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Abstract: 3,6-Diethynyl-9,10-diethoxyphenanthrene (4) was synthesized from phenanthrene and
employed in the synthesis of the binuclear gold(I) alkynyl complexes (R3P)Au(C≡C–3-[C14H6-9,
10-diethoxy]-6–C≡C)Au(PR3) (R = Ph (5a), Cy (5b)). The diyne 4 and complexes 5a and 5b were
characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. UV-Vis spectroscopy
studies of the metal complexes and precursor diyne show strong π→ π* transitions in the near UV
region that red shift by ca. 50 nm upon coordination at the gold centers. The emission spectrum of 4
shows an intense fluorescence band centered at 420 nm which red shifts, slightly upon coordination
of 4 to gold. Binding studies of 4, 5a, and 5b against calf thymus DNA were carried out, revealing
that 4, 5a, and 5b have ≥40% stronger binding affinities than the commonly used intercalating agent
ethidium bromide. The molecular docking scores of 4, 5a, and 5b with B-DNA suggest a similar trend
in behavior to that observed in the DNA-binding study. Unlike the ligand 4, promising anticancer
properties for 5a and 5b were observed against several cell lines; the DNA binding capability of
the precursor alkyne was maintained, and its anticancer efficacy enhanced by the gold centers.
Such phenanthrenyl complexes could be promising candidates in certain biological applications
because the two components (phenanthrenyl bridge and metal centers) can be altered independently
to improve the targeting of the complex, as well as the biological and physicochemical properties.

Keywords: gold(I) alkynyls; phenanthrene; DNA-binding; anticancer activity

1. Introduction

Pioneering studies in supramolecular chemistry by Cram, Lehn, and Pedersen directed attention
to “host-guest” systems [1–5]. One particularly interesting application of this concept is the design of
new drugs displaying interactions (covalent or noncovalent) with host biological systems such as DNA,
enzymes, and proteins [6]. Non-classical (noncovalent) DNA binding modes such as intercalation
or groove-binding play a vital role in the pursuit of more efficient and more target-specific drugs
displaying fewer side effects [7]. In the field of bioinorganic chemistry, the DNA-binding of platinum [8],
ruthenium [9,10], copper [11,12], palladium [13], and gold [14] complexes has been extensively studied
due to the array of readily available ligands for coordination, together with the different geometries,
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coordination numbers, redox potentials, kinetic and thermodynamic characteristics of the resultant
complexes. Ligands such as the π-delocalized planar polypyridyls (e.g., diphenylphenazine) have
afforded moderate-to-strong DNA-intercalating complexes [15,16]. Modified acetylacetonato [17],
amine [18,19], arene [20–22], and Schiff base [23,24] ligands have also been used in DNA-binding
complex construction. In the pursuit of efficient DNA binders, one well-known strategy is to use
a polycyclic aromatic fragment in the ligand that has been designed to form π–π interactions with
specific units in the DNA [25,26]. One example employing this approach is the rhodium complex
[Rh(trien-Me2)(phenanthrene-9,10-diimine)]3+ (trien-Me2 = 2R,9R-diamino-4,7-diazadecane) which
was specifically designed to intercalate into the 5′-TGCA-3′ sequences in the major groove of DNA;
in addition to the water-mediated hydrogen bonds of the trien-Me2 ligand, the phenanthrene contributes
to the DNA binding through π-stacking forces [27]. More recently, attention has been paid to the
use of these complexes as chemotherapeutic agents for cancer [28], DNA conformation probes [29],
and DNA cleavage agents [30]. Cisplatin is one of the most important chemotherapeutic agents for the
treatment of certain types of cancers. Its mechanism of action is believed to involve interference with
DNA replication, interference with transcription, and modification of chromatin [31–33]. However, in
addition to its solubility problems, the non-target-specific action of the drug and its inactivation in
biological environments by reducing agents such as metallothioneins, cisplatin causes many side-effects
which limit the doses that can be employed [32,34,35]. As a result of these well-documented problems,
extensive research is ongoing to develop new classes of metal complexes that can interfere with
cancer cell machinery through interactions with DNA, and this has resulted in an increased interest in
developing gold-based anticancer drugs. In this context, gold(I) complexes of the type Au(C≡CR’)(PR3)
have been reported to exhibit very strong inhibition of the enzyme thioredoxin reductase (TrxR)
and show high antiproliferative activity in tumor cells [36–38]. The R and R’ groups in the gold(I)
complexes play a significant role in the lipophilicity, stability, and binding affinity and, hence, their
mechanism of action [39,40]. Gold(I) alkynyls with P(NMe2)3 ligands have been reported to have
a higher anticancer activity against Caco-2 cells than cisplatin; the complexes feature a favorable
combination of hydrophilicity and lipophilicity and good stability under physiological conditions [41].
A range of gold phosphine complexes with alkynyl ligands end-functionalized with flavone-derived
moieties have shown remarkable cytotoxicity. They function through two mechanisms, triggering
apoptotic cell death via the intrinsic pathway and altering cell cycle progression [42].

