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Investigation of optical 
and electrical properties of novel 
4T all perovskite tandem solar cell
Mahsa Moradbeigi1 & Mohammad Razaghi2*

In this paper, a combined three-dimensional (3D) optical-electrical simulation of non-pb and flexible 
four-terminal (4T) all perovskite tandem solar cell (APTSC) is presented. In this structure, polyethylene 
terephthalate (PET) is used as substrates, while the top sub cell has a MAGeI

3
 absorber layer and the 

bottom sub cell has a MASnI
3
 absorber layer. This structure is used as a reference in this paper and 

the optical and electrical properties of it are investigated using the finite element method (FEM). 
It is shown that this structure has a total power conversion efficiency (PCE) of 24.65% . Then, the 
elimination of the buffer layer and the addition of antireflection layer (ARL) strategies, as well as 
the use of periodic nano-texture patterns, are used to increase the reference structure’s total PCE. A 
free-buffer layer tandem device is presented to minimize the parasitic absorption. While the total PCE 
is improved by 1.14% in this case, one of the fabrication steps is also eliminated. A plasma-polymer-
fluorocarbon (PPFC) coating layer is suggested as ARL on the substrates of both sub cells to reduce 
reflection loss. With optimized these layers thickness, total PCE is increased by 12.76% . Because 
the PPFC layer is hydrophobic, the top surface of two sub cells in this structure has self-cleaning 
characteristic. As a result, this device offers long-term moisture resistance. Finally, the best structure 
in terms of the maximum total PCE is presented by increasing optical path-length utilizing nano-
photonic and nano-plasmonic structures. The final structure is offered as a 4T tandem solar cell (TSC) 
that is environmentally friendly, extremely flexible, and has self-cleaning capability, with a total PCE 
of 30.14% , which is greater than the total PCE of the reference structure by 22.27%.

Recently, there has been an increase in research on organic-inorganic metal-halide (oxide) perovskite solar cells 
(PSCs) due to their suitable bandgap tunability from 1.18 to 2.3 eV1 with large absorption coefficients, easy fab-
rication steps with low temperature processing, and low cost due to their cheap raw materials2–4. Within 12 years, 
the power conversion efficiency (PCE) of single-junction PSCs has risen from less than 4% to more than 25%5, 
approaching the Shockley–Queisser theoretical PCE limit of 31–33%6. Therefore, to overcome this limitation, 
two-junction (tandem) architecture is introduced7.

Tandem solar cells (TSCs) integrate two sub cells whose absorber material of each sub cell originates from 
anomalous materials or similar structural (chemical) formula materials with different band gaps7,8. The tandem 
device is manufactured by adding a semitransparent front cell with a wide band gap (WBG) absorber material 
on top of a rear cell with a narrow band gap (NBG) active layer. The WBG solar cell, referred to as the top sub 
cell, harvests short-wavelength photons, while the NBG solar cell, referred to as the bottom sub cell, absorbs 
long-wavelength photons. As a result, TSCs achieve higher PCE by utilizing a wider range of sunlight. When 
combined with Si9,10, CIGS6,11, CZTS12, NBG perovskite13,14, colloidal quantum dot15,16, organic17 bottom sub 
cells, WBG perovskite absorber materials are excellent choices for the top sub cells. Because of the superior 
optical and electrical properties of perovskite materials, WBG/NBG perovskite TSCs or all perovskite TSCs 
(APTSCs) can be offered for dominating the PCE limit of single junction PSCs. Thin-film APTSCs are avail-
able in two configurations: monolithically integrated two-terminal (2T) architecture and mechanically stacked 
four-terminal (4T) setup. The optical and electrical coupling between the top and bottom sub cells is established 
in the 2T structure, whereas the optical coupling between two sub cells is established in the 4T structure, and 
these sub cells are electrically independent. Since the electrical coupling of two sub cells is series in the 2T 
structure, the current of each sub cell needs to be identical. That is defined as current matching conditions18. 
Hence, material choices are limited to satisfy this condition in the 2T architecture. Mechanically stacked 4T 
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device, in contrast, is not limited by current matching issue. The first 4T APTSC with a PCE of 19.1% had been 
reported8. Later on, Tong et al. achieved an impressive PCE of 25.4% for a 4T tandem architecture using a 
1.63 eV bandgap Cs0.05FA0.8MA0.15PbI2.55Br0.45 perovskite as the absorber material of top sub cell and a 1.25 eV 
bandgap (FASnI3)0.6(MAPbI3)0.4 perovskite as the active layer of bottom sub cell19. Recently, Nejand et al. 
reported a 4T APTSC based on the Cs0.1(MA0.17FA0.83)0.9Pb(I0.83Br0.17)3 perovskite as the WBG absorber and 
FA0.8MA0.2Sn0.5Pb0.5I3 perovskite as the NBG absorber. The resulting device had a PCE of 23%13.

Despite the high PCE of lead-containing PSCs, the toxic nature of Pb compounds is a major concern that 
prevents their widespread use. As a result, a lead-free perovskite material alternative is proposed as a suitable 
solution. Despite previous research confirming that Ge and Sn could be a potential candidate for replacing Pb in 
Pb-based halide perovskites due to their non-toxic nature, earth abundant element, and environmentally friendly 
(eco-friendly) characteristics20–26, single junction Ge-based and Sn-based halide perovskite solar cells suffer from 
low PCE when compared to Pb-based halide perovskite solar cells27,28. Using Sn-based and Ge-based PSCs in 
tandem structure can therefore provide higher PCE than single junction Pb-based PSCs.

