesting a deregulation in tau expression prior to the
aggregated pathological conditions.

Consistent with the effects driven by tau oligomers in
the brain, recombinant counterparts exert toxicity in vivo. In
mice, administration of brain-derived (Lasagna-Reeves et al.,
2012a; Castillo-Carranza et al., 2015) as well as recombinant
tau oligomers induced cognitive, synaptic, and mitochondrial
abnormalities (Lasagna-Reeves et al., 2011; Patterson et al., 2011;
Sydow et al., 2011). Conversely, the removal of tau oligomers
by immunotherapy has proven beneficial in mice models of
tauopathies, by reversing memory deficits associated to tau
pathology (Castillo-Carranza et al., 2014a,b, 2015).

The prion-like transmission of tau
oligomers

The intercellular transmission and propagation of misfolded
forms of tau share many features with prions. For instance,
misfolded prions and tau, can act as seeds that induce the
conversion of poorly-structured monomeric protein into a
β-sheet rich structures that further propagate in the brain
(Brundin et al., 2010; Guo et al., 2016). Prion diseases
are a distinct group characterized by the transmission of
misfolded prion agents that interact with functional proteins
to induce misfolding. Neurodegenerative prion diseases that
afflict humans include Creutzfeldt-Jakob disease (CJD) and
Gertsmann-Straussler-Scheinker syndrome (GSS) (Aguzzi and
Heikenwalder, 2006). Prions, the transmissible agent in these
diseases, are proteins with high resistance to chemical and
physical methods used to denature or degrade proteins
(Cobb and Surewicz, 2009). The prions infect by interacting
with functional proteins of a similar origin to induce their
conversion. Contrary to neurodegenerative diseases, prion
diseases are spread in an infectious manner between individuals.

Experiments conducted with brain homogenates from
distinct tauopathies reproduce certain pathological features of
the diseases in mice, which is consistent with the prion strain
behavior (Clavaguera et al., 2009; Lasagna-Reeves et al., 2012a;
Clavaguera et al., 2013; Ahmed et al., 2014; Sanders et al.,
2014; Boluda et al., 2015). Evidence has shown that decreasing
exposure to tau seeds results in a reduction in tau pathology
in vivo (Castillo-Carranza et al., 2014a), suggesting that a

pathological concentration threshold is required for the spread
of tau aggregates (Baker et al., 2016). Tau may be released into
extracellular space during cell death (Dujardin et al., 2014a),
suggesting that tau may play a major role in the degenerative
process (de Calignon et al., 2012; Liu et al., 2012). There
are many current hypotheses on the process by which tau
is released and spread. Extracellular tau plays a major role
in the pathobiological aspects of these tauopathies. Evidence
has shown that tau can potentiate toxicity when administered
extracellularly (Gomez-Ramos et al., 2009). Additionally, tau
oligomers may act as prions by inducing the misfolding of
functional tau into oligomeric conformations (Soto and Estrada,
2008; Clavaguera et al., 2009; Novak et al., 2011; Wu et al., 2013).
This “prion-like” behavior involves the transfer of tau oligomer
seeds between cells and the further conversion of normal tau to
generate new seeds (Figure 1). It is unclear how this process
develops in vivo, but it is possible that misfolded proteins
follow the “seeding-nucleation” model. During the initial
slow lag phase only a limited number of misfolded proteins
(seeds) are produced, and this is followed by a fast growing
elongation phase (Kayed et al., 2003). Studies conducted in
mice have shown that small amounts of intracerebrally infused
recombinant and brain-derived oligomers propagated tau
oligomer formation, behavioral deficits and neurodegeneration
(Lasagna-Reeves et al., 2011, 2012a; Castillo-Carranza et al.,
2014a, 2018). It is possible that these small soluble intermediates
might be easily internalized via bulk endocytosis in the recipient
cell (Wu et al., 2013).

Interaction of RNA binding
proteins with tau oligomers

Yeast prion protein contained low complexity domains
(LCDs), that assemble into a parallel cross-β structure. The
LCDs were first identified in budding yeast (Fomicheva and
Ross, 2021). LCDs promote cytoplasmic inclusions called
stress granules. These are dynamic membraneless organelles
containing RNA binding protein (RBPs) that form in response
to stress in neurodegenerative diseases such amyotrophic lateral
sclerosis (ALS). RBPs with LCDs are known to drive protein
aggregation in neurodegenerative diseases. These proteins
include protein fused in sarcoma (FUS) (Dormann et al., 2010),
TAR DNA-binding protein-43 (TDP-43) (Cohen et al., 2011),
T-cell intracellular antigen-1 (TIA1) (Vanderweyde et al., 2016),
and Musashi (Sengupta et al., 2018) among others. In AD
and other tauopathies, RBPs interact with tau leading to toxic
aggregates. But how this interaction arises is unclear.