In the current work, a phenanthrene-based ligand functionalized with terminal alkynyl groups
has been constructed, with the goal of obtaining strongly intercalating DNA binders facilitated by
the phenanthrene polycyclic aromatic system. In principal, the terminal alkynes can be σ-bonded to
a range of metal centers to obtain the corresponding alkynyl complexes; gold(I) phosphine centers were
chosen in the present work to generate complexes with potential anticancer activities. The binding
constants of the new compounds and complexes were compared to that of the structurally closely
related intercalating agent ethidium bromide, and the cytotoxicity of the compounds were assessed
against several cancer cell lines and compared to that of cisplatin.

2. Results and Discussion

2.1. Synthesis and Characterization

The present studies target phenanthrenyl-based alkynyls and their binuclear gold alkynyl
complexes. 3,6-Diethynyl-9,10-diethoxyphenanthrene was identified as the key building block.
To synthesize this, phenanthrene was subjected to oxidation by a mixture of potassium dichromate
and sulfuric acid, leading to the formation of phenanthrene-9,10-dione in a good yield. Then the
dione was reduced and, subsequently, treated with ethyl bromide under basic conditions, affording
9,10-diethoxyphenanthrene (1). Treating 1 with excess bromine while following the reaction
with TLC gave 3,6-dibromo-9,10-diethoxyphenanthrene (2) in moderate yields. It is important
to highlight that prolonged stirring of the mixture leads to the cleavage of the C-O bond and
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the formation of 3,6-dibromophenanthrene-9,10-dione (Figures S28 and S29). Compound 2 was
coupled with two equivalents of ethynyltrimethylsilane, using PdCl2(PPh3)2 and CuI as catalysts
in triethylamine, to give 3. The silyl-containing compound 3 was desilylated on treatment with
K2CO3, to produce 3,6-diethynyl-9,10-diethoxyphenanthrene (4) (Scheme 1). Rather than proceed
via bromination, iodination of 1 was tried using several procedures; however, most of these
attempts produced 3,6-diiodophenanthrenedione as the main product, together with many inseparable
side-products [43–45]. The organic precursors were characterized by a combination of elemental
analyses, mass spectrometry and IR, and 1H and 13C–NMR spectroscopies. Finally, the gold(I)
alkynyl complexes 5a and 5b were obtained successfully by reacting two molar equivalents of the
metal-containing precursor with ligand 4, using modified literature procedures (Scheme 2) [46].
The potassium tert-butoxide helps to remove chloride from the gold center, precipitating KCl, and
freeing a coordination site for the alkynyl ligand. The formation of the gold alkynyl complexes
is a straightforward reaction due to the preference of gold(I) complexes to form linear or trigonal
planar complexes (copper(I) and silver(I) have more complicated and less predictable chemistry with
acetylenes) [47]. The reaction can be followed easily by 31P–NMR because the PR3 signal (singlet) is
down-field shifted when the chlorido ligand is substituted by the alkynyl ligand [48]. The 31P–NMR
spectrum of the gold alkynyl complex 5a shows one singlet around 42 ppm [49], whereas that of
5b shows a singlet around 56 ppm [50]. IR spectra display bands between 2090 and 2100 cm−1

corresponding to the stretching frequencies of the gold-bound C≡C unit. High resolution mass spectra
show the molecular ion of the complexes. Other routine analytical techniques were used to verify the
identities of the metal complexes, and the resultant data are listed in the experimental section.
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2.2. Absorption and Emission Spectra

The phenanthrene polycyclic aromatic system is known for its intense absorption bands in the
near UV region, as well as its characteristic fluorescence. In this work, the incorporation of gold alkynyl
complexes in such a system affords the opportunity to assess the impact of this modification on the
photophysical properties. Absorption maxima and intensities obtained from the electronic spectra of
4 and the gold complexes 5a and 5b are overlaid in Figure 1. The electronic absorption spectrum of
the free ligand 4 displays three bands at 316 nm, 323 nm, and 338 nm. The introduction of Au(PR3)
fragments at the ligand 4 affords the binuclear gold(I) complexes 5a and 5b and leads to a weak red
shift in the three absorption bands of the ligand (327 nm, 342 nm, and 362 nm) (Figure 1). The red shifts
observed on proceeding to the metal complexes are consistent with a decrease in the energy gap
between the HOMO and the LUMO. The free ligand 4 shows an intense broad emission in the near
ultraviolet-violet domain upon excitation at 320 nm. Introducing Au(PPh3) or Au(PCy3) fragments to
4 on proceeding to 5a and 5b causes a red shift in the emission bands with almost the same intensities
to those of the ligand (both measured at the same concentration) upon excitation at 350 nm (Figure 2).
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2.3. DNA-Binding Studies

The DNA-binding studies were performed by titrating the compounds with DNA and monitoring
the changes spectroscopically. Ethidium bromide was used as a benchmark; it is a fluorophore that
binds to DNA by intercalation, and therefore it is used as a fluorescent tag in molecular biology.
The binding affinities of the ligand, two gold complexes, and ethidium bromide are summarized
in Table 1.