The goal of our current work is to present a TSC device that is low-cost, high-efficiency, and has excellent 
mechanical flexibility, as well as self-cleaning and eco-friendly characteristics. A numerical modeling of 4T Ge-
based perovskite/Sn-based perovskite TSC is performed in this work using a three-dimensional (3D) finite ele-
ment method (FEM). We introduced eight different cases of free-Pb 4T APTSC with polymer material substrates 
for each sub cell with the top sub cell including MAGeI3 perovskite as the WBG absorber layer and the bottom 
sub cell including MASnI3 perovskite as the NBG active layer. First, the optical and electrical properties of the 
MAGeI3 PSC and MASnI3 PSC in the single junction structure are investigated. Then, a 4T MAGeI3/MASnI3 
perovskite TSC as reference structure (case (I)) is designed and analyzed. Following that, we proposed a semi-
transparent perovskite top sub cell without a metal oxide buffer layer as a case (II) to reduce parasitic absorption 
and eliminate one of the fabrication procedures. In cases (III) and (IV), plasma-polymer-fluorocarbon (PPFC) is 
employed as an antireflection layer (ARL) to reduce the reflection loss of incident light from the surface of two 
sub cells. It is optimized in thickness for each sub cell, and the optical properties of these cases are investigated. In 
cases (V)-(VIII), we examined light-trapping structures based on nano-texture structures to improve absorption 
ability in both absorber layers. The absorption properties of WBG and NBG perovskite layers, as well as total 
reflection loss, are investigated and compared for all presented cases. To conclude, the electrical properties of each 
sub cell and tandem device are analyzed for all of the considered cases, and the optimal structure is introduced 
to get the highest possible total PCE.

Results
To design eco-friendly 4T APTSC, we considered MAGeI3 (with Eg = 1.9 eV)-based PSC as the top sub cell and 
MASnI3 (with Eg = 1.3 eV)-based PSC as the bottom sub cell. The configuration of semi-transparent top sub 
cell consists of the following layers from top to bottom: the indium tin oxide (ITO, 50 nm) as the transparent 
conductive oxide (TCO), titanium dioxide ( TiO2 , 50 nm) as the electron transport material (ETM), MAGeI3 
(400 nm) as the WBG perovskite absorber material, Spiro–OMeTAD (50 nm) as the hole transport material 
(HTM), molybdenum oxide ( MoOx , 10 nm) as the buffer layer and the ITO (105 nm) as TCO. The bottom sub 
cell layers from top to bottom are the ITO (50 nm) as the TCO, TiO2 (50 nm) as the ETM, MASnI3 (400 nm) as 
the NBG perovskite active layer, Spiro–OMeTAD (50 nm) as the HTM and the Ag (100 nm) as the back-contact. 
In order to design a flexible solar cell, we considered polyethylene terephthalate (PET) as the substrate of two 
sub cells. One of the proposed methods for fabrication of each sub cell is as follows: a thin film of TiO2 layer is 
deposited on the PET/TCO substrates by atomic layer deposition29. After the spin coating of the WBG or NBG 
perovskite thin film25, a thin film of Spiro–OMeTAD is spin-coated on absorber layer of each sub cell30. Next, 
a 100 nm Ag back-contact is thermally evaporated on HTM of bottom sub cell31. Before the ITO sputtering as 
rear electrode of top sub cell, a 10 nm MoOx buffer layer is thermally evaporated on HTM of semi-transparent 
top sub cell to protect the HTM layer against sputtering damage32. After that, the sub cells were integrated in the 
mechanically stacked 4T tandem architecture. The schematic of the proposed single junction WBG PSC, stand-
alone NBG PSC and 4T tandem structure is shown in Fig. 1a–c. Figure 1d,e show the profiles of total generation 
rate ( Gtot ) versus perovskite layer length, as well as 3D maps of Gtot in the entire absorber layer for both WBG 
and NBG PSCs that were not placed in tandem configuration. The simulation results show that the total charge 
carrier generation rate reaches a maximum ( Gtotmax ) in the perovskite/ETM junction of each PSC. The Gtotmax 
is achieved 1.73× 1027 m3 s and 8.79× 1027 m3 s at the WBG and NBG perovskite layers, respectively. These 
results have been validated by replacing the MAPbI3 active layer with MASnI3 and MAGeI3 materials in the 
previous study33. Also, the glass/TCO is changed with PET/TCO substrate. For this purpose, n and k of these 
materials in previous simulation33 replaced with new parameters25,34–36.

The absorption density ( pABS ) profiles of the proposed 4T tandem structure (Fig. 1c) is presented in Fig. 2 
for � of 360, 410, 500, 580, 640, 650, 660, 750 and 900 nm. Because the Eg of these absorber layers is smaller 
than that of other layers, the majority of the incident solar spectrum is absorbed in the perovskite active layer of 
each sub cell. Because of the WBG perovskite material bandgap energy, it can absorb photons with energies of 
> 1.9 eV, which corresponds to photons with wavelengths of < 660 nm. Sunlight is filtered by passing it through 
the semi-transparent top sub cell and absorbing a portion of it. After that, the filtered solar light is guided to the 
bottom sub cell. As a result, the bottom PSC in the tandem structure is referred to as the “filtered bottom PSC”. 
The NBG perovskite layer ( Eg = 1.3 eV) can absorb a wider range of sunlight wavelengths. MASnI3 perovskite 
material absorbs approximately the photons with wavelengths of < 1000 nm. Maximum absorption of the tan-
dem structure occurs in the active layer of the bottom sub cell for wavelengths exceeding 660 nm. Given that 
only light absorption in the absorber layer of both sub cells generates electron–hole pairs, absorbed light in the 
alternative layers is defined as parasitic absorption.
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Figure 3a illustrates the 1D format of the Gtot profile versus device length as well as the 3D format of this 
parameter in the overall structure of the proposed 4T tandem architecture. The constituent layers of the pro-
posed structure are also shown in the z-coordinate. The maximum value of the total photogeneration rate of 
WBG and NBG perovskite layers in the tandem structure is obtained in top of each absorber layer of two sub 
cells, as in single junction structures. The Gtotmax have reached 1.73× 1027/m3 s and 4.33× 1027/m3 s at the 
WBG and NBG absorber layers, respectively. The value of Gtotmax for filtered NBG perovskite layer is greater 
than the Gtotmax value for WBG perovskite layer because of the wider range of absorption in MASnI3 material 
compared to MAGeI3 material as shown in Fig. 2. Peaks in the buffer and other layers depicted in the Fig. 3a are 
not involved in the photogeneration rate and are only considered as parasitic absorption. As expected, the Gtot 
value of the WBG perovskite layer in tandem structure is the same as that value in the single junction structure 

Figure 1.   A schematic of the unit cell of single junction WBG PSC (a), stand-alone NBG PSC (b) and 4T 
APTSC (c). The total charge carrier generation rate versus perovskite layer length (along with the z-coordinate) 
and 3D map of total generation rate for single junction WBG PSC (d) and stand-alone NBG PSC (e).