Many RBPs with PLDs contain nuclear localization signals
(NLS) (King et al., 2012). Although none of the tau isoforms
carry NLS, the protein tau executes a physiological nuclear
function (Brady et al., 1995). Apparently, environmental
conditions modulate neuronal transport of tau from cytoplasm
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to nucleus. The proline-rich domain of tau interacts with
DNA (Sultan et al., 2011). In fact, during stress conditions tau
protects DNA from reactive oxygen species (ROS) (Montalbano
et al., 2021). Inside the nucleolus, tau is associated with the
nucleolar organizer regions (Sjoberg et al., 2006), and given the
functions of nucleolus, tau may influence RNA translation and
ribosomal assembly.

In pathological conditions, phosphorylated tau inhibits
trafficking of macromolecules between cytoplasm and
nuclear compartment. In tau transgenic mice and AD
brain, tau relocated from the nuclear membrane to the
nuclear pore complexes (NPC), leading to cytoplasmic
aggregates, comprised of phosphorylated tau and nuclear
pore proteins (Eftekharzadeh et al., 2019). In Drosophila
model of tauopathy and cells in culture, disease-associated
forms of tau depletes nuclear Ca2+ inducing neuronal
death (Mahoney et al., 2020). In neurons from brain
cortex and hippocampus of early Braak stage AD, and in
Huntington disease, tau deposit in a nuclear rodlet-shaped
formation called tau nuclear rods (TNRs) (Fernandez-
Nogales et al., 2014). TNRs consist of an invagination of
the nuclear envelope filled with tau. In addition to large
tau aggregates related to RBPs, oligomeric tau aggregates
containing RNA-binding proteins impair chromatin
remodeling and nuclear lamina formation in the nuclear
compartment (Montalbano et al., 2020, 2021). In AD
brain, tau oligomers interact with the RNA binding protein
Musashi (MSI), whereas in vitro tau oligomers seeded

MSI aggregation (Sengupta et al., 2018). MSI proteins
enhanced tau nuclear translocation (Montalbano et al.,
2019). Other RBPs that interact with tau oligomers include
TIA1. Oligomeric tau inclusions in neuronal cytoplasm were
colocalized with TIA1 and other stress granules proteins.
Moreover, reducing TIA1 decreased neurodegeneration
induced by propagated oligomeric tau (Jiang et al., 2019).
Thus, given that RNA can also induce tau fibrillization
(Kampers et al., 1996; Wang et al., 2006), concentrating
tau protein, RNA and/or RBPs in a constrained space
may result in tau’s aggregation inside cytoplasmic space or
vesicles such exosomes.

In fact, there is evidence from AD and related tauopathies
in which tau coincided with RBPs in early exosomes. For
instance, in AD, tau pathology strongly correlates with
cytoplasmic dense-cored granules called granulovacular bodies
(GVB). These are intracellular compartment that contained
different proteins in route to intracellular degradation.
Granulovacuolar degeneration is a feature of pre-clinical
AD in pre-tangle neurons that coincided with hippocampal
phosphorylated tau accumulation (Nijholt et al., 2012). In
transgenic mice, P301L and P301S tau pathology induced
the formation of GVBs in vivo (Wiersma et al., 2019),
suggesting that tau buildup triggers the formation of
GVBs. Granulovacuolar degeneration bodies are neuron-
selective lysosomal structures induced by intracellular
tau pathology. GVBs contained RBPs such as TDP-43
and phosphorylated tau colocalized with exosomal marker

FIGURE 2

Proposed mechanism of tau oligomers spreading via exosomes. Exosomes are vesicles that carry RNA binding protein (RBP), nucleic acids,
monomeric, and oligomeric tau. Exosomes facilitated oligomers formation and deliver their toxic cargo, to a recipient cell. (1) Tau oligomers are
endocytosed by the recipient cell, (2) and transported to an early endosome, which develops into a large (3) multivesicular bodies (MVBs). Tau
oligomers are release by fusion of MVBs with the plasma membrane.
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Flotillin-1 (Yamoah et al., 2020). These finding suggest that
vesicles such exosomes have an environment that promotes
protein aggregation.

Biogenesis of exosomes

A major question regarding the aggregation of tau and
its contribution to neurodegeneration is how the protein is
transported between cells. Exosomes have been studied for
their role in neurodegenerative diseases as vehicles for the
cell-to-cell transmission of the pathogenic proteins (Trams
et al., 1981; Guo and Lee, 2014; Asai et al., 2015; Aryani and
Denecke, 2016). These plasma membrane-derived nanovesicles
have been proposed as a vehicle for seeding tau pathology
throughout the CNS. Neurodegenerative diseases involve
the aggregation and spread of toxic proteins through the
brain. This suggests that the transfer of misfolded proteins
contributes to the pathology of neurodegenerative disorder
(Quek and Hill, 2017). One way this transfer could occur is
through cell-derived exosomes. Due to their ability to diffuse
across the blood brain barrier, exosomes are diagnostic in
neurodegenerative conditions (Fiandaca et al., 2015; Lugli
et al., 2015; Peskind et al., 2015). Many resident CNS
cell types, including neurons, astrocytes, and glia, release
exosomes into the extracellular environment (Bellingham
et al., 2012b; Polanco et al., 2018b). These nanovesicles
can deliver cargo, such as proteins, RBPs and RNAs, to
neighboring cells.