Table 1. DNA binding affinities toward ct-DNA determined via different methods.

Compound Kb (DNA Binding Constant)

Ethidium Bromide 5.00 × 105

4 7.40 × 105

5a 8.71 × 105

5b 7.00 × 105

The Kb values of the compounds show that 3,6-diethynyl-9,10-diethoxyphenanthrene (4) has
better binding affinity toward ct-DNA than ethidium bromide. Unfavorable steric interactions of the
phenyl group of ethidium bromide probably limit its intercalation in DNA, although the amino groups
can also contribute via acid–base interactions or hydrogen bonding. In our system, the two flexible
ethoxy groups reduce the possibility of steric hindrance as compared with the phenyl group in ethidium
bromide, while the acetylene groups can participate in donor–acceptor interactions. Replacing the
acidic hydrogen of 4 with gold(I) phosphine metal centers leads to a slight enhancement in the binding
constant in the case of the complex with the triphenylphosphine co-ligand, while a slight decrease is
observed upon the introduction of the tricyclohexylphosphine co-ligand. PPh3 has a smaller cone angle
than PCy3, leading to better interactions of the phenanthrenyl with the ct-DNA (Table 1). The emission
behaviors of 4, 5a, and 5b were monitored as they were titrated with a buffer solution of DNA; the three
compounds exhibited a notable enhancement in their emission on increasing the concentration of the
ct-DNA, which suggests that these compounds are successfully intercalating, isolating, and rigidifying
them, and thereby decreasing deactivation pathways (Figure 3).
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2.4. Molecular Docking Studies

Ethidium bromide, the phenanthrene-based ligand 4, and gold complexes 5a and 5b were
computationally docked with B-DNA to rationalize the trends from the binding constant values.
The data obtained are summarized in Table 2, revealing that all compounds, in this study, target the
same location on the B-DNA. In general, the docking scores and pi–pi interactions increased following
the order: 5b, ethidium bromide, 4, and then 5a. According to the docking studies, the ethidium
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bromide establishes pi–pi interactions with deoxyadenosine (DA) and thymidine (DT) nucleotides on
strand B (Figure 4 and Table 2). In the case of 4, it is able to establish interactions with two strands of
the ct-DNA, i.e., donor–acceptor interactions are observed on the acetylene with deoxyadenosine (DA)
nucleotides, in addition to pi–pi interactions with several deoxyadenosine (DA) and thymidine (DT)
nucleotides (Figure 4 and Table 2). In contrast, the gold complexes establish pi–pi interactions with DA
and DT on strand B in the major groove (Figure 4 and Table 2). The docking scores follow a similar
trend to the Kb values. Examining the π-π distances (between the interacting B-DNA on one side and
ethidium bromide, 4, 5a, and 5b on the other side), we note that complex 5a has the shortest distance

(3.09 Ǻ), which supports the experimental binding affinity values.

Table 2. Docking study results for 4, 5a, and 5b.

Compound Docking Score Ligand Receptor Interaction Distance

Ethidium
Bromide

−4.6372
Phenanthridine 5-ring DA 18 (B) pi–pi 3.80
Phenanthridine 6-ring DT 19 (B) pi–pi 3.83

4 −5.1630

C≡C OP2 DA 17 (B) H-donor 3.11
Phenanthrene 6-ring DA 17 (B) pi–pi 3.87
Phenanthrene 5-ring DA 17 (B) pi–pi 3.56
Phenanthrene 6-ring DT 19 (B) pi–pi 3.36
Phenanthrene 6-ring DA 18 (B) pi–pi 3.21
Phenanthrene 6-ring DA 6 (A) pi–pi 3.95

5a −5.4070

Phenanthrene 5-ring DA 17 (B) pi–pi 3.28
Phenanthrene 5-ring DA 18 (B) pi–pi 3.77
Phenanthrene 5-ring DA 17 (B) pi–p 3.65
Phenanthrene 6-ring DA 18 (B) pi–pi 3.63
Phenanthrene 6-ring DA 17 (B) pi–pi 3.09
Phenanthrene 5-ring DA 17 (B) pi–pi 3.75
Phenanthrene 6-ring DT 19 (B) pi–pi 3.99

5b −4.1090
Phenanthrene 5-ring DA 18 (B) pi–pi 3.41
Phenanthrene 6-ring DT 19 (B) pi–pi 3.50
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−5.1630 
 

C≡C OP2  DA   17   (B) H-donor 3.11 
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5a −5.4070 
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Figure 4. Illustration of the ct-DNA interactions of ethidium bromide, 4, 5a, and 5b and their
targeted nucleotides.
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2.5. Anticancer Studies