Figure 2.   The absorption density profiles of the proposed tandem architecture shown in Fig. 1c for several 
wavelengths.
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shown in Fig. 1d. The Gtot value of the filtered NBG perovskite layer is lower than that of the stand-alone NBG 
perovskite layer due to partial sunlight absorption by the semi-transparent top sub cell (comparison of Figs. 1e 
and 3a). The current density-voltage (J–V) curve of the top, the filtered and the stand-alone bottom PSC are 
depicted in Fig. 3b. Since the electrical characteristics of the top sub cell in the tandem architecture are similar 
to the top PSC in the single junction structure, the term “top PSC” is used for both the tandem and the single 
junction structures. The Jsc , Voc , FF and PCE values have been obtained 7.68 mA/cm2 , 1.70V, 0.92 and 12.00% for 
semi-transparent top PSC and 28.66 mA/cm2 , 0.94 V , 0.76 and 20.37% for stand-alone bottom PSC, respectively. 
Due to light absorption in semi-transparent top PSC, the Jsc , Voc , FF and PCE parameters in the filtered bottom 
PSC, are decreased to 18.12 mA/cm2 , 0.93 V , 0.75 and 12.65% compared to the stand-alone bottom PSC. The 
PCE of both the semi-transparent top PSC and the filtered bottom PSC should be considered when calculating 
the PCE of the proposed 4T tandem structure. The PCE of eco-friendly 4T APTSC with flexible substrates for 
two sub cells is calculated to be 24.65%.

To improve the efficiency of this proposed structure, which is introduced as case (I), we presented seven dif-
ferent cases (cases (II)–(VIII)) as shown in Fig. 4a. Case (I) will be used as a reference from now on. The buffer 
layer is removed in case (II). Cases (III) and (IV) take into account the addition of ARLs. In cases (V)–(VIII), 
grating patterns are used, and a 2D schematic of this pattern is shown in Fig. 4b. The optical and electrical prop-
erties of each case are investigated in the following sections.

The removal of the buffer layer.  A semi-transparent top sub cell is required in the TSC to transmit 
photons with energies less than the band gap of MAGeI3 to the bottom sub cell. Therefore, a transparent rear-
contact must be used in the top sub cell. One of the suggestions is to use a TCO. Usually, the sputtering process is 
applied for the TCO deposition. A metal oxide buffer layer between the HTM and the TCO is placed to prevent 
ion bombardment damage from sputtering process to the HTM layer. Nevertheless, parasitic absorption of this 

Figure 3.   The total charge carrier generation rate profile (a) and the current density-voltage characteristics of 
the top sub cell, filtered and stand-alone bottom PSCs (b) for proposed structure presented in Fig. 1c.

Figure 4.   (a) 3D schematic of the unit cell of all proposed cases. (b) 2D schematic of grating patterns.
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layer reduces the bottom sub cell’s efficiency. Therefore, the PCE of the tandem device falls. Efforts have recently 
been made to eliminate the buffer layer and direct sputtering of the TCO on the HTM. The sputter parameters 
of a 105 nm ITO layer, including pressure, sputter power and temperature in the chamber, are mentioned by 
Bett et al.30. By direct sputtering of the TCO on the HTM, not only parasitic absorption as optical loss will be 
reduced, but also an extra process step in the fabrication will be omitted. Herein, the optical properties of refer-
ence structure (tandem structure with buffer layer) and case (II) (tandem structure with the exclusion of buffer 
layer) are compared.

Figure 5 has been demonstrated the absorption density distribution in the top and bottom sub cells of 
case (I) and case (II) for � of 360, 410, 660, 750 and 900 nm. Figure 5a,c are related to pABS profiles of the top 
sub cell with and without the buffer layer, respectively. As shown, the pABS value of MAGeI3 layer is slightly 
decreased by elimination of buffer layer. Since the refractive index of the buffer material is lower than that of the 
Spiro–OMeTAD material, some light is reflected from the HTM/buffer interface. Because the refractive index of 
Spiro–OMeTAD material is lower than that of MAGeI3 material, it is absorbed in this layer. However, by deleting 
the buffer layer, the light at the HTM/ITO interface penetrates into the ITO layer because the refractive index of 
ITO is greater than the Spiro–OMeTAD material. Therefore, the pABS value of the absorber layer of the top sub 
cell with the presence of the buffer layer is greater than without this layer. Effective absorption occurs in MAGeI3 
material in these two profiles, which is involved in the production of carriers. The absorption density of other 
layers is considered as the parasitic absorption density. By comparing Fig. 5a with c, additional parasitic absorp-
tion density is observed in the MoOx layer for all wavelengths when the buffer layer is existed. The optical loss 
is less for � > 660 nm than for � < 660 nm. The optical loss is decreased by removing the buffer layer. Although 
extra parasitic absorption in the top sub cell does not change the absorption of the MAGeI3 layer, it can affect 
the absorption of the MASnI3 layer in the filtered PSC. Figure 5b,d refer to the pABS maps of filtered PSC with 
and without the MoOx as the buffer layer, respectively. Herein, efficient absorption happens in the MASnI3 layer 
that leads to the generation of electron–hole pairs. In these figures, the amount of optical loss absorption is also 
seen to have emerged in other layers. By comparing Fig. 5b,d, we found that the pABS value in the MASnI3 layer 
is increased with the removal of the buffer layer for � of 360, 410, 660, 750 and 900 nm due to reduced parasitic 
absorption of semi-transparent top sub cell as shown in Fig. 5a.