Exosomes are plasma-membrane-derived nanovesicles
ranging from 30 to 200 nm. Exosomes are released by most
types of mammalian cells (Bellingham et al., 2012b; Polanco
et al., 2018b). Initially, exosomes were thought to function
solely as vehicles to remove biomolecular waste during the
transition of reticulocytes to erythrocytes (Quek and Hill,
2017). These vesicles are produced from late endosomes
by a process called endocytosis (Figure 2). The first step
of endocytosis is the inward budding of the endosomal
membrane, which develops accumulations of intraluminal
nanovesicles (ILVs) (Mathivanan et al., 2010; Howitt and Hill,
2016; Boyiadzis and Whiteside, 2017). This late endosome
develops into large multivesicular bodies (MVBs) (Thery
et al., 2002). Proteins within the endocytic vesicles are
seized and selectively allocated into the ILVs of MVBs.
These MVBs can fuse with the plasma membrane to release
ILVs, now called exosomes, into the extracellular space. The
ILVs within MVBs can either be degraded by lysosomes
or fuse with the plasma membrane to be released into the
extracellular environment. These stable vesicles, can thrive in
the blood, CSF, and urine.

Circulating exosomes are currently being studied as
potential vehicles in intercellular communication. These
nanovesicles contain molecules that reflect the molecular

contents of the cell from which the exosome originated (Stern
et al., 2016). These vesicles carry proteins, including heat
shock proteins, RBPs, RNA, adhesion molecules, metabolic
enzymes, and cytoskeletal proteins (Thery et al., 2002; Schorey
and Bhatnagar, 2008). Exosome-associated proteins also play
roles in determining exosome fate. Currently, exosomes are
considered as a potential vehicle for the transmission of the
toxic forms of tau (Jia et al., 2019; Sun et al., 2019; Nam et al.,
2020).

Tau oligomers and exosomes

Extracellular migration of tau is crucial in the development
and spread of tau pathology. Many studies have shown that
exosomes can aid in the intercellular neuron-to-neuron transfer
of tau seeds (Dujardin et al., 2014a; Polanco et al., 2016,
2021; Wang et al., 2017). Both normal and pathogenic states
of tau have been shown to be associated with exosomes
(Saman et al., 2012; Fiandaca et al., 2015; Polanco et al.,
2021). This further indicates that exosomes may play a role
in generating and spreading of misfolded proteins (Wang
and Han, 2018). Studies have shown a close association of
released tau with exosomes (Chiarini et al., 2017). Exosome-
associated tau is detectable in CSF before the onset of
neurodegenerative phenotypes associated with AD (Sengupta
et al., 2017). In chronic traumatic encephalopathy (CTE),
total plasma exosomes levels cases did not differ between
experimental and control groups (Stern et al., 2016). However,
CTE-positive groups had higher levels of tau-associated plasma
exosomes. Additionally, tau has been shown to be secreted
in association with ectosomes, which are within the same
class of vesicles as exosomes. A recent study has shown that
overexpression of 4R0N tau in neuroblastoma cells recruits
proteins associated with the exosomal proteome (Saman et al.,
2014). Due to the intracellular origin of exosomes, they may
serve as a pathway for cytosolic neurodegenerative proteins to
be released and spread.

Exosomes may serve as mediators for the delivery of
toxic oligomer forms of tau to neighboring cells. After
interacting with the plasma membrane surface, the transfer
of cytosolic neurodegenerative tau into the recipient cells
can occur. Once inside the neighboring cell, the misfolded
tau protein may interact in a prion-like way with functional
conformations of tau to induce misfolding. This fusion
mechanism has been directly shown by the use of luciferin to
mark for exosomes. The labeled exosomes directly interacted
with the plasma membrane and delivered their intraluminal
contents into the cytosol of targeted cells (Montecalvo et al.,
2012). These findings suggest that exosomes can transport
or mediate oligomerization in exosomes and deliver their
toxic cargo to a recipient for the further propagation of tau
pathology (Figure 2).
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Conclusion

The misfolding and polymerization of tau into oligomers
is a major event in the pathogenesis of tauopathies. A large
body of evidence suggest that these toxic intermediates
act as seeds, inducing the misfolding and propagation to
neighboring cells in a prion-like fashion. Likewise to prions,
the transferred tau oligomers may induce the conversion
of poorly structured monomeric tau into a β-sheet rich
structures. Studies conducted in vivo have demonstrated
that seeds of tau oligomers propagate endogenous tau
oligomers formation and neurodegeneration. A growing body
of evidence suggests the cell-to-cell transmission of toxic tau
aggregates seems to occur via exosomes. These nanovesicles
can diffuse across the blood brain barrier carrying toxic
cargo, thus are potential therapeutic targets and biomarkers
in tau pathologies. Understanding the dynamic of tau
oligomers formation, release and uptake by neighboring
cells is critical for the future development of treatments
for tauopathies.
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