Compounds 3, 4, and gold complexes 5a and 5b were examined against four cancer cell lines to
evaluate their anticancer properties, the results being listed in Table 3. Initial inspection of the results
revealed that the organic compounds have no significant anticancer activity while the gold complexes
have remarkable cytotoxicity against the four cell lines. The cytotoxicity of cisplatin against MCF-7 and
PC-3 cell lines has been used to benchmark the anticancer activity of the gold complexes. We conclude
that the gold complexes have comparable or better activities. Several binuclear gold(I) alkynyl
compounds have been reported recently with good antitumor activities [36,51], but the drawback to
their applications in biological assays is their solubility problems (high lipophilic character). In this
regard, the phenanthrene unit in the present system can be altered at Positions 9 and 10, allowing
greater control of the lipophilic character of the complexes, and thereby potentially circumventing the
solubility concerns.

Table 3. Anticancer activities of selected compounds in DMSO solutions.

Complex
IC50 ± SD (µM)

MCF-7 HEPG-2 PC-3 MOLT-4

3 193.37 ± 0.20 164.56 ± 0.20 149.28 ± 0.22 177.87 ± 0.16
4 283.48 ± 0.13 245.78 ± 0.15 227.63 ± 0.06 269.02 ± 0.10

5a 22.58 ± 0.03 26.01 ± 0.03 27.46 ± 0.01 25.91 ± 0.03
5b 18.63 ± 0.03 27.94 ± 0.03 27.31 ± 0.01 20.28 ± 0.03

Cisplatin 16.00 ± 0.06 - 39.99 ± 0.05 -

3. Materials and Methods

3.1. Materials

All reactions were carried out using standard Schlenk techniques, under a nitrogen atmosphere.
NEt3 was distilled over KOH according to standard procedures; other solvents were obtained from
Sigma-Aldrich (St. Louis, MO, USA) and were used as received. The term “petrol” refers to a fraction of
petroleum ether with a boiling range of 40–60 ◦C. Experiments containing moisture sensitive compounds
were performed using anhydrous solvents and oven-dried (120 ◦C) glassware. Chromatography was
carried out on silica gel 60 particle sizes 0.063 to 0.200 mm (70 to 230 mesh ASTM) or basic ungraded
alumina. Copper iodide, trans-bis(triphenylphosphine)palladium(II) dichloride, p-bromoiodobenzene,
tetra-n-butylammonium bromide (TBABr), potassium tert-butoxide, trimethylsilylacetylene (TMSA),
bromine, and bromoethane were purchased commercially and used as received. The following
compounds were prepared according to literature procedures: phenanthrene-9,10-dione [52],
AuCl(PPh3) [53], and AuCl(PCy3) [54].

3.2. Methods and Instrumentation

High-resolution electrospray ionization (ESI) mass spectra were recorded at the Australian National
University, using a Bruker Apex 4.7 FTICR-MS instrument (Billerica, MA, USA); all mass spectrometry
peaks are reported as m/z (assignment). Elemental analyses were obtained at King Abdulaziz University.
Infrared (IR) spectra were recorded using solid samples on a PerkinElmer Spectrum 100 instrument
(Waltham, MA, USA); peaks are reported in cm−1. UV-Vis spectra were recorded in 1 cm quartz cells
on a MultiSpec-1501 UV-VIS spectrophotometer (Kyoto, Japan) as chloroform solutions; bands are
reported in the form wavelength (nm) (extinction coefficient, 104 M−1 cm−1). UV-Vis emission spectra
were recorded for nitrogen-purged chloroform solutions in 1 cm quartz cells using a PerkinElmer
LS-55 fluorescence spectrometer; bands are reported in the form wavelength (nm). 1H (850 MHz),
31P (344 MHz), and 13C (214 MHz) NMR spectra were obtained from CDCl3 solutions using a Bruker
Avance 850 MHz spectrometer. The spectra are referenced to residual chloroform (7.26, 1H), CDCl3
(77.0, 13C), or external H3PO4 (0.0 ppm, 31P); atom labeling follows the numbering in Figure 5.
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3.3. Synthesis and Characterization