The 1D Gtot parameter distribution in device length is presented in Fig. 6. This figure also depicts a 3D illustra-
tion of this parameter profile in the entire structure. In this curve, the layers of the proposed case (II) are denoted. 
With the elimination of the metal oxide buffer layer, here, the high peak associated with the buffer layer in Fig. 3a 
has been omitted due to the deletion of excess parasitic absorption of the buffer layer in the semi-transparent 
top sub cell. Therefore, the Gtotmax value of NBG perovskite layer in case (II) is reached to 4.36× 1027/m3 s 
which is increased 0.69% relative to the Gtotmax value of NBG perovskite layer in case (I). This parameter for 
WBG perovskite layer is decreased to 1.71× 1027/m3 s which is 1.16% less than this value in reference case. 
This is because the reflected sunlight from the HTM/buffer layer contact to the WBG perovskite layer has been 
eliminated (comparison of Figs. 3a and 6).

Addition of antireflection layer.  Another optical loss in PSC is the Fresnel reflection of sunlight from the 
top surface of the solar cell. Reflection loss decreases the current density and the PCE. One solution is to use an 
ARL to reduce the amount of wasted sunlight. In this paper, we utilized a PPFC coating on the plastic substrate as 
an ARL due to its low refractive index, excellent flexibility, retaining form after repeated bending tests for 10,000 
times, nature of superhydrophobic surface, high transmittance over a wide wavelength range, self-cleaning 

Figure 5.   The absorption density distribution in the top sub cell of case (I) (a), in the bottom sub cell of case (I) 
(b), in the top sub cell of case (II) (c) and in the bottom sub cell of case (II) (d) for several wavelengths.
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effect, and long-term environmental stability under high humidity, chemicals, and heat37–39. A PPFC ARL can be 
sputtered with mid range frequency wave on PET substrate. In sputtering process, conductive carbon nanotube 
(CNT)/polytetrafluoroethylene (PTFE) as composite targets is used38–40.

Here, impact of adding ARLs on top of each sub cell has been investigated. Thus, the proposed cases (III) and 
(IV) are compared with case (II) (Fig. 4a). In case (III), a PPFC thin film as ARL1 is placed to the PET substrate 
of just the top sub cell. In case (IV), a PPFC ARL is placed on the top of both sub cells. A PPFC coating on PET 
substrate of bottom sub cell is introduced as ARL2 . Figure 7a displays the effect of PPFC ARL1 thickness on Jsc 
and PCE parameters of the top sub cell. For thickness less than 100 nm, Jsc and PCE parameters are enhanced by 
increasing the thickness of ARL1 . For thickness greater than 100 nm, the value of these parameters is decreased. 
For 100 nm of PPFC ARL1 on PET/ITO substrate of the top sub cell, the maximum Jsc = 8.44 mA/cm2 and 
PCE = 13.22% of the top sub cell are observed. In addition, the Jsc and PCE parameters of the bottom sub cell 
are increased to 20.03 mA/cm2 and 14.00% , respectively, as compared to case (II) (where the ARL1 is not used). 
This occurs as a result of increased light penetration into the tandem structure caused by reduced reflection loss 
of the top surface of the top sub cell. The effect of ARL2 thickness on Jsc and PCE parameters of the bottom sub 
cell with a constant thickness of 100 nm ARL1 is shown in Fig. 7b. It shows that the maximum values of Jsc and 
PCE parameters of the bottom sub cell are achieved for a thickness of 60 nm. For this thickness, Jsc and PCE 
values have been reached 21.16 mA/cm2 and 14.83% , respectively.

Figure 8a,b demonstrate the absorption of the active layer of the top and bottom sub cells and the total reflec-
tion spectrum in the proposed cases (II), (III), and (IV) for wavelengths between 300 and 1050 nm. As expected, 
the use of ARLs (blue and green lines in Fig. 8b) has lowered reflection losses at almost all wavelengths when 
compared to the absence of ARLs (red line in Fig. 8b). The absorption of the MAGeI3 active layer is increased at 
wavelengths spanning from 380 to 620 nm by placing 100 nm PPFC ARL on the PET/ITO substrate of the top 
sub cell. Moreover, absorption improvement of MASnI3 active layer can be observed at wavelengths between 
410 and 610, 640–680, 700–790, 840–910, and 950–1010 nm. This is due to that fact that the refractive index 
of PPFC is closer to that of air than that of PET/ITO. Therefore, the difference between the refractive indices of 

Figure 6.   The generation rate profile of charge carrier related to case (II).

Figure 7.   (a) Impact of ARL1 thickness on Jsc and PCE parameters of the top sub cell. (b) The effect of ARL2 
thickness on Jsc and PCE parameters of the bottom sub cell.
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the top layer of the top sub cell and the air layer is adjusted, which decreases the reflection of the top surface of 
the top sub cell. As a result, light is penetrated into the tandem architecture (top and bottom sub cells) at these 
wavelengths, resulting in absorption enhancement in the MAGeI3 and MASnI3 layers. On the other hand, there 
is a decrease in absorption of the active layer of the bottom sub cell at wavelengths spanning from 610 to 640, 
680–700, 790–840, and 910–950 nm. This is related to an increase in total reflection loss at these wavelengths 
induced by destructive interference (DI) between reflected light and entering light into the structure. Therefore, 
a portion of the sunlight in these wavelength ranges did not reach the device. These ranges are affected because 
they are in the absorption range of the bottom sub cell (comparison of cases (II) and (III)). By comparing case 
(III) and (IV), as expected, we found that the addition of ARL2 does not have a significant effect on the absorp-
tion of the MAGeI3 active layer. However, in the bottom sub cell, noticeable absorption enhancement occurs at 
wavelengths between 610 and 730, 780–890, and 950–1000 nm. This is because the total reflection loss from the 
top of the bottom sub cell is decreased at these ranges by reducing the difference in the refractive index of the top 
layer of the bottom sub cell with the air layer. The reduction of absorption in several wavelengths is related to the 
DI of the reflected light with the incoming light to the bottom sub cell which the total reflection loss is increased.