Synthesis of 9,10-diethoxyphenanthrene (1). Tetra(n-butyl)ammonium bromide (1.032 g, 3.20 mmol)
and Na2S2O4 (6.055 g, 31.81 mmol) were added to a solution of phenanthrene-9,10-dione (2.00 g,
9.60 mmol) in THF (60 mL) and H2O (60 mL). After 5 min, KOH (3.563 g, 73.63 mmol) was added to
the reaction mixture followed by EtBr (6.388 g, 58.63 mmol). The color of the solution changed to
red. After completing the addition, the resulting mixture was stirred at reflux for 5 h. The reaction
mixture was cooled to room temperature and the organic phase was extracted with diethyl ether
(75 mL). The organic layer was dried over MgSO4 and the solvent was removed under reduced pressure.
The crude product was purified by column chromatography on silica, eluting with CH2Cl2/petrol (1:1)
to afford 1 (1.485 g, 75%) as a yellow oil. HR ESI MS [C18H18O2]: Calcd. 266.1307, found 266.1302. IR
(liquid): 1323, 1107 ν(C-O). UV-Vis (CHCl3): 304 [25.31], 341 [5.75], and 358 [4.41]. 1H–NMR (CDCl3):
δ 1.51 (t, 3JHH = 8 Hz) [6H, 2 × CH3], 4.31 (q, 3JHH = 8 Hz) [4H, 2 × OCH2], 7.60 (m) [4H, H4 and
H5], 8.26 (d, 3JHH = 8 Hz) [2H, H6], and 8.64 (d, 3JHH = 8 Hz) [2H, H3]. 13C–NMR (CDCl3): 15.94
(2C, 2 × CH3), 69.04 (2C, 2 ×OCH2), 122.37 (2C, C5), 125.67 (2C, C6), 126.72 (2C, C3), 128.63 (4C, C2-C7),
129.75 (2C, C4), and 143.08 (2C, C1).

Synthesis of 3,6-dibromo-9,10-diethoxyphenanthrene (2). A mixture of bromine (2.315 g, 14.28 mmol)
and CH2Cl2 (70 mL) was added dropwise to a solution of 1 (1.927 g, 7.14 mmol) in CH2Cl2 (30 mL)
over 1 h at room temperature, and the resultant mixture was stirred for a further 20 min. The reaction
mixture was washed with a solution of Na2SO3 (30 mL, 1.0 M), and the organic phase was collected
and dried over MgSO4. The solvent was reduced in volume under reduced pressure and the crude
product was purified by column chromatography on silica, eluting with CH2Cl2/petrol (1:1) to afford
2 (1.97 g, 64%) as a yellow powder. HR ESI MS [C18H16

79Br2O2]: Calcd. 421.9517, found 421.9518.
HR ESI MS [C18H16

79Br81BrO2]: Calcd. 423.9497, found 423.9498. HR ESI MS [C18H16
81Br2O2]: Calcd.

425.9476, found 425.9478. Elemental analysis for C18H16Br2O2, Calcd (found): C, 50.97 (50.52); H, 3.80
(3.48). IR (solid): 1614 cm−1 ν(C=C), 1345 ν(C-O), and 813 ν(C-Br). UV-Vis (CHCl3): 304 [1.26], 316
[1.29], and 354 [1.69]. 1H–NMR (CDCl3): δ 1.49 (t, 3JHH = 7 Hz) [6H, 2 × CH3], 4.28 (q, 3JHH = 7 Hz)
[4H, 2 × OCH2], 7.71 (dd, 3JHH = 9 Hz, 4JHH = 2 Hz) [2H, H4], 8.12 (d, 3JHH = 9 Hz) [2H, H6], and
8.66 (d, 4JHH = 2 Hz) [2H, H3]. 13C–NMR (CDCl3): 15.87 (2C, 2 × CH3), 69.16 (2C, 2 × OCH2), 120.37
(2C, C4), 124.30 (2C, C6), 125.39 (2C, C3), 127.42, 128.86 (4C, C2-C7), 130.50 (2C, C5), and 142.89 (2C, C1).

Synthesis of 3,6-bis(trimethylsilylethynyl)-9,10-diethoxyphenanthrene (3). Trimethylsilylacetylene
(0.174 g, 1.77 mmol), trans-PdCl2(PPh3)2 (0.041 g, 0.05 mmol) and CuI (0.005 g, 0.02 mmol) were added
to a solution of compound 2 (0.376 g, 0.88 mmol) in NEt3 (15 mL) under a N2 atmosphere, and the
mixture was stirred at 50 ◦C overnight. The solvent was reduced in volume under reduced pressure and
the crude product was purified by column chromatography on silica, eluting with CH2Cl2/petrol (1:1)
to afford 3 (0.391 g, 96%) as a yellow solid. HR ESI MS [C28H34O2Si2]: Calcd. 458.2097, found 458.2098.
Elemental analysis for C28H34O2Si2, Calcd (found): C, 73.31 (73.04) and H, 7.47 (7.11). IR (solid):
2157 ν(C≡C). UV-Vis (CHCl3): 319 [1.20], 332 [1.84], and 348 [1.69]. 1H–NMR (CDCl3): δ 0.31 (s, 9H,
SiMe3), 1.52 (t, 3JHH = 7 Hz) [6H, 2 × CH3], 4.30 (q, 3JHH = 7 Hz) [4H, 2 × OCH2], 7.66 (dd, 3JHH = 9 Hz,
4JHH = 2 Hz) [2H, H4], 8.15 (d, 3JHH = 9 Hz) [2H, H6], and 8.73 (d, 4JHH = 2 Hz) [2H, H3]. 13C–NMR
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(CDCl3): 0.00 (3C, SiMe3), 15.84 (2C, 2 × CH3), 69.09 (2C, 2 × OCH2), 94.83 (2C, C9), 105.51 (2C, C8),
120.44 (2C, C5), 122.31 (2C, C4), 126.61 (2C, C6), 127.61 (2C, C3), 129.60 (2C, C7), 129.98 (2C, C2), and
143.62 (2C, C1).