The calculation results of 1D Gtot profile along the device length for the proposed cases (II), (III) and (IV) 
are illustrated in Fig. 9a. The regions corresponding to absorber perovskite layers of each sub cell are marked 
in this figure for three proposed cases (II)–(IV). By comparing cases (II) and (III), we discovered that the Gtot 
value of the WBG and NBG perovskite layers has been increased by adding 100 nm PPFC ARL ( ARL1 ) to case 
(II). Due to the total reflection loss reduction and effective absorption enhancement in absorber layers of each 
sub cell which are shown in Fig. 8, generation of electron–hole pairs is enhanced in both sub cells. In case (III), 
the Gtotmax value of the WBG and NBG perovskite layers is reached to 1.92× 1027/m3 s and 4.69× 1027/m3 s , 
respectively. By considering 60 nm of PPFC ARL ( ARL2 ) to top of the bottom sub cell of case (III), the Gtotmax 
parameter in NBG perovskite is increased to 4.87× 1027/m3 s . This is related to the reasons that light emission 
into the absorber layer of the bottom sub cell is enhanced in case (IV) compared to case (III) by lowering surface 
reflection losses. Therefore, absorption of the bottom sub cell has been boosted and the generation of electron 
and hole carriers has been increased. The Gtot value of the WBG perovskite has remained almost unchanged, with 
the only difference being the addition of the thickness of ARL2 to the z-coordinate (comparison of case (III) with 

Figure 8.   Absorption spectrum of absorber layer of the top and bottom sub cells (a) and total reflection 
spectrum (b) for cases (II)–(III).

Figure 9.   (a) 1D format of the photo generation rate distribution regarding cases (II)–(IV). (b) 3D profile of 
photo generation rate for case (IV).
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case (IV)). Figure 9b depicts the 3D distribution of Gtot parameter for case (IV). The Gtotmax value of the WBG 
and NBG absorber layers is improved by 11.56% and 12.47% , respectively, when compared to case (I), as shown 
in Fig. 3a. It’s because ARLs were placed on top of both sub cells to minimise reflection loss.

Periodic nano‑texture structures to improve light absorption.  Many techniques have been pro-
posed to take advantage of nano-texture structures for PCE enhancement in PSCs33,41–44. These structures, 
known as nano-photonic and nano-plasmonic structures, can be used on dielectric and metal surfaces. Nano-
photonic structures can reduce reflection losses, enhance the optical path-length by light scattering and couple 
the incident light with waveguide-modes into the semiconductor. Nano-plasmonic structures with a size less 
than 50 nm confine the sunlight in the absorber layer by using mostly near-field effects, and operate as a scatter-
ers with a size larger than 50 nm, which enhance the optical path-length45. The scattering mechanisms of nano-
texture structures are discussed for PSC in41,42. Soft lithography and nanoimprint lithography methods can be 
applied to fabricate nano-texture structures46–48.

For light absorption enhancement in the case (IV), we have presented cases (V)–(VIII) using the nano-texture 
structures. The effect of nano-photonic structures on the optical properties of case (IV) has been investigated 
in cases (V) and (VI) by adding nano-texture structures to the top of each sub cell. In case (V), nano-texture 
structures have been applied on top of the ARL and TCO layer of the bottom sub cell. The nano-photonic 
structure above ARL and TCO layer of the top sub cell has been used in case (VI). In cases (VII) and (VIII), 
both nano-photonic and nano-plasmonic structures have been used to improve the light-capturing ability. In 
case (VII), nano-texture structures have been designed on top of all layers of the bottom sub cell, including the 
back-contact/HTM interface. In case (VIII), in addition to these surfaces, the above ARL and TCO layer of the 
top sub cell are also patterned. All proposed cases have been demonstrated in Fig. 4a. In following simulations, 
the grating patterns have been considered as function g(y) = Lg cos[

πy
βW ] for y < |

βW
2
| . Where, W = 350 nm , 

β and Lg are introduced as structural characteristics of grating shape (Fig. 4b). (βW , Lg ) nm has been assumed 
(300, 90), (280, 85), (250, 80) and (220, 75) nm for the top of ARL and TCO layer of two sub cells, above ETM of 
the bottom sub cell, both sides of MASnI3 layer and back-contact/HTM interface, respectively. The fabrication 
conditions were taken into account when choosing these grating shape structural characteristics. In these studies, 
the thicknesses of the ARLs and active layers have remained constant in comparison to the case (IV). The optical 
properties of the proposed cases (V)–(VIII) are compared to case (IV) in this section as shown in Fig. 10a,b.

The major changes are related to longer wavelengths of sunlight by creating nano-photonic structures above 
the top two layers of the bottom sub cell (case (V)). This is because shorter wavelengths are absorbed mainly 
in the top sub cell before reaching these structures. The absorption properties of the WBG perovskite layer are 
nearly unchanged when case (V) is compared to case (IV). Also, there is no noticeable change in the absorp-
tion of the NBG perovskite layer at wavelengths less than 660 nm. Only the absorption of the NBG perovskite 
layer is improved at wavelengths ranging about 670–710 and 810–960 nm. Since the incident light is entered 
to the bottom sub cell in non-vertical direction, the optical path-length is increased inside the MASnI3 layer. 
Therefore, the absorption enhancement is observed in the NBG perovskite layer in these ranges. Because the 
light is trapped in the device, the total reflection losses are decreased at these wavelengths (comparison of blue 
and red lines in Fig. 10a,b).