Synthesis of 3,6-diethynyl-9,10-diethoxyphenanthrene (4). Compound 3 (2.649 g, 5.77 mmol) and
K2CO3 (4.791 g, 34.67 mmol) were stirred in a mixture of methanol (20 mL) and dichloromethane
(20 mL) under N2 at room temperature for 6 h. The solvent was reduced in volume under reduced
pressure and the crude product was purified by column chromatography on silica, eluting with
CH2Cl2/petrol (1:1) to afford 4 (1.338 g, 92%) as a yellow solid. HR ESI MS [C22H18O2]: Calcd. 314.1307,
found 314.1308. Elemental analysis for C22H18O2, Calcd (found): C, 84.05 (83.96) and H, 5.77 (5.41).
IR (solid): 3292 ν(≡C-H) and 2154 ν(C≡C). UV-Vis (CHCl3): sh 316 [1.67], 323 [2.17], and 338 [1.88].
1H–NMR (CDCl3): δ 1.48 (t, 3JHH = 15 Hz) [6H, 2 × CH3], 3.19 (s) [2H, H9], 4.30 (q, 3JHH = 15 Hz)
[4H, 2 × OCH2], 7.69 (dd, 3JHH = 18 Hz, 4JHH = 3 Hz) [2H, H4], 8.19 (d, 3JHH = 18 Hz) [2H, H6], and
8.74 (d, 4JHH = 3 Hz) [2H, H3]. 13C–NMR (CDCl3): 15.86 (2C, 2 × CH3), 69.18 (2C, 2 × OCH2), 77.74
(2C, C8), 84.12 (2C, C9), 119.57 (2C, C5), 122.59 (2C, C4), 126.92 (2C, C6), 127.64 (2C, C3), 129.98 (2C, C7),
130.09 (2C, C2), and 143.73 (2C, C1).

Synthesis of (Ph3P)Au(C≡C–2-[C14H6-9,10-diethoxy]-7–C≡C)Au(PPh3) (5a). AuCl(PPh3) (0.098 g,
0.19 mmol) and ButOK (0.085 g, 0.19 mmol) were added to a solution of compound 4 (0.031 g,
0.099 mmol) in methanol (15 mL) under a N2 atmosphere and the mixture was stirred overnight.
The solvent was reduced in volume under reduced pressure and the crude product was purified
by column chromatography on silica, eluting with CH2Cl2/petrol (1:1) to afford 5a (0.099 g, 82%) as
a yellow powder. HR ESI MS [C58H47

197Au2O2P2]: Calcd. 1231.2382, found 1231.2382. Elemental
analysis for C58H47Au2O2P2, Calcd (found): C, 56.60 (56.27) and H, 3.77 (3.60). IR (solid): 2096 ν(C≡C).
UV-Vis (CHCl3): sh 328 [2.04], 343 [3.04], and 363 [2.79]. 1H–NMR (CDCl3): δ 1.48 (t, 3JHH = 8 Hz)
[6H, 2 × CH3], 4.26 (q, 3JHH = 7 Hz) [4H, 2×OCH2], 7.62-7.46 (m) [30H, 2× PPh3], 7.71 (dd, 3JHH = 8 Hz,
4JHH = 1 Hz) [2H, H4], 8.08 (d, 3JHH = 8 Hz) [2H, H6], and 8.78 (d, 4JHH = 1 Hz) [2H, H3]. 13C–NMR
(CDCl3): 15.95 (2C, 2 × CH3), 69.02 (2C, 2 × OCH2), 128.01 (2C, C8), 129.13, 129.18, 129.22, 129.28
(36C, 2 × PPh3), 129.77 (2C, C5) 130.04 (2C, C4), 131.52 (2C, C9) 134.14, 134.21 (4C, C3-C6), 134.38, 134.44
(4C, C2-C7), and 143.29 (2C, C1). 31P–NMR: δ 42.35 (s).