Using nano-photonic structures above the top two layers of the top sub cell (case (VI)), not only longer 
wavelengths but also shorter wavelengths are affected. By comparing case (VI) with case (IV), the total reflec-
tion losses are reduced at the wavelength rage of 370–440 nm. This means that a smaller percentage of light is 
left the structure. Hence, the incident light is captured inside the device. In fact, these wavelengths of light are 
absorbed in the WBG perovskite layer by the collision with these structures, which increases the path-length of 
the light entering the structure. Significant changes in the first half of the absorption spectrum are not created in 
the NBG perovskite layer because the 370–440 nm wavelengths affected by these structures are absorbed by the 
WBG perovskite layer and not entered into the NBG perovskite layer. However, longer wavelengths are affected 
in the absorption and reflection spectra. By increasing the optical path-length, absorption enhancement can be 
observed at wavelength range from 870 to 930 nm. Also, the reduction of reflection losses happens due to light-
trapping in this range. However, the reflection losses are slightly increased in the second half of the spectrum, 

Figure 10.   The spectrum of the top and bottom sub cells absorption and total reflection of the proposed cases 
(IV)–(VIII).
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except in the range of 870–930 nm, which is referred to as the DI between incident light and reflected light from 
the surfaces. Consequently, the absorption is decreased in the NBG perovskite layer (comparison of blue and 
green lines in Fig. 10a,b).

As shown in Fig. 10b, the most reflection losses are related to the second half of the spectrum. Since this range 
corresponds to the sensitivity range of absorption in the NBG perovskite layer, a part of the entered sunlight 
into this layer has not been absorbed and it has left the device. In order to increase the absorption ability, we 
exploited nano-plasmonic structures. To use the back-scattering effects of the nano-plasmonic structure, the 
size of the pattern located at the HTM/back-contact interface is assumed to be greater than 50 nm. Because the 
HTM layer is 50 nm thick, all top layers of the Ag-back contact in the bottom sub cell are also patterned without 
changing the thickness of the ARL and absorber layer. Thus, both nano-photonic and nano-plasmonic structures 
are employed. According to the absorption and the reflection spectra of cases (V) and (VII) (red and orange lines 
in Fig. 10a,b), no noticeable change is observed in the absorption of the WBG absorber layer, the first half of the 
absorption spectrum of the NBG absorber layer, and the first half of the total reflection. However, in the second 
half of the absorption spectrum related to the absorber layer of the bottom sub cell, the absorption enhancement 
occurred at wavelengths ranging of 630–710 and 740–970 nm. It is due to the scattering mechanisms caused by 
nano-photonic and nano-plasmonic structures. Nano-texture structures increase the optical path-length. There-
fore, absorption of the NBG perovskite layer is enhanced. Also, total reflection losses are reduced in these ranges, 
implying that sunlight rarely leaves the device; it remains in the device due to the forward-scattering mechanism 
in the MASnI3 layer’s top surfaces, the back-scattering mechanism at the HTM/back-contact interface, and the 
changing angle of incoming light to total reflection angle at the MASnI3 layer/HTM interface.

By combining two cases (VI) and (VII), the features of these two cases are incorporated. This structure is 
introduced as case (VIII). As expected, similar behavior can be seen in the absorption spectrum of the WBG 
perovskite layer in cases (VI) and (VIII) (green and violet lines in Fig. 10a). Comparing the absorption spec-
trum of case (VII) with case (VIII) (orange and violet lines in Fig. 10a) shows that the absorption is improved at 
wavelengths ranging about 370–440 nm (the first range) and 870–930 nm (the second range). These changes are 
related to the absorption spectrum of WBG and NBG perovskite layers, respectively. The absorption enhance-
ment in the first range is because the incident light collides with nano-texture structures located above the top 
sub cell and its direction is changed. Since it is moved non-perpendicularly, the length of the optical path is 
increased and the incident light is trapped inside the device. Thus, these changes have affected on the absorption 
spectrum of the WBG perovskite layer. However, embedded nano-photonic structures above the top sub cell have 
no effect on first half of the absorption spectrum of NBG perovskite layer. Because the first range is in the range 
of absorption sensitivity of WBG perovskite layer and it is absorbed here. Therefore, a greater percentage of this 
range is not reached to the NBG perovskite layer. As expected, because the sunlight is not captured in the WBG 
perovskite layer at the second range, therefore, entered into the bottom sub cell and improved the absorption of 
NBG perovskite layer. As a result, the total reflection losses at the first and second ranges are reduced because part 
of the incident light does not leave the device (comparison of orange and violet lines in Fig. 10b). In contrast, the 
total reflection loss has been increased in the parts of spectrum (at wavelength ranges of 750–780, 820–870 and 
940–960 nm), as mentioned, due to the DI of incident and reflected lights in the top surfaces of device. Therefore 
NBG perovskite layer absorption decreased at these wavelengths, but the WBG perovskite layer absorption was 
unaffected by this increase in reflection loss.

Electrical properties of all proposed cases.  In this section, the electrical properties of cases (II)–(VIII) 
are studied and compared with the reference structure. Since the sub cells are electrically separated in the 4T 
configuration, the electrical properties of two sub cells are separately investigated. Figure  11a illustrates the 
electrical simulation results of the J–V characteristic for the top and bottom sub cells of cases (II)–(VIII). All 
electrical parameters of these proposed structures and reference structure including Jsc , Voc , FF and PCE have 
been extracted from J–V curves (Figs. 3b and 11a) given in Table 1 for the top and bottom sub cells. To calculate 
the PCE of the 4T device, the PCE of the top and bottom sub cells is summed.