Synthesis of (Cy3P)Au(C≡C–2-[C14H6-9,10-diethoxy]-7–C≡C)Au(PCy3) (5b). AuCl(PCy3) (0.145 g,
0.283 mmol) and ButOK (0.091 g, 0.811 mmol) were added to a solution of compound 4 (0.044 g,
0.140 mmol) in methanol (15 mL) under a N2 atmosphere and the mixture was stirred overnight.
Reduction in volume of the solvent afforded a solid residue that was dissolved in CH2Cl2 and
precipitated by adding ether, to afford 5b (0.131 g, 74%) as a yellow powder. HR ESI MS
[C58H83

197Au2O2P2]: Calcd. 1267.5200, found 1267.5192. Elemental analysis for C58H83Au2O2P2,
Calcd (found): C, 54.98 (55.11) and H, 6.52 (6.22). IR (solid): 2100 ν(C≡C). UV-Vis (CHCl3): 327 [1.47],
342 [2.25], and 360 [1.89]. 1H–NMR (CDCl3): δ 1.46 (t, 3JHH = 7 Hz) [6H, 2 × CH3], 1.25–2.10 (m)
[66H, 2 × PCy3], 4.25 (q, 3JHH = 7 Hz) [4H, 2 ×OCH2], 7.68 (dd, 3JHH = 9 Hz, 4JHH = 2 Hz) [2H, H4], 8.05
(d, 3JHH = 9 Hz) [2H, H6], and 8.75 (d, 4JHH = 2 Hz) [2H, H3]. 13C–NMR (CDCl3): 15.94 (2C, 2 × CH3),
25.93, 26.95, 27.00, 27.14, 27.20, 30.72, 30.77, 33.15, 33.28 (36C, 2 × PCy3), 68.69 (2C, 2 × OCH2), 104.36
(2C, C8), 121.66, 122.48, 127.97, 128.19, 130.60 (14C, C2, C3, C4, C5, C6, C7), 143.00 (2C, C1), and C9 is
not observed. 31P–NMR: δ 56.31 (s).

3.4. DNA Binding Studies

3.4.1. Determination of the DNA Binding Constant using UV-Vis Absorption

The concentration of the ct-DNA stock solution in distilled water was determined from the
reported molar absorptivity at 260 nm (6600 M−1 cm−1). The ratio of absorbance at 260 to that at
280 nm (1.8) confirmed that the DNA was free from protein impurities [55]. Spectroscopic studies
were conducted by maintaining the concentrations of the compounds at a constant value (20 µM)
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while varying the concentration of ct-DNA (minimum amount of DMSO was employed to maintain
the compounds solubility during the experiment). The spectroscopic responses were tracked after
allowing the solution to incubate for 2 min. A pH value of 7.4 was maintained in all the experiments
using phosphate buffer. From the absorbance values, the Benesi–Hildebrand equation (Equation (1))
was used to evaluate the binding constants (Kb) of the compounds with ct-DNA [56].

[Ao/(A − Ao)] = [εg/(εh-g − εg)] + {[εg/(εh-g − εg)] × [1/(Kb [DNA])} (1)

Ao/A − Ao was plotted against 1/[DNA], and the Kb values were calculated from the ratio of the
intercept to the slope [56] (Ao and A are the absorbance values of the compounds in the absence and
presence of ct-DNA, respectively).

3.4.2. Determining the Mode of Interaction by Fluorescence

Solutions of 4, 5a, and 5b of the same concentration (1.00 × 10−5 M) in the minimum amount of
DMSO in buffer solutions were treated with varying amounts of ct-DNA solution in buffer, and the
emission spectra were monitored [57].

3.5. Molecular Docking Studies

Molecular Operating Environment (MOE) 2008.10 (Chemical Computing Group Inc., Quebec,
Canada, 2008) was used to perform the molecular docking studies. A Gaussian contact surface was
drawn around the binding sites enclosing the van der Waals surface. Docking studies were undertaken
to assess the binding free energy of the complexes inside the DNA. The docking scores were first
acquired utilizing the London dG scoring function in the MOE software, and then were improved using
two unrelated refinement methods. The Grid-Min pose and Force-Field were employed to confirm
that the refined poses of the complexes were geometrically correct. Bond rotations were allowed, and
the best five binding poses were then examined. The docking poses of the ethidium bromide, 4, 5a, 5b
and the co-crystallized structure of the B-DNA were docked (RSCP PDB code: 1BNA). RMSD values
were used to assess the best binding pose.

3.6. Anticancer Activity and Cytotoxcicity

The cells were provided by the Egyptian Holding Company for Biological Products and Vaccines
(VACSERA), Giza, Egypt, and were maintain in a tissue culture unit. The growth of the cells was
undertaken in a RBMI-1640 medium, sourced with 10% heat inactivated FBS, 50 units/mL of penicillin,
and 50 mg/mL of streptomycin, and reserved in a humidified atmosphere containing 5% CO2 [58,59].
The cells were kept as a monolayer culture by serial subculturing. Cell culture reagents were obtained
from Lonza (Basel, Switzerland). The assessment of the anticancer activity of the compounds was
obtained against the MCF-7 cell line (breast cancer), HEPG-2 cell line (liver cancer), PC-3 cell line
(prostate cancer), and MOLT-4 cells (leukemia).

The sulforhodamine B (SRB) was used to determine cytotoxicity using the assay method,
as previously described by Skehan et al. [60]. Collections of cells were subcultured using 0.25%
trypsin-EDTA, and then seeded in 96-well plates at 1000 to 2000 cells/well in a RBMI-1640-supplemented
medium. After 24 h, the cells were incubated for 72 h at five different concentrations of the synthesized
compounds (10−4, 10−5, 10−6, 10−7, 10−8 M) in DMSO. After 72 h treatments, the cells were fixed
with 10% trichloroacetic acid for 1 h at 4 ◦C. Wells were stained for 10 min at room temperature with
0.4% SRB (sulforhodamine B) dissolved in 1% acetic acid. The plates were subjected to air drying
for 24 h, and the dye was solubilized with Tris hydrochloride for 5 min using a shaker at 1600 rpm.
The OD (optical density) of each well was measured spectrophotometrically at 564 nm with an ELISA
microplate reader (ChroMate 4300, Awareness Technology, FL, USA). Calculations of IC50 values were
obtained from a Boltzmann sigmoidal equation for the response as a function of the concentration,
using nonlinear regression fitting models (Graph Pad, Prism Version 5).
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4. Conclusions

In this article, we have described the synthesis of 3,6-diethynyl-9,10-diethoxyphenanthrene from
phenanthrene together with two binuclear gold(I) complexes obtained via metal alkynyl bond-formation
reactions. Spectroscopic studies (absorption and emission) were carried out for the metal complexes
and their acetylene ligand, showing a red shift in the absorption maxima and emission wavelength
of the ligand upon complexation. The calculated Kb values of the compounds showed that the
3,6-diethynyl-9,10-diethoxyphenanthrene (4) has better binding affinity toward ct-DNA than ethidium
bromide. Functionalizing the phenanthrenyl ligand with AuPPh3 enhances the binding constant of
the phenanthrenyl ligand while AuPCy3 slightly diminishes the binding constant, an observation
which can be attributed to the increased steric hindrance associated with the latter. According to the
docking studies, 4 establishes pi–pi interactions with several deoxyadenosine (DA) and thymidine
(DT) nucleotides in the two strands of the ct-DNA, in addition to donor–acceptor interactions of
the acetylene and the deoxyadenosine (DA) nucleotides. In contrast, the gold complexes interact
with nucleotides from one strand of the DNA, forming several pi–pi interactions. The results of the
molecular docking studies show good agreement with the experimental findings of the DNA-binding
study. The anticancer screening of the gold complexes against four cell lines showed remarkable and
promising cytotoxicity as compared with that of cisplatin.

In conclusion, a strongly intercalating phenanthrenyl system has been synthesized which
has the potential to be decorated with diverse metal centers through metal-alkynyl bond
formation. The functionalization of the phenanthrenyl system with the gold centers has introduced
promising anticancer activities while maintaining the DNA binding capabilities. The two components
(phenanthrenyl and metal centers) of our complexes can be altered independently. To improve the
binding (targeting) of the complex, the phenanthrenyl-based ligand can be modified while the anticancer
properties (including the physicochemical properties) can be fine-tuned by modifying the metal centers
and the co-ligands.

Supplementary Materials: The following are available online, Figure S1: HR Mass spectrometry of Compound 1,
Figure S2: IR of Compound 1, Figure S3: H–NMR of Compound 1, Figure S4: CNMR of Compound 1, Figure S5:
HR Mass spectrometry of Compound 2, Figure S6: HR Mass spectrometry of Compound 2, Figure S7: HR Mass
spectrometry of Compound 2, Figure S8: IR of Compound 2, Figure S9: HNMR of Compound 2, Figure S10:
CNMR of Compound 2, Figure S11: HR Mass spectrometry of Compound 3, Figure S12: IR of Compound 3,
Figure S13: HNMR of Compound 3, Figure S14: CNMR of Compound 3, Figure S15: HR Mass spectrometry
of Compound 4, Figure S16: IR of Compound 4, Figure S17: HNMR of Compound 4, Figure S18: CNMR of
Compound 4, Figure S19: HR Mass spectrometry of Compound 5a, Figure S20: IR of Compound 5a, Figure S21:
HNMR of Compound 5a, Figure S22: CNMR of Compound 5a, Figure S23: PNMR of Compound 5a, Figure S25:
HNMR of Compound 5b, Figure S24: HR Mass spectrometry of Compound 5b, Figure S26: CNMR of Compound
5b, Figure S27: PNMR of Compound 5b, Figure S28: HNMR of 3,6-dibromophenanthrerne-9,10-dione, Figure S29:
CNMR of 3,6-dibromophenanthrerne-9,10-dione.
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Abbreviations

TG-CA Thymine/guanine-cytosine/adenine.
Ct-DNA calf-thymus DNA
MCF-7 abbreviated from Michigan Cancer Foundation-7; a breast cancer cell line.
HEPG-2 hepatic liver carcinoma cell line.
PC-3 hhuman prostate cancer cell line.
MOLT-4 Human acute lymphoblastic leukemia cell line.
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