Figure 11.   (a) The current-voltage characteristics of the proposed cases (II)–(VIII). (b) The PCE of each sub 
cell and the 4T structure for all proposed cases.
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According to Table 1, Voc and FF values are approximately constant in the top and bottom sub cells of all cases 
because these parameters do not depend on the concept of absorption enhancement, which is considered in this 
work. Because of the lower absorption density and photo generation rate in the WBG perovskite layer, the Jsc and 
PCE parameters in case (II) are decreased to 7.51 mA/cm2 and 11.73% , respectively, when compared to the refer-
ence case. However, Jsc and PCE values are boosted in the bottom sub cell. Due to the elimination of the parasitic 
absorption related to the buffer layer, absorption enhancement has occurred in the NBG perovskite layer, where 
the generation of carriers is increased. Therefore, Jsc is reached to 18.92 mA/cm2 . Consequently, PCE of the bot-
tom sub cell is increased to 13.20% . In case (III), Jsc and PCE values of the top and bottom sub cells are obtained 
8.44 mA/cm2 , 13.22% , 20.03 mA/cm2 and 14.00% , respectively. By reducing reflection from above the top sub 
cell, absorption in both sub cells is improved, which means the creation of electron–hole pairs is increased. As 
a result, Jsc and PCE values are increased to 12.38% and 12.70% in the top sub cell and 5.87% and 6.06% in the 
bottom sub cell, respectively, in comparison to case (II). As expected, noticeable effects are only observed in 
the electrical features of the bottom sub cell when cases (III) and (IV) are compared. Therefore, Jsc is reached 
21.16 mA/cm2 and PCE is increased to 14.83% . This is because the Gtot value is enhanced in the bottom sub cell. 
Jsc = 8.50 mA/cm2 and PCE = 13.31% for the top sub cell and Jsc = 21.31 mA/cm2 and PCE = 14.93% for the 
bottom sub cell are achieved in case (V). Due to no significant change in absorption of the WBG perovskite layer, 
a noticeable change has not happened in the electrical properties of the top sub cell of case (V) in comparison 
with case (IV). However, due to the absorption enhancement in the NBG perovskite layer, Jsc and PCE parameters 
are increased 0.15 mA/cm2 and 0.1% , respectively. In case (VI), changes are observed in the electrical parameters 
of the both sub cells relative to case (IV). Because the absorption enhancement is occurred in MAGeI3 layer, Jsc 
and PCE values are increased 1.42% and 1.36% in the top sub cell, respectively. Jsc and PCE parameters of the bot-
tom sub cell are calculated 20.99 mA/cm2 and 14.70% , respectively. The reduction of these parameters compared 
with values in case (IV) is related to increasing reflection losses from above the top sub cell. By comparison the 
electrical properties of cases (V) with case (VII), as expected, Jsc and PCE parameters are remained almost intact 
in the top sub cell. In the bottom sub cell, Jsc = 23.95 mA/cm2 and PCE = 16.73% are obtained. The improve-
ment in the values of these parameters is due to absorption enhancement in the NBG perovskite layer. In case 
(VIII), Jsc = 8.63 mA/cm2 and PCE = 13.50% in the top sub cell and Jsc = 23.83 mA/cm2 and PCE = 16.64% 
in the bottom sub cell are achieved. Due to the absorption enhancement of the WBG perovskite layer relative 
to case (VII), Jsc and PCE of the top sub cell are increased. In the bottom sub cell, these parameters are reduced 
because the reflection losses happen in above the top sub cell at several wavelengths.

The PCE parameter of the top and bottom sub cells and 4T structure for all proposed cases is presented in 
Fig. 11b. The efficiency of the 4T structure is introduced as total PCE. The total PCE value of case (II) relative to 
reference case is increased 0.28% due to efficiency enhancement of the bottom sub cell. In case (III), this param-
eter is reached to 27.22% . It is because the PCE value of the top and bottom sub cells is boosted 1.17% and 0.8% , 
respectively. By comparing case (IV) with case (III), 0.89% improvement in the total PCE is observed. The main 
reason is the PCE enhancement of the bottom sub cell. The total PCE of cases (V) and (VI) is increased to 28.24% 
and 28.16% in comparison to case (IV), respectively. It is due to the increase in the summation of PCE value of the 
top and bottom sub cells. In case (VII), the increased efficiency results in a 1.82% total PCE boost, mainly because 
of efficiency enhancement of the bottom sub cell. By increasing the sum of the PCE values of two sub cells, the 
total PCE is 30.14% in case (VIII), which is about 0.1% higher than the case (VII). Finally, case (VIII) has the 
highest increase in total PCE when compared to the reference structure and is chosen as the best proposed case.

Discussion
In this paper, a 3D coupled optical-electrical modeling was used to simulate single junction MAGeI3 - and 
MASnI3-based PSCs with plastic substrates. Then, as a reference structure, a mechanically stacked 4T device of 
flexible APTSC was introduced and studied. The optical and electrical properties of two single junction PSCs 
and reference structure have been investigated and compared with each other in “Results”. The total PCE value of 
reference structure has been calculated 24.65% . Cases (II)–(VIII) were then proposed to improve this structure’s 
PCE. First, The optical properties of all proposed cases have been studied and analyzed in the “The removal of the 
buffer layer”, “Addition of antireflection layer”, and “Periodic nano-texture structures to improve light absorption”. 
Finally, the electrical properties of the top and bottom sub cells, as well as their tandem structure, have been 
discussed in the “Electrical properties of all proposed cases”. By presenting case (II), the total PCE was increased 

Table 1.   The output electrical parameters of the top and bottom sub cells for all proposed APTSCs.

Parameter (top/bottom sub cell) Jsc (mA/cm2) Voc (V) FF PCE(%)

case (I) 7.68/18.12

1.70/0.93 0.92/0.75

12.00/12.65

Case (II) 7.51/18.92 11.73/13.20

Case (III) 8.44/20.03 13.22/14.00

Case (IV) 8.48/21.16 13.28/14.83

Case (V) 8.50/21.31 13.31/14.93

Case (VI) 8.60/20.99 13.46/14.70

Case (VII) 8.51/23.95 13.33/16.73

Case (VIII) 8.63/23.83 13.50/16.64
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by 1.14% when compared to the reference structure using the approach of reducing parasitic absorption by delet-
ing the buffer layer. Cases (III) and (IV) have been proposed based on the use of ARLs above the top layer of two 
sub cells. The thicknesses of ARL1 and ARL2 were optimized to be 100 and 60 nm, respectively. The results show 
that the total reflection loss was lowered by closing the refractive indices of the top layers of each sub cell with 
the external ambience of the PSC (air layer) using optimized thickness ARLs. As a result, when comparing cases 
(II) and (IV), the total PCE value has increased by 12.76% due to absorption enhancement. In cases (V)–(VIII), 
the strategy of using nano-texture structures was used to improve absorption property and total PCE parameter. 
The optical and electrical properties of these proposed cases have been investigated and compared to case (IV). 
According to the simulation results, case (VIII) is the best structure based on the total PCE improvement due to 
absorption enhancement, which reached 30.14%.

Methods
The proposed 4T APTSC consists of two sub cells where both absorber layers are sandwiched between the ETM 
and the HTM. In the top and bottom sub cells, the TCO layer is used as the front contact. A metal oxide as a buffer 
layer and a TCO as a transparent back-contact are chosen for the semi-transparent top sub cell. Ag is chosen as 
the back reflector contact of the bottom sub cell. The materials are assumed to be isotropic.

The proposed TSC is studied using 3D FEM in two steps: electrical and optical parts to obtain the basic 
characteristics of each sub cell and the performance of the tandem device. FEM is a computational method 
for estimating partial differential equation boundary value problems. It’s a type of mathematical analysis that’s 
extensively utilized to solve a wide range of engineering problems. Using the mesh generation process, the entire 
domain of the structure is subdivided into small pieces called “elements”. The equations are solved numerically for 
each element. A user-controlled mesh is supplied for the proposed cases. The maximum element size is 65 nm, 
while the minimum element size is 2 nm. The maximum element growth rate with a curvature factor of 0.3 and 
the resolution of narrow regions are set to 1.35 and 0.85, respectively. All domains have a swept type mesh using 
the quadrilateral face meshing method. As a result, our simulation included 5904 elements.

Optical simulation process.  In this model, we used the Helmholtz equation to compute the electric field 
distribution in each layer, which is expressed as follows:

where E , k0 , n(�) and k(�) are the electric field distribution, the vacuum wave-vector of the incident light, the 
refractive index and the extinction coefficient as a function of the wavelength ( � ), respectively. n and k in terms 
of � for all layers were taken from previous literatures25,29,30,34–40,49,50. We employed this equation for the wave-
length range of 300–1050 nm. The incident light power of the optical wave ( Pin ) was applied to the AM1.5 G 
standard of the spectral irradiance, perpendicularly to the cross section of the device. For boundary conditions, 
‘perfect electric conductor’ (PEC) was implemented for the back reflector (Ag) of the bottom sub cell to apply 
the reflected photons from its surface, and the Floquet ‘periodic boundary condition’ (PBC) was considered for 
all layer sides along the x and y directions except the Ag back-contact.

After computing a map of E in the whole domain of each sub cell by using Eq. (1), the absorbed power density 
for each wavelength could be obtained from the divergence of the Poynting vector as:

where ε′′ is the imaginary part of the dielectric permittivity and ω is the angular frequency of the light impinging 
on the device. By normalization of UABS by Pin , the absorption density ( pABS ) can be obtained. The light absorp-
tion of each absorber layer as a function of the � is defined as:

Using the S parameters, total reflection as a function of the � is calculated33.
By normalization of UABS by the energy per photon ( �ω ) where � = h

2π
 (h is the plank’s constant), UABS can 

be converted to the optical generation rate:

Assuming that each absorbed photon generates one electron–hole pair, the total photogeneration rate will 
be given as follows:

Electrical simulation process.  This part is substantially based on the Poisson, the continuity and the 
drift-diffusion equations for evaluating current density–voltage characteristics. These equations are defined as:

(1)∇ × (∇ × E)− k20(n(�)− ik(�))2E = 0

(2)UABS(x, y, z, �) =
1

2
ωε

′′

E2(x, y, z, �)

(3)A(�) =

∫
pABS(x, y, z, �) dV

(4)gopt(x, y, z, �) =
π

h
ε
′′

E2(x, y, z, �)

(5)Gtot(x, y, z) =

∫ 1050

300

gopt(x, y, z, �) d�

(6)∇ · (ε0 · εr∇φ) = −ρ; ρ = q(n− p+ NA − ND)
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where φ , q, ε0 and εr are the electrostatic potential, the electron charge, the vacuum permittivity and the relative 
permittivity, respectively. n and p are electron and hole concentrations, respectively, NA and ND are acceptor and 
donor densities, respectively, µi and Ji are carrier mobilities and carrier current densities, respectively.

The functions Gi and Ui are the photogeneration and the recombination rates of electron and hole per unit 
volume, respectively. We considered Gn = Gp = Gtot . Where it is extracted from the optical part. Surface recom-
bination, which is caused by defects in the layer interfaces, is not taken into account. Recombination mechanism 
in each layer, however, is considered. Shockley–Read–Hall (SRH) recombination is the dominant recombina-
tion mechanism in PSCs, according to previous studies51,52. Therefore, the model includes SRH recombination, 
which is defined as53:

The electron and hole densities when the quasi-Fermi level matches the trapped energy are n1 and p1 , respec-
tively, and the electron and hole lifetimes are τn and τp , respectively. For the front contact of two sub cells and for 
the back reflector layer, ideal ohmic and Schottky contact conditions are applied with the surface recombination 
velocities ( Si , i = n, p ) of carriers 107 cm/s.

All the numerical parameters used in the electrical model are indicated in Table 233,54–56. Here, χ and Eg are 
electron affinity and band gap, and NC and NV are effective density of states of conduction and valence bands, 
respectively.

The PCE of the solar cell is calculated as follows:

where Jsc , Voc and FF are the short-circuit current density, the open-circuit voltage and fill factor, respectively. 
The fill factor can be expressed as:

where Vmp and Jmp are the voltage and current density at the maximal power point that are obtained from the 
J–V characteristic.
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